Turk J Chem 30 (2006) , 21 – 28. © TÜBİTAK

Cyclic Triterpenoid Saponins from Campanula lactiflora

Nurettin YAYLI^{1*}, Asu USTA, Ahmet YAŞAR¹, Osman ÜÇÜNCÜ¹, Canan GÜLEÇ¹, Mustafa KÜÇÜKISLAMOĞLU²

¹Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080, Trabzon-TURKEY e-mail: yayli@ktu.edu.tr ²Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54100, Sakarya-TURKEY

Received 22.09.2004

Two cyclic natural compounds, 3β -O-[α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-13 α ,14 α -epoxy-8 α ,12 β ,15-trihydroxy-(17*E*,21*E*)-17,21-campanuldien-6'(30)-olide, called lactifloroside A, **1**, and 3β -O-[β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-13 α ,14 α -epoxy-8 α ,12 β -dihydroxy-(17*E*,21*E*)-17,21-campanuldien-6'(30)-olide, called lactifloroside B, **2**, were isolated for the first time from *Campanula lactiflora* and their structures deduced by high field 1D and 2D 400 MHz NMR, FT-IR, HPLC, GC-MS, (+/-) LC-MS/MS and (+) FAB-MS spectra. The aglycones of the 2 saponins were named 13 α ,14 α -epoxy-3 β ,8 α ,12 β ,15-tetrahydroxy-(17*E*,21*E*)-17,21-campanuldien-30-oic acid and 13 α ,14 α -epoxy-3 β ,8 α ,12 β -trihydroxy-(17*E*,21*E*)-17,21-campanuldien-30-oic acid as campanuloic acid and 15-deoxycampanuloic acid, respectively.

Key Words: *Campanula lactiflora*, lactifloroside A and B, campanuloic acid, 15-deoxycampanuloic acid, cyclic bisdemoside.

Introduction

The genus Campanula L. belongs to the family Campanulaceae¹. One Campanula species, Campanula lactiflora Bieb., was naturalized in northern Turkey¹. Previous phytochemical studies on C. lactiflora have shown the presence of luteolin 7- β -D-glucopyranoside², luteolin³ and 4'-O-(p-hydroxybenzoyl)-isorhamnetin-3,7-di-O- β -D-glucopyranoside, sitosterol β -D-glucoside, p-hydroxybenzoic acid and ethyl docosanoate⁴, and triterpenes⁵. In our continuing phytochemical investigation of the mixture of chloroform and methanol extracts of air-dried leaves of C. lactiflora, 2 new cyclic triterpene saponins (1, 2) were isolated. This paper reports the isolation and characterization of 2 new cyclic natural products, designated as lactifloroside A (1) and lactifloroside B (2), through spectral analyses. Some cyclic triterpene saponins were reported earlier and

 $^{^{*} {\}rm Corresponding} \ {\rm author}$

named "cyclic bisdemosides" in the literature^{6,7}. Labdane-type structures are well known and characterized by spectral analyses⁸.

Experimental

General and Instrumentation

NMR spectra were recorded on a Varian NMR at 400 MHz instrument in C_5D_5N . (+) FABS were recorded on a ZabSpec MS instrument and (+/-) LC-MS/MS were carried out on a Micromass Quattro spectrometer. Infrared spectra were obtained with a Perkin-Elmer 1600 FT-IR (4000-400 cm⁻¹) spectrophotometer. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. Mps were obtained using a Kofler hot stage apparatus and are uncorrected. Flash CC was performed on silica gel (230-400 mesh) and reversedphase silica gel RP-18, and PTLC was performed with precoated reversed-phase silica gel RP-18 F₂₅₄S. Analytical HPLC was carried out on an Agilent 1100 series using a RI detector and the column was Zorbax Carbohydrate (4.6 mm ID x 250 mm, 5 μ m) with CH₃CN/H₂O (75:25), flow 0.3 mL/min.

GC-MS analysis was performed using an Agilent-5973 Network. A mass spectrometer with an ion trap detector in full scan under electron impact ionization (70 eV) was used. The chromatographic column for the analysis was a DB-1701P capillary column (25 m x 0.32 mm i.d., film thickness 0.25 μ m). The carrier gas used was helium at a flow rate of 1 mL/min. The injection was performed in split mode (ratio 20:1) at 230 °C. Then a 1 μ L crude fraction was injected and analyzed with the column held initially at 100 °C for 1 min and then increased to 300 °C with a 10 °C/min heating ramp and subsequently kept at 300 °C for 15 min.

Plant Material. A whole *C. lactiflora* Bieb plant was collected in August 1996 at Arpah, Trabzon Hills (~ 2000 m), Turkey. A voucher specimen (Yaylı 9-1996 KTUK and KATO 12654-1996) has been deposited in the Department of Chemistry and Faculty of Forestry at Karadeniz Technical University, Turkey. The species was identified according to the Flora of Turkey¹.

Extraction and Isolation. The extraction procedure was as described previously⁴.

Fraction CL7 (230 mg) was again purified by flash CC on silica gel (60 g, 230-400 mesh). The column was eluted with CHCl₃ (60 mL) followed by a discontinuous gradient with CHCl₃-MeOH (2:0.5, 100 mL; 2:1, 50 mL, 1:1, 50 mL, 1:2, 50 mL), then with MeOH (50 mL) and finally with MeOH-H₂O (10:0.5, 50 mL) to give 33 fractions (~ 8-10 mL each). After TLC analysis, fractions 7-23 (mixture), 24-28 (84 mg) (saponin mixture called CL72) and 29-33 (mixture) were combined. CL72 was rechecked by reverse-phase-18 TLC in a MeOH-H₂O (1.5:1) solvent system and found to be a mixture. It was rechromatographed by RP-18 (15 g) flash column chromatography (2 x 60 cm). The column was eluted by a discontinuous gradient with acetone-H₂O (1:1, 20 mL; 1:0.8, 20 mL, 1:0.6, 30 mL, 1:0.5, 30 mL, 1:0.2, 30 mL) and finally with acetone (30 mL) to give 32 fractions (~ 5-6 mL each). After TLC analysis, fractions 20-21 (32 mg) were combined and rechromatographed by RP-18 PTLC (0.25 mm, 20 x 20 cm, 4 plates) using MeOH-H₂O (1.5:0.5) to give 5 bands; CL722C: **1**, 14.3 mg, R_f = 0.40; CL722D: **2**, 9 mg, R_f = 0.26; CL722A, CL722B and CL722E contained minor unidentified compounds, R_f = 0.63, R_f = 0.46, R_f = 0.16, respectively.

$\label{eq:absolution} \textbf{3}\beta\textbf{-}\textbf{\textit{O}-}[\alpha\textbf{-}\textbf{L}\textbf{-}\textbf{rhamnopyranosyl-}(1 \rightarrow 2)\textbf{-}\beta\textbf{-}\textbf{D}\textbf{-}\textbf{glucopyranosyl}]\textbf{-}13\alpha\textbf{,}14\alpha\textbf{-}\textbf{epoxy-}8\alpha\textbf{,}12\beta\textbf{,}13\alpha\textbf{,}14\alpha\textbf{-}\textbf{epoxy-}8\alpha\textbf{,}12\beta\textbf{,}12\beta\textbf{,}13\alpha\textbf{,}14\alpha\textbf{-}\textbf{epoxy-}8\alpha\textbf{,}12\beta\textbf{,}12\beta\textbf{,}13\alpha\textbf{,}14\alpha\textbf{-}\textbf{epoxy-}8\alpha\textbf{,}12\beta\textbf{,}12\beta\textbf{,}13\alpha\textbf{,}14\alpha\textbf{-}\textbf{epoxy-}8\alpha\textbf{,}12\beta\textbf{,}12\beta\textbf{,}13\alpha\textbf{,}14\alpha$

15-trihydroxy-(17*E*,21*E*)-17,21-campanuldien-6'(30)-olide, (1): Amorphous powder, mp 143-146 °C; $[\alpha]^D$ +12.28° (MeOH; c 1.14 x 10⁻³); ¹H NMR (C₅D₅N, 400 MHz) and ¹³C NMR (C₅D₅N, 100 MHz) δ (ppm) see Table 1; FAB-MS m/z (%); m/z = 835(48) [M+Na]⁺, 851(13) [M+K]⁺, 550(12), 522(10), 393(43), 369(24), 322(75), 253(32), 193(55), 179(48) and 149(32). (+) LC-MS/MS m/z (%); m/z = 835(100) [M+Na]⁺, 851(28) [M+K]⁺; (-) LC-MS/MS m/z (%); m/z = 811(45) [M-H]⁺, 812(21) [M]⁺, 491(25%), 254(48%), 126(100%); FT-IR cm⁻¹: 3427, 2942, 1699, 1646, 1451, 1388, 1074, 1032.

3β-O-[β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl]-13α,14α-epoxy-8α,12β-dihydroxy-(17E,21E)-17,21-campanuldien-6'(30)-olide, (2): Amorphous powder, mp 158-162 °C; $[α]^D$ +9.61° (MeOH; c 5.2 x 10⁻⁴); ¹H NMR (C₅D₅N, 400 MHz) and ¹³C NMR (C₅D₅N, 100 MHz) δ (ppm) see Table 1; FAB-MS m/z (%); m/z = 835(25) [M+Na]⁺, 851(13) [M+K]⁺, 552(3), 513(5), 391(13), 345(28), 253(32), 192(100) and 179(16); (+) LC-MS/MS m/z (%); m/z = 835(100) [M+Na]⁺, 851(62) [M+K]⁺; (-) LC-MS/MS m/z (%); m/z = 811(55) [M-H]⁺, 812(25) [M]⁺, 325(28%), 182(62%), 126(100%); FT-IR cm⁻¹: 3435, 2940, 1695, 1645, 1456, 1386, 1275, 1124, 1075.

Acid Hydrolysis of 1: Compound 1 (5 mg) was refluxed with 2N HCl (1 mL) in MeOH (1 mL) for 8 h. The reaction mixture was then concentrated under reduced pressure to remove MeOH. It was then diluted with H₂O (3 mL) and aglycone extracted with CHCl₃. LC-MS/MS showed its $[M+H]^+$ peak at 523 (18%) The aqueous layer was adjusted to pH 7 with NaOH and filtered. The supernatant was concentrated and compared with reference sugars on TLC (silica gel, CH₂Cl₂:MeOH:H₂O, 15:9:1). The sugars were detected on a silica gel plate by spraying of a solution of 50% H₂SO₄ in EtOH. The sugar part was identified as glucose and rhamnose, which were also determined by HPLC and GC-MS (trimethylsilyl derivatives of sugars) analysis.

Acid Hydrolysis of 2: The acid hydrolysis of compound 2 (3 mg) was performed in the same way as compound 1. For compound 2, glucose was determined by HPLC, GC-MS (trimethylsilyl derivatives of sugars) analysis and TLC analysis with an authentic sugar as well.

Results and Discussion

The mixture of chloroform and methanol extracts of the air-dried leaves of *C. lactiflora* was subjected to silica gel and reversed phase RP-18 chromatographies (CC, TLC and PTLC) to give 2 new cyclic compounds, **1** and **2**.

Conventional ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra combined with DEPT data yielded the structure of the molecule **1** consisting of a triterpenoid aglycone $(C_{30}H_{50}O_7)^{9-12}$ and a disaccharide (C_{12}) sugar moiety. The COSY, TOCSY, HMQC, HMBC and NOESY maps afforded a comprehensive description of through-bond and through-space proton-proton and proton-carbon connectivities of **1**.

Compound 1 showed its $[M+Na]^+$ and $[M+K]^+$ peaks at m/z 835 (48% and 100%) and 851 (13% and 38%) in the positive FAB and (+) LC-MS/MS spectra, respectively, and (-) LC-MS/MS gave a $[M-H]^+$ peak at m/z 811 (45%), and a $[M]^+$ peak at 812 (21%). These results indicate the molecular formula $C_{42}H_{68}O_{15}$. The FT-IR spectrum of compound 1 showed absorption bands for a hydroxyl group (3427 cm⁻¹), double bonds (1646 cm⁻¹) and a conjugated ester carbonyl (1699 cm⁻¹).

The sequential assignments of individual aglycone were readily available from ¹H chemical shift correlations (H₃ to H₁; H₅ to H₇; H₉ to H₁₃, H₁₅ to H₂₈; and H₁₉ to H₂₉) in ¹H COSY and TOCSY spectra of **1**. All correlated parts together gave aglycone of compound **1**, which is a new example of labdane-containing triterpenoids⁸ and obeys the isoprene rule. The ¹H NMR spectrum of compound **1** in C_5D_5N displayed the

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1^{ab}		$2^{a,b}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C/H	$^{13}\mathrm{C}$	$^{1}\mathrm{H}$	C/H	$^{13}\mathrm{C}$	$^{1}\mathrm{H}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	(δ, ppm)	(δ, ppm)	,	(δ, ppm)	(δ, ppm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	37.79	1.40° , 2.01° , m	1	38.09	1.42° , 2.02° , m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	24 90	$2.06^{\circ}, 2.00^{\circ},$	2	25.33	$2 12^c$ m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 3	89.00	$3.35 \pm 1 - 8.4 \text{ Hz}$	- 3	20.00 89.45	340 dd I = 42.85 Hz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	38.63	-	4	38.81	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55.00	0.01 d I - 12 Hz		55.60	0.97 dd I = 9.3 11.1 Hz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	18 34	1.00° 1.08° m	5	18 40	$1.00^{\circ} \cdot 2.15^{\circ} \text{ m}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07	42.10	$1.50^{\circ}, 1.50^{\circ}, 11^{\circ}$	0 7	10.49	$1.50^{\circ}, 2.15^{\circ}, m$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	43.10 71.70	1.52, 1.96 , m	1	43.10 71.77	1.50, 1.90, 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	71.70 51.21	- 1.00 hd I - 0.0 Hz	8	11.11 51.95	- 1.80 bd 1 - 80 Hz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	01.01 20.10	1.62, bu, J = 8.0 Hz	9	01.20	$1.80, \mathrm{bd}, \mathrm{J} = 8.0 \mathrm{Hz}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	38.12		10	38.33	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	27.81	1.85°, 2.18°, m	11	27.97	1.86°, 2.10°, m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	75.81	4.18, dd, J = 3.2, 7.6 Hz	12	77.36	4.03, dd, J = 3.6, 7.9 Hz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	64.40	3.74, d, $J = 7.6$ Hz	13	69.46	3.23, d, J = 7.9 Hz
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	61.25	-	14	59.60	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	70.57	$4.13, \mathrm{dd}, \mathrm{J} = 1.6, 6.8 \mathrm{Hz}$	15	39.95	2.14^c , m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	30.60	$2.42^c, 2.69^c, m$	16	23.96	$2.10^c, 2.24^c, m$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	118.55	5.73, t, J = 6.8 Hz	17	124.11	5.46^d , bs
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18	135.38	-	18	135.17	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	37.44	$1.46^c, 2.32^c$	19	37.63	$1.45^c, 2.30^c, m$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	28.22	$1.90^c, 2.20^c, m$	20	28.39	$1.85^c, 2.12^c, m$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	141.66	6.95, t, J = 6.8 Hz	21	141.61	7.00, t, J = 6.7 Hz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	128.06	-	22	128.40	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	29.06	1.30, s	23	28.72	1.32, s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	16.96	1.01, s	24	17.20	1.04, s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	16.23	1.32, s	25	16.19	1.34, s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	31.54	1.43, s	26	31.56	1.39, s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	16.75	1.45, s	27	17.70	1.42, s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	16.96	1.72, s	28	16.19	1.61, s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	12.18	1.84. s	29	12.39	1.95, s
Gluc 1' 101.53 4.63, d, J = 8.0 Hz Gluc I 1' 102.38 4.71, d, J = 7.8 Hz 2' 76.31 4.42, t, J = 8.0 Hz 2' 80.50 4.60, dd, J = 7.7, 8.0 Hz 3' 70.57 4.20 ^c 3' 70.05 4.31 ^c 4' 70.68 4.26 ^c 4' 74.81 4.34 ^c	30	167.67	-	30	167.83	-
Gluc 1'101.534.63, d, J = 8.0 HzGluc I 1'102.384.71, d, J = 7.8 Hz2'76.314.42, t, J = 8.0 Hz2'80.504.60, dd, J = 7.7, 8.0 Hz3'70.57 4.20^{c} 3'70.05 4.31^{c} 4'70.68 4.26^{c} 4'74.81 4.34^{c}						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gluc $1'$	101.53	4.63, d, J = 8.0 Hz	Gluc I $1'$	102.38	4.71, d, J = 7.8 Hz
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2'	76.31	4.42, t, J = 8.0 Hz	2'	80.50	4.60, dd, J = 7.7, 8.0 Hz
4' 70.68 4.26 ^c $4'$ 74.81 4.34 ^c	3'	70.57	4.20^{c}	3'	70.05	4.31^{c}
	4'	70.68	4.26^{c}	4'	74.81	4.34^{c}
5' 73.28 3.97, bd, $J = 9.2 \text{ Hz}$ 5' 76.39 4.06, t, $J = 8.0 \text{ Hz}$	5'	73.28	3.97, bd, $J = 9.2$ Hz	5'	76.39	4.06, t. J = 8.0 Hz
$6' \qquad 65.14 \qquad 4.56^c \qquad \qquad 6' \qquad 65.21 4.64^c$	6'	65.14	4.56^{c}	6′	65.21	4.64^c
4.98. dd. J = 9.6. 11.6 Hz $5.05. dd. J = 9.9. 10.6 Hz$, i i i i i i i i i i i i i i i i i i i		4.98. dd. J = 9.6. 11.6 Hz	Ŭ		5.05. dd. $J = 9.9.10.6 \text{ Hz}$
			1.000, aa, o 0.00, 1110 112			0.00, 44, 0 0.0, 1010 112
Rha 1" 101.24 6.23, bs Gluc II 1" 105.30 5.20, d, $J = 7.6$ Hz	Rha $1''$	101.24	6.23, bs	Gluc II $1^{\prime\prime}$	105.30	5.20, d, J = 7.6 Hz
2'' 71.69 4.82, dd, J = 1.6, 3.2 Hz $2''$ 73.35 4.03, dd, J = 7.6, 8.0 Hz	$2^{\prime\prime}$	71.69	4.82, dd, J = 1.6, 3.2 Hz	$2^{\prime\prime}$	73.35	4.03, dd, J = 7.6, 8.0 Hz
3'' 71.76 4.63 ^c $3''$ 71.55 4.13, t, J = 9.1 Hz	$3^{\prime\prime}$	71.76	4.63^{c}	$3^{\prime\prime}$	71.55	4.13, t, J = 9.1 Hz
4'' 71.70 4.26, t, J = 9.6 Hz $4''$ 70.97 4.20, t, J = 9.5 Hz	4''	71.70	4.26, t. $J = 9.6 \text{ Hz}$	4″	70.97	4.20, t. J = 9.5 Hz
5'' 69.34 4.57 ^c $5''$ 77.79 3.72 ^c	5''	69.34	4.57^{c}	5″	77.79	3.72^{c}
6'' 18.27 1.52, d, J = 6.4 Hz $6''$ 62.04 4.33 ^c , 4.36 ^c	$\tilde{6}^{\prime\prime}$	18.27	1.52, d, J = 6.4 Hz	6''	62.04	$4.33^c, 4.36^c$

Table 1. ¹³C and ¹H NMR spectral data for lactifloroside A and B (1, 2) in C_5D_5N .

 a Chemical shifts (ppm) are relative to C₅D₅N. b Assignments based on $^1\mathrm{H},\,^{13}\mathrm{C},\,\mathrm{DEPT},\,\mathrm{2D}\text{-}\mathrm{COSY},\,\mathrm{TOCSY},\,\mathrm{HMQC},\,\mathrm{HMBC}$ and NOESY spectra.

 $^c\mathrm{Signal}$ patterns unclear due to overlapping.

^dBeside the HDO peak.

presence of 7 methyl singlets at δ 1.01, 1.30, 1.32, 1.43, 1.45, 1.72 and 1.84⁹⁻¹³, and 1 methyl doublet at δ 1.52 (J = 6.4 Hz) typical of a rhamnose -CH₃. In addition, there were peaks at δ 5.73 (1H, H₁₇, t, J = 6.8 Hz) and 6.95 (1H, H₂₁, t, J = 6.8 Hz) for 2 olefinic protons, at δ 4.13, (H₁₅, dd, J = 1.6, 6.8 Hz) and 4.18, (H₁₂, dd, J = 3.2, 7.6 Hz) for 2 hydroxyl substituted methine protons, δ 3.74 (H₁₃, d, J = 7.6 Hz) for an epoxy substituted methine proton, and a triplet at δ 3.35 (J = 8.4 Hz) due to H₃.

The ¹³C resonances for the aglycone in the downfield area showed that there were 6 oxygenated sp³ carbon resonances (C₃: δ 89.00, C₈: δ 71.70, C₁₂: δ 75.81, C₁₃: δ 64.40, C₁₄: δ 61.25, C₁₅: δ 70.57) and the remaining oxygenated carbon resonances were accounted for by the 2 sugars. The 30 carbon aglycone was shown by DEPT spectra to have 4 quaternary carbons (δ 38.12, 38.63 61.25, 71.70), 6 methines (δ 51.31, 55.27, 64.40, 70.57, 75.81, 89.00), 8 methylenes (δ 18.34, 24.90, 27.81, 28.22, 30.60, 37.44, 37.79, 43.10), 7 methyl groups (δ 12.18, 16.23, 16.75, 16.96 (2 peaks interpreted from HMBC and HMQC), 29.06, 31.54), and 5 sp² carbons (δ 118.55 (CH), 141.66 (CH), 128.06 (C), 135.38 (C), 167.67 (O-C=O)). Thus, the structure of the aglycone of compound **1** had a new cyclic triterpene feature, having 2 double bonds in *E* configuration proved by carbon chemical shifts (δ 118.55, 135.38, 141.66, 128.06 for C₁₇, C₁₈, C₂₁, C₂₂, respectively), 4 hydroxyls (3 β , 8 α , 12 β , 15), an epoxy (13 α , 14 α) and a C₃₀ carboxylic ester group. Some of the important HMBC correlations for compound **1** are listed in Table 2. Analysis of the NMR data of compound **1** showed that the aglycone had unfused C/D and D/E ring systems.

	1		2
Proton	Carbon	Proton	Carbon
H_3	C_2, C_4, C_{24}	H_3	C_2, C_4
H_{12}	C_{12}	H_{13}	C_{14}
H_{13}	C_{12}, C_{14}, C_{15}	H_{21}	C_{22}, C_{29}, C_{30}
H_{15}	$C_{13}, C_{14}, C_{16}, C_{17}, C_{27}$	H_{23}	C_3, C_4, C_5, C_{24}
H_{16}	$C_{14}, C_{15}, C_{17}, C_{18}$	H_{24}	C_3, C_4, C_5, C_{23}
H_{17}	C_{16}, C_{19}, C_{28}	H_{25}	C_5, C_9, C_{10}, C_{25}
H_{21}	$C_{19}, C_{20}, C_{22}, C_{29}, C_{30}$	H_{26}	C_7, C_8, C_9
H_{23}	C_3, C_5, C_{24}	H_{27}	$C_{13}, C_{14}, C_{15},$
H_{24}	C_3, C_5, C_{23}	H_{28}	$C_{17}, C_{18}, C_{19},$
H_{25}	C_1, C_5, C_9, C_{10}	H_{29}	C_{21}, C_{22}, C_{30}
H_{26}	C_8, C_9, C_{11}	Gluc I H_1	C_3
H_{27}	C_{13}, C_{14}, C_{15}	Gluc I H_2	Gluc II C_1 , Gluc I C_3
H_{28}	C_{17}, C_{18}, C_{19}	Gluc I H_{6a}/H_{6b}	C_{30} , Gluc I C_5
H_{29}	C_{21}, C_{22}, C_{30}	Gluc II H_1	Gluc I C_2
Gluc H_1	C_3 , Gluc C_2		
Gluc H_2	Rham C_1 , Gluc C_2 , Gluc C_4		
Gluc H_{6a}/H_{6b}	C_{30} , Gluc C_5		
Rha H_1	Gluc C_2 , Rham C_2 , Rham C_3		

Table 2. Some of the important HMBC correlations for lactifloroside A and B (1, 2).

The NOESY data for the aglycone revealed that the relative stereochemistries at the common centers in ring A and B were identical to those of similar reported diterpenes⁸ and triterpenes^{13,14}. For example, a NOESY experiment with **1** showed the presence of cross-peak correlations of $H_{12\alpha}$ (δ 4.18) with $H_{9\alpha}$ (δ 1.82), H_{25} (δ 1.32) with H_{26} (δ 1.43), H_9 (δ 1.82) with $H_5(\delta$ 0.91), and H_3 (δ 3.35) with $H_5(\delta$ 0.91). The H_{12} and H_{13} were axial-axial oriented due to the coupling constant (7.6 Hz). Therefore, the hydroxyl at C_{12}

and an epoxy at C_{13}/C_{14} were assigned to be β and α configurations, respectively, but the stereochemistry at C_{15} is not certain.

R₁= -OH, R₂= -Rhamnose (lactifloroside A)
R₁= -H, R₂= -Glucose (lactifloroside B)

Acid hydrolysis of compound **1** afforded aglycone, which showed its $[M+H]^+$ peak at 523 (22%), $[M+H_2O+H]^+$ peak at 541 (39%), $[M+2H_2O+H]^+$ peak at 559 (18%) and $[M-OH]^+$ peak at 505 (22%) in the (+) LC-MS/MS spectrum.

The individual proton spin systems for the each sugar residue of the glycone of compound $\mathbf{1}$ were derived from ¹H COSY and TOCSY spectra. The HMQC spectrum allowed for assignments of carbon resonances in the sugar moiety of compound 1. The ¹H NMR spectrum of 1 showed 2 anomeric proton signals at δ 4.63 (H_{1'}, d, J = 8.0 Hz) and δ 6.23 (H_{1''}, bs) ppm, indicating the presence of 2 monosaccharides. Two anomeric protons at δ 4.63 and 6.23 ppm correlating with carbon signals at δ 101.53 and 101.24 ppm were assigned to β -D-glucose and α -L-rhamnose, respectively¹³⁻¹⁸. Compound 1 afforded a mixture of D-glucose and L-rhamnose (1:1) on acid hydrolysis as determined by HPLC and GC-MS (trimethylsilyl derivatives of sugars) and on TLC analysis with authentic sugars. Formation of a glycosidic bond was indicated by a 3 to 6 ppm downfield shift of the resonance (δ_C 76.31 (Gluc C₂) and 65.14 (Gluc C₆)) due to the carbon atoms involved in the glycosidic linkage^{5,13-17}, a fact clearly reflected by the 13 C chemical shift data of lactifloroside A. Two interglycosidic linkages, δ 65.14 (Gluc C₆) and 76.31 (Gluc C₂) ppm, were present in the glucose moiety of compound 1 (HMBC, NOESY) (Tables 1 and 2). The HMBC cross signals for glucose H_1/C_3 (δ 4.63/89.00) showed the glycosidation with glucopyranose in position C_3 (Table 2). In addition the glycosidation of the position C_{30} was indicated by the HMBC cross peak of the ³J coupling between glucose H_6/C_{30} (δ 4.56, 4.98/167.67). These HMBC data showed that glucopyranose was linked from glucose H_1 to C_3 and glucose H_{6a} - H_{6b} to C_{30} through a glycosidic and an ester linkage, respectively.

The sequence of the sugars and the aglycone part of compound 1 were also established through positive ion FAB-MS, which exhibited molecular ion peaks at $m/z = 835 [M+Na]^+$, $851 [M+K]^+$ and fragment ions $m/z = 550 [M-292-O+Na]^+$, $522 [Aglycone]^+$, $369 [(Gluc-O-Rham)-OH+Na]^+$, $322 [(Gluc-O-Rham)-O+2Na]^+$, $193 [Rha+2Na]^+$, $[Rha+2Na]^+$ and $149 [Rha+2H]^+$, respectively.

Based upon the above observations, the structure of compound **1** was established as 3β -O-[α -L-rhamnopyranosyl-($1\rightarrow 2$)- β -D-glucopyranosyl]- 13α , 14α -epoxy- 8α , 12β , 15-trihydroxy-(17E, 21E)-17, 21-campa-nuldien-6'(30)-olide, a new cyclic natural saponin isolated for the first time from *C. lactiflora*.

The second compound (2) exhibited its $[M+Na]^+$ and $[M+K]^+$ peak at m/z 835 (23% and 100%) and 851 (13% and 62%) in the positive FAB and (+) LC-MS/MS spectra, respectively, and (-) LC-MS/MS gave a $[M-H]^+$ peak at m/z 811 (55%), and a $[M]^+$ peak at 812 (25%). These data indicate the molecular formula $C_{42}H_{68}O_{15}$, which was the same molecular formula as compound 1, but it had 2 significant differences in the NMR data of compound 2: the signal of the H_{15} (-OH substituted) at δ 4.13 was missing and, instead of rhamnose, another terminal glucose unit was present (Table 1). The FT-IR spectrum of compound 2 showed absorption bands for a hydroxyl group (3435 cm⁻¹), double bonds (1645 cm⁻¹) and a conjugated ester carbonyl (1695 cm⁻¹).

The ¹H NMR spectrum of compound **2** revealed the presence of 7 methyl singlets at δ 1.04, 1.32, 1.34, 1.39, 1.42, 1.61 and 1.95. There were also peaks at δ 7.00 (H₂₁, t, J = 6.7 Hz) and 5.46 (H₁₇, bs beside HDO peak, COSY, HMQC) for 2 olefinic protons, at δ 4.03, (H₁₂, dd, J = 3.6, 7.9 Hz) for 1 methine proton (CHOH), 3.23, (H₁₃, d, J = 7.9 Hz) for an epoxy methine proton and at δ 3.40 (dd, J = 4.2, 8.5 Hz) due to H₃.

After the analyses of the NMR spectra of compound 2 (¹H, ¹³C, DEPT, H-COSY, TOCSY, HMQC, HMBC and NOESY) (Table 1), a comparison of the NMR data (Table 1) of 2 with those of 1 showed disaccharide sugar moieties as $\mathbf{1}$ except that terminal rhamnose was replaced by another glucose unit, which showed a downfield shift of its carbon at δ 105.30 (Gluc II C₁). Compound **2** gave D-glucose on acid hydrolysis as determined by HPLC and GC-MS (trimethylsillyl derivatives of sugars) and on TLC analysis with an authentic sugar. The ¹H NMR spectrum of **2** exhibited signals for 2 anomeric protons at δ 4.71 (Gluc I H₁, d, J = 7.8 Hz) and δ 5.20 (Gluc II H₁, d, J = 7.6 Hz), which correlated with carbon signals at δ 102.38 and 105.30, assigned to 2 glucose units^{14,16,18}. The HMBC cross signals for glucose I H_1/C_3 (δ 4.71/89.45) and glucose I H_{6a} - H_{6b}/C_{30} (δ 4.64, 5.05/167.83) showed the glycosidation between glucopyranose I and aglycone at C_3 and C_{30} in compound **2** as in compound **1**. These HMBC data showed that linkage and lactonization were the same as in compound 1 (Table 2). Some of the important HMBC correlations for compound 2 are listed in Table 2. Analysis of the NMR data of compound 2 showed that the aglycone of compound 2 had the same unfused C/D and D/E ring systems as in compound 1, but showed no hydroxyl at C_{15} . Thus, the structure of aglycone of compound **2** features 2 double bonds (Δ^{17} and Δ^{21}), 3 hydroxyls (3 β , 8 α and 12 β), an epoxy $(13\alpha \text{ and } 4\alpha)$ and a C₃₀ carboxylic ester. Acid hydrolysis of compound **2** afforded aglycone, which showed its $[M+H]^+$ peak at 507 (24%), $[M+H_2O+H]^+$ peak at 525 (13%) and $[M+2H_2O+H]^+$ peak at 543 (7%) in the (+) LC-MS/MS spectrum.

The sequence of the sugars and the aglycone part of compound **2** were also established through positive ion FAB-MS, which exhibited the molecular ion peaks at $m/z = 835 \text{ [M+Na]}^+$, 851 [M+K]^+ and fragment ions $m/z = 552 \text{ [Aglycone+2Na]}^+$, $391 \text{ [Glc II-O-Glc I-OCO(368)+Na]}^+$ and 179 [Glc II-O]^+ , respectively.

From the above evidence, the structure of compound **2** was proved to be 3β -O-[β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-glucopyranosyl]- 13α , 14α -epoxy- 8α , 12β -dihydroxy-(17E, 21E)-17, 21-campanuldien-6'(30)-olide, a new cyclic natural compound isolated for the first time from *C. lactiflora*.

Acknowledgments

This study was supported by a grant from Karadeniz Technical University, Turkey, State Planning Agency (DPT) and TÜBİTAK NATO-B2. Thanks to Dr. J.A. Findlay, from the Department of Chemistry, University of New Brunswick, Fredericton, Canada, for both accepting the first author as a visiting scientist and providing laboratory facilities to conduct the research.

References

- J. Damboldt, Campanula L. In: P.H. Davis, "Flora of Turkey and the East Aegean Islands", Vol 6, University Press, Edinburgh. p. 2-65, 1977.
- 2. S.F. Dzhumyrko, E.T. Oganesyan and A.L. Shinkarenko, Khim. Prir. Soedin 5, 440-441 (1969).
- 3. S.F. Dzhumyrko, Khim. Prir. Soedin 2, 273-274 (1973).
- 4. N. Yaylı, N. Yıldırım, A. Usta, S. Özkurt and V. Akgün, Turk. J. Chem. 27, 749-755 (2003).
- 5. N. Yaylı, N. Yıldırım, N. Doğan, A. Usta and L. Altun, J. Asian Nat. Prod. Res. 7, 771-775 (2005).
- 6. F.H. Kong, D.Y. Zhu, R.S. Xu, Z.C. Fu and L.Y. Zhou, Tetrahedron Letters 27, 5765-5768 (1986).
- R. Kasai, M. Miyakoshi, R.L. Nie, J. Zhou, K. Matsumoto, T. Morita, M. Nishi, K. Miyahara and O. Tanaka, Phytochemistry 27, 1439-1446 (1988).
- 8. A.F. Barrero and J. Altarejos, Mag. Reson. Chem. 31, 299-308 (1993).
- 9. S.B. Mahato and S. Sen, Phytochemistry 44, 1185-1236 (1997).
- 10. S.B. Mahato, S.K. Sarkar and G. Poddar, Phytochemistry 27, 3037-3067 (1988).
- 11. S.B. Mahato, A.K. Nandy and G. Roy, Phytochemistry 31, 2199-2249 (1992).
- 12. S.B. Mahato and A.P. Kundu, Phytochemistry 37, 1517-1575 (1994).
- 13. T. Baykal, T. Panayır, D. Taşdemir, O. Sticher and İ. Çalış, Phytochemistry 48, 867-873 (1998).
- M. Konishi, Y. Hano, M. Takayama, T. Nomura, A.S. Hamzah, R.B. Ahmad and H. Jasmani, Phytochemistry 48, 525-528 (1998).
- 15. S.S. Yu, Z.Y. Xiao, P. Cai, T.Y. Jiang and J.K. Snyder, Tetrahedron 50, 11601-11612 (1994).
- 16. N.P. Sahu, Phytochemistry 41, 883-886 (1996).
- 17. Z. Jia, K. Koike, M. Kudo, H. Li and T. Nikaido, Phytochemistry 48, 529-536 (1998).
- 18. P.K. Agrawal, Phytochemistry 31, 3307-3330 (1992).