${f Dichloride}[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)-imidazolidin-2-ylidine<math>(\eta^6-hexamethylbenzene)]$ ruthenium

Hakan ARSLAN^{1,2*}, Donald Van DERVEER³, İsmail ÖZDEMİR⁴, Sedat YAŞAR⁴ and Bekir ÇETİNKAYA⁵

¹School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA ²Department of Chemistry, Faculty of Arts and Science, Mersin University, 33343, Mersin-TURKEY e-mail: arslanh@mersin.edu.tr

³Department of Chemistry, Clemson University, Clemson, SC, USA

⁴ Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya-TURKEY

⁵Department of Chemistry, Faculty of Science, Ege University, 35100 İzmir-TURKEY

Received 13.06.2006

The single crystal X-ray structure of the imidazolidin ruthenium complex, $C_{38}H_{46}N_2Cl_2Ru$, was determined. The complex is an orthorhombic space group Pbca with a = 17.3586(32) Å, b = 14.4447(27) Å, c = 27.4325(52) Å, and V = 6878.466(4) Å³ with Z = 8 for $D_{calc} = 1.357$ g/cm³. It exhibits the expected 3-legged piano stool geometry. There is one coordination bond of the ruthenium atom with the electrons of the η^6 -hexamethylbenzene, 2 symmetrical Ru-Cl bonds, and one Ru-C bond involving the imidazole ring. The coordination around the ruthenium atom is 4-fold, which in this is case is pseudo-tetrahedral.

Key Words: Arenes, carbenes, imidazole, ruthenium complex, X-ray structure

Introduction

The conversion of metal carbenes into useful organic functionalities is an important area of research in synthetic applications. Nonetheless, the reaction of a metal carbene complex with a halogen to provide the corresponding organic halide has been rarely reported.¹⁻³ In the last decade, N-heterocyclic carbenes have been the subject of intense research in the field of organometallic chemistry. These derivatives have been shown to behave as phosphine mimics.⁴⁻⁶ In addition, N-heterocyclic carbenes of 1,3-imidazolylidene and 1,3-imidazolinylidene have been used as ancillary ligands in transition metal chemistry.^{6,7} Significant improvements in catalytic performance have recently brought benefits to fine chemistry via the simple substitution of a phosphine ligand by a nucleophilic heterocyclic diaminocarbene, such as an imidazolylidene

 $^{^{*} {\}rm Correspondence} \ {\rm author}$

ligand. Illustrative examples are found in various catalytic reactions with palladium catalysts, in crosscoupling, and ruthenium catalysts for the formation of furans and cyclopropanation.⁸⁻¹²

In our previous works,^{5,7,9-15} we have reported syntheses, characterizations, catalytic activities, and crystal structures of some imidazolidin-2-ylidine derivatives and their metal complexes. In the present work, we report the structural properties of dichlorido(1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)-imidazolidin-2-ylidine (η^6 -hexamethyl benzene))ruthenium, (I).

Experimental

Instrumentation and crystal structure determination

Single crystal X-ray data were collected with a Rigaku Mercury AFC8S CCD diffractometer using monochromatic MoK_{α} ($\lambda = 0.71073$ Å) radiation. The structure was solved by direct and conventional Fourier methods. Full-matrix least-squares refinements were based on F². SHELXTL was the program used for calculations.¹⁶ Further details concerning data collection and refinements are given in Table 1.

CCDC deposit no.	CCDC-613013
Empirical formula	$C_{38}H_{46}N_2Cl_2Ru$
Formula weight	702.74
Temperature, K	173(2)
Wavelength, Å	0.71073
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	
$a,\mathrm{\AA}$	17.3586(32)
$b, \mathrm{\AA}$	14.4447(27)
$c,\mathrm{\AA}$	27.4325(52)
Volume, $Å^3$	6878.466(4)
Z	8
Density (calculated), Mg/m^3	1.357
Absorption coefficient, mm^{-1}	0.640
F(000)	2928
Crystal size, mm	$0.80 \ge 0.24 \ge 0.12$
θ range for data collection, deg	1.89 to 25.00
Index ranges	$-20 \le h \le 20$
	$-15 \le k \le 16$
	$-25 \le l \le 32$
Reflections collected	34,134
Independent reflections	5897 [R(int) = 0.0357]
Absorption correction	REQAB (multi-scan) ¹⁷
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	5897/0/385
Goodness-of-fit on F^2	1.152
Final R indices [I>2sigma(I)]	R1 = 0.0451, wR2 = 0.0906
R indices (all data)	R1 = 0.0544, wR2 = 0.0943
Largest diff. peak and hole, $e.Å^{-3}$	0.742 and -0.461

Table 1. Summary of crystallographic data and parameters of (I).

Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,

Synthesis

All reactions were performed using Schlenk-type flasks under Ar and standard high vacuum-line techniques. Analytical grade solvents were distilled under Ar. The synthesis of tetra aminoethane was accomplished employing a 3-step procedure as described in the literature.¹⁰ The title compound was prepared from functional tetra aminoethane in toluene at 95-100 °C (Scheme). A solution of tetra aminoethane (1.1 mmol) and $[\text{RuCl}_2(\eta^6-\text{C}_6\text{Me}_6)]_2(1.0 \text{ mmol})$ in toluene (15 mL) was heated in a water bath (95-100 °C) for 3 h. After cooling to 25 °C, hexane (10 mL) was added and the solution cooled to -15 °C. An orange precipitate was filtered off and re-crystallized from dichloromethane:hexane (15:30 mL). The complex was obtained with an 85% yield.¹⁸ Dichlorido(1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)-imidazolidin-2ylidine(η^6 -hexamethylbenzene))ruthenium: M.p. 249 °C; Analysis (% Calc/found): for C₃₈H₄₆N₂RuCl₂: C: 64.94/64.98, H: 6.60/ 6.66, N: 3.99/3.96. FAB (m/z): 702.78.

Results and Discussion

We herein report the crystal structure of (I). All of the characterization data are in agreement with the molecular structure of (I) and data in the literature.¹⁸ The molecular structure of (I) is shown in the Figure, with the atom-numbering scheme. Selected bond lengths and angles are given in Table 2. Table 3 lists the non-hydrogen atomic coordinates for the title compound.

Bond distances				
	Ru1-C3	2.073(3)	N1-C2	1.473(4)
	Ru1-Cl1	2.4263(9)	$Ru \cdot \cdot \cdot C17$	2.2047(14)
	Ru1-Cl2	2.4115(9)	$Ru \cdot \cdot \cdot C18$	2.2026(12)
	C3-N1	1.345(4)	$Ru \cdot \cdot \cdot C19$	2.2021(13)
	C3-N2	1.359(4)	$Ru \cdot \cdot C20$	2.2764(16)
	N1-C29	1.464(4)	$Ru \cdot \cdot \cdot C21$	2.2893(15)
	N2-C4	1.445(4)	$Ru \cdot \cdot \cdot C22$	2.2121(14)
	N1-C1	1.474(4)		
Bond angles				
	Cl1-Ru1-Cl2	83.99(3)	C3-N1-C1	113.7(3)
	C3-Ru1-Cl1	92.53(9)	C3-N2-C4	128.5(3)
	C3-Ru1-Cl2	88.80(9)	N1-C1-C2	102.6(3)
	Ru1-C3-N1	127.4(2)	N2-C2-C1	102.9(3)
	Ru1-C3-N2	125.5(2)		

Table 2. Selected bond distances (Å) and angles (°) for (I).

	r	21	7	U^*
Bu(1)	6665(1)	$\frac{9}{9840(1)}$	$\frac{2}{10.40(1)}$	$\frac{\circ_{eq}}{22(1)}$
Cl(2)	7647(1)	8664(1)	10, 40(1) 10, 96(1)	$\frac{22(1)}{34(1)}$
Cl(2) Cl(1)	6334(1)	0063(1)	284(1)	34(1) 39(1)
N(2)	8175(2)	10.803(2)	264(1) 864(1)	$\frac{52(1)}{27(1)}$
N(2) N(1)	3173(2) 340(2)	10,893(2) 11,226(2)	304(1) 301(1)	$\frac{27(1)}{26(1)}$
C(1)	$\frac{540(2)}{7000(2)}$	11,220(2) 11840(2)	100(1)	$\frac{20(1)}{34(1)}$
C(1)	7990(2) 8524(2)	11649(3) 11602(2)	190(1) 615(1)	$\frac{34(1)}{20(1)}$
C(2) C(3)	5024(2) 7457(2)	11093(3) 10604(2)	607(1)	$\frac{30(1)}{24(1)}$
C(3) C(4)	8550(2)	10054(2) 10 550(3)	1300(1)	24(1) 20(1)
C(4)	0301(2)	10,000(0) 10,000(0)	1200(1) 1202(1)	$\frac{23(1)}{31(1)}$
C(6)	9301(2) 9458(2)	0668(3)	$\frac{1202(1)}{740(1)}$	30(1)
C(0) C(7)	10.138(2)	9184(3)	667(2)	47(1)
C(8)	0658(2)	9056(3)	1036(2)	51(1)
C(9)	10512(2)	9433(3)	1000(2) 1488(2)	54(1)
C(10)	9839(2)	9933(3)	1578(1)	39(1)
C(10) C(11)	9718(1)	10.350(2)	2079(1)	50(1)
C(12)	10.032(1)	10,300(2) 11,200(2)	2010(1) 2210(1)	61(1)
C(12) C(13)	9858(1)	11,200(2) 11,589(2)	2210(1) 2660(1)	83(2)
C(10)	9369(1)	11,000(2) 11,128(2)	2980(1)	96(2)
C(15)	9054(1)	10.278(2)	2849(1)	97(2)
C(16)	9229(1)	9889(1)	2399(1)	76(2)
C(17)	5922(1)	11.000(1)	1268(1)	28(1)
C(18)	6493(1)	10.842(1)	1635(1)	27(1)
C(19)	6577(1)	9951(1)	1839(1)	29(1)
$\dot{C(20)}$	6061(1)	9224(1)	1701(1)	32(1)
C(21)	5500(1)	9371(1)	1343(1)	32(1)
$\dot{C(22)}$	5449(1)	10,282(1)	11,08(1)	29(1)
$\dot{C(23)}$	5800(1)	11,994(1)	1096(1)	35(1)
$\dot{C(24)}$	6986(2)	11,658(3)	1796(1)	36(1)
C(25)	7176(2)	9756(3)	2230(1)	42(1)
C(26)	6170(3)	8284(3)	1936(2)	47(1)
C(27)	4978(2)	8607(3)	1174(2)	48(1)
C(28)	4865(2)	10,403(3)	711(1)	43(1)
C(29)	6633(2)	11,284(2)	13(1)	26(1)
C(30)	6782(2)	11,636(2)	-500(1)	25(1)
C(31)	6552(2)	12,530(2)	-637(1)	29(1)
C(32)	6687(2)	12,829(3)	-1109(1)	34(1)
C(33)	7052(2)	12,281(3)	-1451(1)	37(1)
C(34)	7275(2)	11,401(3)	-1311(1)	35(1)
C(35)	7150(2)	11,064(2)	-842(1)	28(1)
C(36)	6150(3)	13,176(3)	-288(1)	46(1)
C(37)	7202(3)	12,623(4)	-1965(2)	63(1)
C(38)	7407(2)	10,100(3)	-714(1)	40(1)

Table 3. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2 \ x \ 10^3)$ for (I).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

The complex has a similar arrangement to dichlorido(N-(biphenyl-2-ylmethyl)-N-(2-ethoxyethyl)]imidazolidin-2-ylidene(η^6 -hexamethylbenzene)ruthenium¹³ and dichloride (1-(2,4,6-trimethylbenzyl)-3- (2methoxyethyl)-imidazolidin-2-ylidine(η^6 -hexamethyl benzene))ruthenium¹⁹, as recently described. The title compound adopts the typical piano-stool geometry with a pseudo-tetrahedral arrangement of the η^6 - Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,

hexamethyl benzene ring, the 2 chloride ligands, and the C atom of the imidazole ligand around the ruthenium metal center (Figure).

Figure. A drawing of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The 6-membered ring of the 2,4,6-trimethylbenzyl is planar, with a maximum deviation from the plane of 0.033(3) Å. The C-C bond lengths within the 2,4,6-trimethylbenzyl ring are equal within experimental error.^{13,19} The Ru-C distances that belong to the 2,4,6-trimethylbenzyl ring are almost equal, with an average Ru-C_{ring}: 2.2312(14) Å [range 2.2021(13) - 2.2893(15) Å]. These Ru-C distances are very close to those reported for other ruthenium complexes [average Ru-C = 2.227(4) Å¹⁹ and average Ru-C = 2.225(4) Å¹³].

The average Ru-Cl bond length [2.4263(9) Å and 2.4115(9) Å] is almost equal to the average bond length of 2.420 Å in the other Ru(II) complexes.^{13,15,19,20} The small steric demand of the imidazole ligand is reflected in the Cl-Ru-C3 angles. The C3-Ru-Cl1 and C3-Ru-Cl2 angles are 92.53(9)° and 88.80(9)°, respectively. They are almost equal to the corresponding values 90.99(10)° and 89.79(10)° in another Ru(II) complex,¹⁹ but significantly larger than the angles in the pyridine-substituted complex (dichloro(η^{6} hexamethylbenzene)(pyridine-N)ruthenium)²¹ where these angles are 86.16(10)° and 86.12(10)°. In addition, the dihedral angle of C_t-Ru-C3-N (C_t: centroid of C17, C18, C19, C20, C21 and C22) is 86.65° in the title compound. This angle is in agreement with the small steric demand of the imidazole ligand. The corresponding angle is 23.7° in RuCl₂[N-(2,4,6-trimethylbenzyl)-N-(2,4,6-trimethylbenzyl)]-imidazolidin-2ylidene],¹⁹which has a strong distortion of the carbene ligand due to the coordination of one N substituent.

The Ru-C3 [2.073(3) Å] distance is equal within the experimental error for dichlorido(N-(biphenyl-2-ylmethyl)-N-(2-ethoxyethyl)]-imidazolidin-2-ylidene(η^6 -hexamethylbenzene)ruthenium [2.069(5) Å].¹³

Crystal Structure of Dichloride [1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,

Supplementary material

Crystallographic data (excluding structural factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data [CCDC-613013] can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44 (1223) 336-033, E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

This work was financially supported by the Scientific and Technological Research Council of Turkey, TÜBİTAK [TBAG-2474 (104T085)], and İnönü University Research Fund (2005/42).

References

- 1. M.F. Lappert and P.L. Pye, J. Chem. Soc., Dalton Trans. 13, 1283 1291 (1977).
- 2. B.C. Soderberg and B.A. Bowden, Organometallics 11, 2220-2223 (1992).
- 3. J.A. Connor and E.M. Jones, J. Organomet. Chem. 60, 77-86 (1973).
- 4. D. Bourissou, O. Guerriet, P.F. Gabbai and G. Bertrand, Chem. Rev. 100, 39-91 (2000).
- D.J. Cardin, B. Çetinkaya, M.F. Lappert, L. Manojlovic-Muir and K.W. Muir, J. Chem. Soc. Chem. Commun. 8, 400 - 401 (1971).
- 6. M.F. Lappert, J. Organomet. Chem. 358, 185-214 (1988).
- 7. D.J. Cardin, B. Çetinkaya and M.F. Lappert, Chem. Rev. 72, 545-574 (1972).
- 8. M. Scholl, S. Ding, C.W. Lee and R.H. Grubbs, Org. Lett. 1,953-956 (1999).
- 9. B. Çetinkaya, İ. Özdemir, C. Bruneau and P.H. Dixneuf, J. Mol. Catal. A 118, 11-14 (1997).
- İ. Özdemir, B. Yiğit, B. Çetinkaya, D. Ülkü, M.N. Tahir and C. Arıcı, J. Organomet. Chem. 633, 27-32 (2001).
- 11. B. Çetinkaya, T. Seçkin, N. Gürbüz and İ. Özdemir, J. Mol. Catal. A 184, 31-38 (2002).
- 12. B. Çetinkaya, İ. Özdemir and P.H. Dixneuf, J. Organomet. Chem. 534, 153-158 (1997).
- H. Arslan, D. van Derveer, İ. Özdemir, B. Çetinkaya and S. Yaşar, Zeitschrift für Kristallographie NCS. 219, 44-46 (2004).
- H. Arslan, D. van Derveer, İ. Özdemir, B. Çetinkaya and S. Demir, Zeitschrift für Kristallographie NCS. 219, 377-378 (2004).
- H. Arslan, D. van Derveer, İ. Özdemir, B. Çetinkaya and S. Demir, J. Chem. Crystallogr. 35(6), 491-495, (2005).
- G.M. Sheldrick, SHELXTL Version 6.10: Structure determination software suite, Bruker AXS, Madison, Wisconsin, USA, (2000).
- Rigaku/MSC. CrystalClear and REQAB. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, (1999).

Crystal Structure of Dichloride[1-(2,4,6-trimethylbenzyl)-3-(biphenyl-2-ylmethyl)..., H. ARSLAN, et al.,

- 18. İ. Özdemir, B. Yiğit, B. Çetinkaya, D. Ülkü, M.N. Tahir and C. Arıcı, **Transition Metal Chemistry**, submitted, (2005).
- B. Çetinkaya, S. Demir, İ. Özdemir, L. Toupet, D. Semeril, C. Bruneau and P.H. Dixneuf, Chem. Eur. J. 9, 2323-2330 (2003).
- B. Çetinkaya, S. Demir, İ. Özdemir, L. Toupet, D. Semeril, C. Bruneau and P.H. Dixneuf, New. J. Chem. 25, 519-521 (2001).
- 21. A.J. Steedman and A.K. Burrell, Acta Cryst. C53, 864-866 (1997).