Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)-imidazolidin-2-ylidine (η^{6}-hexamethylbenzene)]ruthenium

Hakan ARSLAN ${ }^{1,2 *}$, Donald Van DERVEER ${ }^{3}$, İsmail ÖZDEMİR ${ }^{4}$, Sedat YAŞAR ${ }^{4}$ and Bekir ÇETİNKAYA ${ }^{5}$
${ }^{1}$ School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
${ }^{2}$ Department of Chemistry, Faculty of Arts and Science, Mersin University, 33343, Mersin-TURKEY
e-mail: arslanh@mersin.edu.tr
${ }^{3}$ Department of Chemistry, Clemson University, Clemson, SC, USA
${ }^{4}$ Department of Chemistry, Faculty of Science and Arts, Inönü University, Malatya-TURKEY
${ }^{5}$ Department of Chemistry, Faculty of Science, Ege University, 35100 İzmir-TURKEY

Received 13.06.2006

The single crystal X-ray structure of the imidazolidin ruthenium complex, $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Ru}$, was determined. The complex is an orthorhombic space group Pbca with $a=17.3586(32) \AA, b=14.4447(27)$ $\AA, c=27.4325(52) \AA$, and $V=6878.466(4) \AA^{3}$ with $Z=8$ for $D_{\text {calc }}=1.357 \mathrm{~g} / \mathrm{cm}^{3}$. It exhibits the expected 3 -legged piano stool geometry. There is one coordination bond of the ruthenium atom with the electrons of the η^{6}-hexamethylbenzene, 2 symmetrical $\mathrm{Ru}-\mathrm{Cl}$ bonds, and one $\mathrm{Ru}-\mathrm{C}$ bond involving the imidazole ring. The coordination around the ruthenium atom is 4 -fold, which in this is case is pseudo-tetrahedral.

Key Words: Arenes, carbenes, imidazole, ruthenium complex, X-ray structure

Introduction

The conversion of metal carbenes into useful organic functionalities is an important area of research in synthetic applications. Nonetheless, the reaction of a metal carbene complex with a halogen to provide the corresponding organic halide has been rarely reported. ${ }^{1-3}$ In the last decade, N-heterocyclic carbenes have been the subject of intense research in the field of organometallic chemistry. These derivatives have been shown to behave as phosphine mimics. ${ }^{4-6}$ In addition, N-heterocyclic carbenes of 1,3 -imidazolylidene and 1,3-imidazolinylidene have been used as ancillary ligands in transition metal chemistry. ${ }^{6,7}$ Significant improvements in catalytic performance have recently brought benefits to fine chemistry via the simple substitution of a phosphine ligand by a nucleophilic heterocyclic diaminocarbene, such as an imidazolylidene

[^0]Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,
ligand. Illustrative examples are found in various catalytic reactions with palladium catalysts, in crosscoupling, and ruthenium catalysts for the formation of furans and cyclopropanation. ${ }^{8-12}$

In our previous works, ${ }^{5,7,9-15}$ we have reported syntheses, characterizations, catalytic activities, and crystal structures of some imidazolidin-2-ylidine derivatives and their metal complexes. In the present work, we report the structural properties of dichlorido(1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)-imidazolidin-2-ylidine (η^{6}-hexamethyl benzene))ruthenium, (I).

Experimental

Instrumentation and crystal structure determination

Single crystal X-ray data were collected with a Rigaku Mercury AFC8S CCD diffractometer using monochromatic $\operatorname{MoK}_{\alpha}(\lambda=0.71073 \AA)$ radiation. The structure was solved by direct and conventional Fourier methods. Full-matrix least-squares refinements were based on F^{2}. SHELXTL was the program used for calculations. ${ }^{16}$ Further details concerning data collection and refinements are given in Table 1.

Table 1. Summary of crystallographic data and parameters of (I).

CCDC deposit no.	CCDC-613013
Empirical formula	$\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Ru}$
Formula weight	702.74
Temperature, K	173(2)
Wavelength, \AA	0.71073
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	
a, \AA	17.3586(32)
b, \AA	14.4447(27)
c, \AA	27.4325(52)
Volume, \AA^{3}	6878.466(4)
Z	8
Density (calculated), $\mathrm{Mg} / \mathrm{m}^{3}$	1.357
Absorption coefficient, mm^{-1}	0.640
F(000)	2928
Crystal size, mm	$0.80 \times 0.24 \times 0.12$
θ range for data collection, deg	1.89 to 25.00
Index ranges	$-20 \leq \mathrm{h} \leq 20$
	$-15 \leq \mathrm{k} \leq 16$
	$-25 \leq 1 \leq 32$
Reflections collected	34,134
Independent reflections	5897 [R(int) $=0.0357]$
Absorption correction	REQAB (multi-scan) ${ }^{17}$
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	5897/0/385
Goodness-of-fit on F^{2}	1.152
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0451, \mathrm{wR} 2=0.0906$
R indices (all data)	$\mathrm{R} 1=0.0544, \mathrm{wR} 2=0.0943$
Largest diff. peak and hole, e. \AA^{-3}	0.742 and -0.461

Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,

Synthesis

All reactions were performed using Schlenk-type flasks under Ar and standard high vacuum-line techniques. Analytical grade solvents were distilled under Ar. The synthesis of tetra aminoethane was accomplished employing a 3-step procedure as described in the literature. ${ }^{10}$ The title compound was prepared from functional tetra aminoethane in toluene at $95-100{ }^{\circ} \mathrm{C}$ (Scheme). A solution of tetra aminoethane (1.1 $\mathrm{mmol})$ and $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right)\right]_{2}(1.0 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL})$ was heated in a water bath $\left(95-100{ }^{\circ} \mathrm{C}\right)$ for 3 h . After cooling to $25^{\circ} \mathrm{C}$, hexane (10 mL) was added and the solution cooled to $-15{ }^{\circ} \mathrm{C}$. An orange precipitate was filtered off and re-crystallized from dichloromethane:hexane ($15: 30 \mathrm{~mL}$). The complex was obtained with an 85% yield. ${ }^{18}$ Dichlorido(1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)-imidazolidin-2ylidine(η^{6}-hexamethylbenzene))ruthenium: M.p. $249{ }^{\circ} \mathrm{C}$; Analysis (\% Calc/found): for $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{RuCl}_{2}$: C: 64.94/64.98, H: 6.60/6.66, N: 3.99/3.96. FAB $(m / z): 702.78$.

Scheme

Results and Discussion

We herein report the crystal structure of (I). All of the characterization data are in agreement with the molecular structure of (I) and data in the literature. ${ }^{18}$ The molecular structure of (I) is shown in the Figure, with the atom-numbering scheme. Selected bond lengths and angles are given in Table 2. Table 3 lists the non-hydrogen atomic coordinates for the title compound.

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for (I).

Bond distances				
	Ru1-C3	$2.073(3)$	N1-C2	$1.473(4)$
	Ru1-Cl1	$2.4263(9)$	$\mathrm{Ru} \cdots \mathrm{C} 17$	$2.2047(14)$
	Ru1-Cl2	$2.4115(9)$	$\mathrm{Ru} \cdots \mathrm{C} 18$	$2.2026(12)$
	C3-N1	$1.345(4)$	$\mathrm{Ru} \cdots \mathrm{C} 19$	$2.2021(13)$
	C3-N2	$1.359(4)$	$\mathrm{Ru} \cdots \mathrm{C} 20$	$2.2764(16)$
	N1-C29	$1.464(4)$	$\mathrm{Ru} \cdots \mathrm{C} 21$	$2.2893(15)$
	N2-C4	$1.445(4)$	$\mathrm{Ru} \cdots \mathrm{C} 22$	$2.2121(14)$
	N1-C1	$1.474(4)$		
Bond angles				
	Cl1-Ru1-Cl2	$83.99(3)$	C3-N1-C1	$113.7(3)$
	C3-Ru1-Cl1	$92.53(9)$	C3-N2-C4	$128.5(3)$
	C3-Ru1-Cl2	$88.80(9)$	N1-C1-C2	$102.6(3)$
	Ru1-C3-N1	$127.4(2)$	N2-C2-C1	$102.9(3)$
	Ru1-C3-N2	$125.5(2)$		

Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,

Table 3. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for (I).

	x	y	z	$U_{e q}^{*}$
$\mathrm{Ru}(1)$	$6665(1)$	$9840(1)$	$10,40(1)$	$22(1)$
$\mathrm{Cl}(2)$	$7647(1)$	$8664(1)$	$10,96(1)$	$34(1)$
$\mathrm{Cl}(1)$	$6334(1)$	$9063(1)$	$284(1)$	$32(1)$
$\mathrm{N}(2)$	$8175(2)$	$10,893(2)$	$864(1)$	$27(1)$
$\mathrm{N}(1)$	$340(2)$	$11,226(2)$	$301(1)$	$26(1)$
$\mathrm{C}(1)$	$7990(2)$	$11849(3)$	$190(1)$	$34(1)$
$\mathrm{C}(2)$	$8524(2)$	$11693(3)$	$615(1)$	$30(1)$
$\mathrm{C}(3)$	$7457(2)$	$10694(2)$	$697(1)$	$24(1)$
$\mathrm{C}(4)$	$8550(2)$	$10,559(3)$	$1300(1)$	$29(1)$
$\mathrm{C}(5)$	$9301(2)$	$10,048(2)$	$1202(1)$	$31(1)$
$\mathrm{C}(6)$	$9458(2)$	$9668(3)$	$749(1)$	$39(1)$
$\mathrm{C}(7)$	$10,138(2)$	$9184(3)$	$667(2)$	$47(1)$
$\mathrm{C}(8)$	$0658(2)$	$9056(3)$	$1036(2)$	$51(1)$
$\mathrm{C}(9)$	$10512(2)$	$9433(3)$	$1488(2)$	$54(1)$
$\mathrm{C}(10)$	$9839(2)$	$9933(3)$	$1578(1)$	$39(1)$
$\mathrm{C}(11)$	$9718(1)$	$10,350(2)$	$2079(1)$	$50(1)$
$\mathrm{C}(12)$	$10,032(1)$	$11,200(2)$	$2210(1)$	$61(1)$
$\mathrm{C}(13)$	$9858(1)$	$11,589(2)$	$2660(1)$	$83(2)$
$\mathrm{C}(14)$	$9369(1)$	$11,128(2)$	$2980(1)$	$96(2)$
$\mathrm{C}(15)$	$9054(1)$	$10,278(2)$	$2849(1)$	$97(2)$
$\mathrm{C}(16)$	$9229(1)$	$9889(1)$	$2399(1)$	$76(2)$
$\mathrm{C}(17)$	$5922(1)$	$11,000(1)$	$1268(1)$	$28(1)$
$\mathrm{C}(18)$	$6493(1)$	$10,842(1)$	$1635(1)$	$27(1)$
$\mathrm{C}(19)$	$6577(1)$	$9951(1)$	$1839(1)$	$29(1)$
$\mathrm{C}(20)$	$6061(1)$	$9224(1)$	$1701(1)$	$32(1)$
$\mathrm{C}(21)$	$5500(1)$	$9371(1)$	$1343(1)$	$32(1)$
$\mathrm{C}(22)$	$5449(1)$	$10,282(1)$	$11,08(1)$	$29(1)$
$\mathrm{C}(23)$	$5800(1)$	$11,994(1)$	$1096(1)$	$35(1)$
$\mathrm{C}(24)$	$6986(2)$	$11,658(3)$	$1796(1)$	$36(1)$
$\mathrm{C}(25)$	$7176(2)$	$9756(3)$	$2230(1)$	$42(1)$
$\mathrm{C}(26)$	$6170(3)$	$8284(3)$	$1936(2)$	$47(1)$
$\mathrm{C}(27)$	$4978(2)$	$8607(3)$	$1174(2)$	$48(1)$
$\mathrm{C}(28)$	$4865(2)$	$10,403(3)$	$711(1)$	$43(1)$
$\mathrm{C}(29)$	$6633(2)$	$11,284(2)$	$13(1)$	$26(1)$
$\mathrm{C}(30)$	$6782(2)$	$11,636(2)$	$-500(1)$	$25(1)$
$\mathrm{C}(31)$	$6552(2)$	$12,530(2)$	$-637(1)$	$29(1)$
$\mathrm{C}(32)$	$6687(2)$	$12,829(3)$	$-1109(1)$	$34(1)$
$\mathrm{C}(33)$	$7052(2)$	$12,281(3)$	$-1451(1)$	$37(1)$
$\mathrm{C}(34)$	$7275(2)$	$11,401(3)$	$-1311(1)$	$35(1)$
$\mathrm{C}(35)$	$7150(2)$	$11,064(2)$	$-842(1)$	$28(1)$
$\mathrm{C}(36)$	$6150(3)$	$13,176(3)$	$-288(1)$	$46(1)$
$\mathrm{C}(37)$	$7202(3)$	$12,623(4)$	$-1965(2)$	$63(1)$
$\mathrm{C}(38)$	$7407(2)$	$10,100(3)$	$-714(1)$	$40(1)$

${ }^{*} U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.
The complex has a similar arrangement to dichlorido(N-(biphenyl-2-ylmethyl)- N-(2-ethoxyethyl)]-imidazolidin-2-ylidene (η^{6}-hexamethylbenzene)ruthenium ${ }^{13}$ and dichloride (1-(2,4,6-trimethylbenzyl)-3- (2-methoxyethyl)-imidazolidin-2-ylidine (η^{6}-hexamethyl benzene))ruthenium ${ }^{19}$, as recently described. The title compound adopts the typical piano-stool geometry with a pseudo-tetrahedral arrangement of the η^{6} -

Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,
hexamethyl benzene ring, the 2 chloride ligands, and the C atom of the imidazole ligand around the ruthenium metal center (Figure).

Figure. A drawing of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The 6-membered ring of the 2,4,6-trimethylbenzyl is planar, with a maximum deviation from the plane of $0.033(3) \AA$. The C-C bond lengths within the $2,4,6$-trimethylbenzyl ring are equal within experimental error. ${ }^{13,19}$ The Ru-C distances that belong to the $2,4,6$-trimethylbenzyl ring are almost equal, with an average $\mathrm{Ru}-\mathrm{C}_{\text {ring }}: 2.2312(14) \AA$ [range $2.2021(13)-2.2893(15) \AA$]. These $\mathrm{Ru}-\mathrm{C}$ distances are very close to those reported for other ruthenium complexes [average $\mathrm{Ru}-\mathrm{C}=2.227(4) \AA^{19}$ and average $\mathrm{Ru}-\mathrm{C}=2.225(4)$ $\left.\AA^{13}\right]$.

The average $\mathrm{Ru}-\mathrm{Cl}$ bond length $[2.4263(9) \AA$ and $2.4115(9) \AA$] is almost equal to the average bond length of $2.420 \AA$ in the other $\mathrm{Ru}(\mathrm{II})$ complexes. ${ }^{13,15,19,20}$ The small steric demand of the imidazole ligand is reflected in the $\mathrm{Cl}-\mathrm{Ru}-\mathrm{C} 3$ angles. The $\mathrm{C} 3-\mathrm{Ru}-\mathrm{Cl} 1$ and $\mathrm{C} 3-\mathrm{Ru}-\mathrm{Cl} 2$ angles are $92.53(9)^{\circ}$ and $88.80(9)^{\circ}$, respectively. They are almost equal to the corresponding values $90.99(10)^{\circ}$ and $89.79(10)^{\circ}$ in another $\mathrm{Ru}(\mathrm{II})$ complex, ${ }^{19}$ but significantly larger than the angles in the pyridine-substituted complex (dichloro(η^{6} -hexamethylbenzene)(pyridine- N)ruthenium) ${ }^{21}$ where these angles are $86.16(10)^{\circ}$ and $86.12(10)^{\circ}$. In addition, the dihedral angle of $\mathrm{C}_{t}-\mathrm{Ru}-\mathrm{C} 3-\mathrm{N}\left(\mathrm{C}_{t}\right.$: centroid of $\mathrm{C} 17, \mathrm{C} 18, \mathrm{C} 19, \mathrm{C} 20, \mathrm{C} 21$ and C 22$)$ is 86.65° in the title compound. This angle is in agreement with the small steric demand of the imidazole ligand. The corresponding angle is 23.7° in $\mathrm{RuCl}_{2}[N$-(2,4,6-trimethylbenzyl)- N-(2,4,6-trimethylbenzyl)]-imidazolidin-2ylidene], ${ }^{19}$ which has a strong distortion of the carbene ligand due to the coordination of one N substituent.

The Ru-C3 [2.073(3) \AA] distance is equal within the experimental error for dichlorido(N-(biphenyl-2-ylmethyl)- N-(2-ethoxyethyl)]-imidazolidin-2-ylidene $\left(\eta^{6}\right.$-hexamethylbenzene)ruthenium $[2.069(5) \AA] .{ }^{13}$

Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,

Supplementary material

Crystallographic data (excluding structural factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data [CCDC-613013] can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44 (1223) 336-033, E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

This work was financially supported by the Scientific and Technological Research Council of Turkey, TÜBİTAK [TBAG-2474 (104T085)], and İnönü University Research Fund (2005/42).

References

1. M.F. Lappert and P.L. Pye, J. Chem. Soc., Dalton Trans. 13, 1283-1291 (1977).
2. B.C. Soderberg and B.A. Bowden, Organometallics 11, 2220-2223 (1992).
3. J.A. Connor and E.M. Jones, J. Organomet. Chem. 60, 77-86 (1973).
4. D. Bourissou, O. Guerriet, P.F. Gabbai and G. Bertrand, Chem. Rev. 100, 39-91 (2000).
5. D.J. Cardin, B. Çetinkaya, M.F. Lappert, L. Manojlovic-Muir and K.W. Muir, J. Chem. Soc. Chem. Commun. 8, 400-401 (1971).
6. M.F. Lappert, J. Organomet. Chem. 358, 185-214 (1988).
7. D.J. Cardin, B. Çetinkaya and M.F. Lappert, Chem. Rev. 72, 545-574 (1972).
8. M. Scholl, S. Ding, C.W. Lee and R.H. Grubbs, Org. Lett. 1,953-956 (1999).
9. B. Çetinkaya, İ. Özdemir, C. Bruneau and P.H. Dixneuf, J. Mol. Catal. A 118, 11-14 (1997).
10. İ. Özdemir, B. Yiğit, B. Çetinkaya, D. Ülkü, M.N. Tahir and C. Arıcı, J. Organomet. Chem. 633, 27-32 (2001).
11. B. Çetinkaya, T. Seçkin, N. Gürbüz and İ. Özdemir, J. Mol. Catal. A 184, 31-38 (2002).
12. B. Çetinkaya, İ. Özdemir and P.H. Dixneuf, J. Organomet. Chem. 534, 153-158 (1997).
13. H. Arslan, D. van Derveer, İ. Özdemir, B. Çetinkaya and S. Yaşar, Zeitschrift für Kristallographie NCS. 219, 44-46 (2004).
14. H. Arslan, D. van Derveer, İ. Özdemir, B. Çetinkaya and S. Demir, Zeitschrift für Kristallographie NCS. 219, 377-378 (2004).
15. H. Arslan, D. van Derveer, İ. Özdemir, B. Çetinkaya and S. Demir, J. Chem. Crystallogr. 35(6), 491-495, (2005).
16. G.M. Sheldrick, SHELXTL Version 6.10: Structure determination software suite, Bruker AXS, Madison, Wisconsin, USA, (2000).
17. Rigaku/MSC. CrystalClear and REQAB. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 773815209, USA, (1999).

Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,
18. İ. Özdemir, B. Yiğit, B. Çetinkaya, D. Ülkü, M.N. Tahir and C. Arıcı, Transition Metal Chemistry, submitted, (2005).
19. B. Çetinkaya, S. Demir, İ. Özdemir, L. Toupet, D. Semeril, C. Bruneau and P.H. Dixneuf, Chem. Eur. J. 9, 2323-2330 (2003).
20. B. Çetinkaya, S. Demir, İ. Özdemir, L. Toupet, D. Semeril, C. Bruneau and P.H. Dixneuf, New. J. Chem. 25, 519-521 (2001).
21. A.J. Steedman and A.K. Burrell, Acta Cryst. C53, 864-866 (1997).

[^0]: * Correspondence author

