Synthesis and Vibrational Spectroscopic Study of Some Metal(II) Halide and Tetracyanonickelate Complexes of Isonicotinic Acid

Ahmet ATAÇ^{1*}, Fehmi BARDAK²

¹Department of Physics, Faculty of Arts and Science, Celal Bayar University, 45043, Muradiye, Manisa-TURKEY e-mail: ahmet.atac@bayar.edu.tr ²Department of Physics, Faculty of Arts and Science, Gazi University, 06500, Teknikokullar, Ankara-TURKEY

Received 10.03.2006

The M(IN)₂Ni(CN)₄ [where M: Cu, Mn, Zn, IN: Isonicotinic acid, abbreviated to M-Ni-IN] tetracyanonickelate and some metal halide complexes with the following stoichiometries: Cu(IN)X₂ (X:Br,I), Cd(IN)₂X₂, (X:Cl,Br), and Zn(IN)₄X₂ (X:Br,I) were synthesized for the first time. Their FT-IR spectra were reported in the 4000-400 cm⁻¹ region. Vibrational assignments were given for all the observed bands. The analysis of the vibrational spectra indicates that there are some structure-spectrum correlations. For a given series of isomorphous complexes, the sum of the difference between the values of the vibrational modes of uncoordinated isonicotinic acid that were coordinated to the metal ion isonicotinic acid was investigated and found to depend on the halogen for a given metal. The proposed structure of tetracyanonickelate complexes consists of polymeric layers of $|M-Ni| (CN)_4|_{\infty}$ with the isonicotinic acid molecules bound directly to the metal (M) atoms. Certain chemical formulae were determined using the elemental analysis results.

Key Words: Infrared spectra, isonicotinic acid, metal halide complexes, tetracyanonickelate complexes.

Introduction

Isonicotinic acid (IN) is a compound of considerable biological interest. A derivative of IN, the hydrazine isoniazide, possesses tuberculostatic properties and can be administered to patients. Both IN and isonicotinylglycine are found in urine because of their metabolism in the human body.¹ IN shows antibacterial properties with different atomic groups.² It is also used for the determination of cyanide in water as an effective substance with pyrazolone.³ The metal complexes of biologically important ligands are sometimes more effective than free ligands;⁴ therefore, the metal halide complexes of IN were synthesized and their spectroscopic features were investigated.

 $^{^{*} {\}rm Corresponding} \ {\rm author}$

The vibrational analysis of free IN was performed by Afifi.⁵ In that study, the spectroscopic features of some pyridine derivatives, such as nicotinamide, nicotinic acid, and isonicotinic acid were evaluated for a few bands. The synthesis, spectral, and thermal properties of various complexes [M (IN)nH₂O] have been reported.⁶ The structural properties of Cu (II) and Cu (I) chloride complexes of IN are described in the literature.⁷⁻⁹ In a recent paper, the theoretical vibrational analysis of free IN was performed by Koczon for a few bands.¹⁰ To the best of our knowledge, no complete vibrational studies have been reported for the transition metal(II) halide and tetracyanonickelate complexes of IN.

In our previous studies, the spectroscopic and structural properties of metal halide and tetracyanonickelate complexes of isonicotinamide¹¹⁻¹³ nicotinamide¹⁴⁻¹⁶ were investigated. In the present work, we prepared and reported the IR spectra of some metal(II) halide and tetracyanonickelate complexes of IN for detecting any possible relationship between the ligand vibrational values and the metal, and presented their IR spectral data.

Experimental

Synthesis

All the chemicals were reagent grade and were used without further purification. Metal chloride, bromide, or iodide (1 mmol) was dissolved in hot (about 78 °C) absolute ethanol (10 mL). The appropriate quantity of IN (1 mmol for Cu(IN)X₂, 2 mmol for Cd(IN)₂X₂, and 4 mmol for Zn(IN)₄X₂) was added to the solution. The mixture was stirred magnetically at room temperature for 24 h. The precipitated complexes were filtered, washed with ether, and dried. Potassium tetracyanonickelate was prepared by mixing stoichiometric amounts of nickel(II) chloride with potassium cyanide in water solution. M (IN)₂Ni (CN)₄ was prepared by dissolving 1 mmol of K₂Ni (CN)₄ in water. To this solution, 2 mmol of ligand (IN) and 1 mmol of the metal halide dissolved in ethanol were added consecutively. The reaction mixture was stirred for 24 h at room temperature. The product obtained was filtered and washed with ethanol and dried in vacuum desiccators.

Instrumental measurement

The prepared samples were analyzed for C, H, and N with a LECO CHN-932 analyzer and the results are presented in Table 1. The IR spectra of discs (KBr) of fresh samples were recorded on a Mattson 1000 FT-IR instrument that was calibrated using polystyrene bands.

 Table 1. Elemental analysis results related to complexes.

Complex	C (%)		Н (%)		N (%)	
Complex	Found	Calculated	Found	Calculated	Found	Calculated
$Cu(IN)I_2$	16.80	16.36	1.07	1.135	3.43	3.17
$Cd(IN)_2Br_2$	28.05	27.77	1.61	1.91	5.46	5.4
$\operatorname{Zn}(\operatorname{IN})_4 \operatorname{I}_2$	33.15	33.51	2.16	2.46	6.37	6.89
$Mn(IN)_2Ni(CN)_4$	40.81	41.39	1.87	2.15	17.48	18.1
$Cu(IN)_2Ni(CN)_4$	40.07	40.63	1.83	2.11	16.96	17.7
$Zn(IN)_2Ni(CN)_4$	39.75	40.48	1.98	2.11	17.15	17.71

Results and Discussion

IN has substitution in the para-position of the pyridine. If we assumed that the carboxyl group (-COOH) had a single mass point, all the molecules under consideration would belong to the C_{2v} point group. It has 27 normal vibrations, of which 19 are planar and 8 are non-planar. In addition to these 27 ring vibrations, there are 9 vibrations due to the substitute carboxyl group.

The vibrational assignments for a few bands of free IN were made by $Afifi^5$ and compared with those of some pyridine derivatives, such as nicotinamide and nicotinic acid. The spectroscopic features of free IN were investigated theoretically by using ab initio calculation methods by means of the B3PW91 level and $6-311++G^{**}$ basis set by Koczon et al.¹⁰ In that study, some selected bands (3450-3050, 1717-1597, and $1455-1370 \text{ cm}^{-1}$) were assigned and the influence of the nitrogen atom position with respect to the carboxyl group on the vibrational structure of the molecule was investigated. They also interpreted the calculated spectra in terms of potential energy distributions and made the assignment of selected experimental bands from PED analysis results.¹⁰

Although most metal halide pyridine complexes have been characterized crystallographically, there is a distinct lack of structural data for the isonicotinic acid halide and tetracyanonickelate complexes studied here. However, since isostructural complexes are known to exhibit similar band patterns in their vibrational spectra^{17–19}in the absence of structural data on a given complex, they have been classified based on their spectroscopic features.

The FT-IR spectra of free IN, $Cu(IN)Br_2$, $Cd(IN)_2Br_2$, and $Zn(IN)_4I_2$ complexes are given in Figures 1a-d, respectively. The vibrational assignments of free IN were made by comparison with the assignments of pyridine,^{20,21} isonicotinamide,¹¹⁻¹³ and isonicotinic acid N-oxide.²² The vibrational wavenumbers of IN for the Cu(IN)Br₂, Cu(IN)I₂, Cd(IN)₂Cl₂, Cd(IN)₂Br₂, Zn(IN)₄Br₂, and Zn(IN)₄I₂ complexes are listed along with the results reported by Afifi and Koczon in Table 2.

IN has a different coordination form and it is coordinated not only through the carboxylate group but also through the nitrogen atom of the pyridine ring. This property leads to different constructions in the metal complexes, such as tri-nuclear,⁸ 3-dimensional supranuclear network²³, and square pyramidal²⁴. Similar structure variations were observed in the complexes studied here, for different transition metal atoms.

The most important vibrational modes implying the coordination of the metal atom to the IN ligand molecule were $\nu(C=O)$ and pyridine ring vibrations. Because it is known that if the coordination takes place through ring nitrogen, the $\nu(C=O)$ and pyridine ring vibrations shift to the higher region in the complexes of pyridine and pyridine derivatives.^{11,13} Nevertheless, an opposite situation was observed in the IR spectra of these complexes studied here, and if the coordination takes place through carboxyl oxygen, it is expected that the $\nu(C=O)$ vibrations strongly shift to a lower region, as in isonicotinic acid N-oxide metal complexes.^{22,25}

The ν (C=O) bands of pyridine derivatives containing the carboxyl group were expected at higher than 1650 cm⁻¹.²⁰ A strong band appeared at 1711 cm⁻¹ in the IR spectrum of free IN and it was assigned to ν (C=O). This band was observed at 1661 and 1662 cm⁻¹ in the spectra of Zn (IN)₄Br₂ and Zn (IN)₄I₂ complexes. This significant shift was a result of coordination that took place through the carboxyl oxygen to the zinc atom. On the other hand, this band underwent a slight negative shift in the spectra of Cu(IN)X₂ and Cd(IN)₂X₂ complexes, which explained the influence of the hydrogen bindings that led to the formation of hydrogen-bonded frameworks and a polymeric network structure.²⁶

Pyridine has 4 ring vibrations in the region of $1615-1410 \text{ cm}^{-1}$.²⁰ These bands were observed at 1616,

Figure 1. The FT-IR spectra of free IN(a), $Cu(IN)Br_2(b)$, $Cd(IN)_2Br_2(c)$, and $Zn(IN)_4I_2(d)$ complexes.

$Cu(IN)Br_2$	$Cu(IN)I_2$	$Cd(IN)_2Cl_2$	$Cd(IN)_2Br_2$	${ m Zn(IN)_4Br_2}$	${ m Zn}({ m IN})_4{ m I}_2$	IN NEW	Afifi [5]	Koczon [10]	Assignments
3423s	3418m	$3446 \mathrm{w}$	$3440 \mathrm{w}$			3440 vw	$3405 \mathrm{m.br}$	3436m	i.p.OH str.
3090s	$3083 \mathrm{m}$	$3103 \mathrm{w}$	$3097\mathrm{m}$	3103s	$3101 \mathrm{m}$	3102 vw	3118v.w	3104w	i.p.CH str.
3066s	$3060 \mathrm{m}$	3053w	$3052 \mathrm{m}$	3077s	$3077 \mathrm{m}$	3052 vw	$3060 \mathrm{w}$	3084w	i.p.CH str.
1698s	$1699 \mathrm{vs}$	$1696\mathrm{s}, 1692\mathrm{sh}$	$1703 \mathrm{vs}$	$1661 \mathrm{vs}$	$1662 \mathrm{vs}$	1711s	$1720 \mathrm{s.br}$	1712 vs	C=O str.
$1597 \mathrm{vs}$	$1597 \mathrm{m}$	1608m	$1609\mathrm{m}$	1613m	1612m	1616m	$1620 \mathrm{m}{ ext{-s}}$	1616w	Py.(CC + CN)str.
				1586 vs	1586 vs				
$1551 \mathrm{vs}$	1554s	$1560 \mathrm{vw}$	$1555\mathrm{m}$	1555s	$1555\mathrm{m}$	1563 w	$1567\mathrm{m}$	$1597 \mathrm{w}$	Py.(CC + CN)str.
		$1461 \mathrm{w}$		1492s	1491s	1472 vw	1471m-w	1478w	CH bend.
1418s	1419s	1414s	1412 vs	1414s	1414s	1411s	1415 v.s	$1412 \mathrm{vs}$	CH bend.
1382 vs	$1383 \mathrm{vs}$								
	$1327\mathrm{m}$	1331s	1332m	$1355 \mathrm{vs}$	$1350 \mathrm{vs}$	1338s	1374w.sh	1370 vw	(C-O)str.
	$1294\mathrm{m}$	$1294\mathrm{m}$	$1297 \mathrm{m}$	$1305\mathrm{m}$	$1305\mathrm{m}$	$1302 \mathrm{m}$	1333s		COO tr.
$1233\mathrm{m}$	1236w	$1227\mathrm{m}$	$1227 \mathrm{m}$	$1221\mathrm{m}$	$1219 \mathrm{m}$	1231s	1233m-s		COH tr.
$1213 { m sh}$	1214w	$1214 { m sh}$	$1214 { m sh}$	$1181 \mathrm{m}$	1179m	1216 sh	$1215\mathrm{m}$		CH rock. $+$ COH tr.
$1142 \mathrm{sh}$	1135 vw	$1137\mathrm{m}$	$1130\mathrm{m}$	1146m	$1145 \mathrm{m}$	1146m	$1102 \mathrm{m.sh}$		$C_{py}C_{COOH}$ str.
	1095 vw			1095 vw	1095 vw	$1094 \mathrm{m}$	$1084 \mathrm{m.sh}$		C-O str.
$1060 \mathrm{m}$	$1061 \mathrm{w}$	1068w	$1065 \mathrm{m}$	$1071 \mathrm{m}$	1068m	$1081 \mathrm{m}$	$1052 \mathrm{m.sh}$		Ring CC str. $+$ C-O str.
1032w	1035 vw	$1025 \mathrm{vs}$	$1010 \mathrm{m}$	1051s, 1029m	1052s, 1028m	1027 vs	1033 v.s		Ring def.
986 vw	986 vw	$971 \mathrm{sh}$		1005w	1007 sh	$972 \mathrm{sh}$	975w.br		Ring breath.
922w	924w	916 vw	$917 \mathrm{m}$	$953 \mathrm{w}$	954 vw	$921 \mathrm{m}$	$941 \mathrm{w.br}$		o.p.CH bend.
885sh		882 vw	868 sh	$872 \mathrm{w}$	871w	881 sh			o.p.CH bend.
864 sh	868 sh	858m	$860\mathrm{m}$	$850\mathrm{m}$	852m	857s	859s		o.p.CH rock.
837m, 776s	838w, 776m	761s	761s	769 vs	768s	762 vs	783v.w		Ring def.
704vs	$702\mathrm{m}$	698m	699s	693 vs	694s	697 vs	701s		o.p. COOH def.
$670 \mathrm{sh}$	677m	674m	679 vs	676m	676m	674 sh	677s		Ring def.
$553\mathrm{m}$	$541 \mathrm{w}$	$545 \mathrm{w}$	$543\mathrm{m}$	577 sh, 559 m	577w, 557m	549 vw			o.p. OH bend.
458m	457w	492m	452m	462w, 443w	460vw, 443w	492s	497s		γ OCO
$434\mathrm{m}$	$422 \mathrm{vw}$	$419 \mathrm{w}$		422m	$420 \mathrm{m}$	418w	416m		o.p. ring def. +COOH def.
Py.: pyridine;	rock.: rocking; th	r.: torsion; str.: stre	etching; i.p.: in pl	lane; bend.: bendin	ig; o.p.: out of plan	ie; def.: defori	nation; vs: ver	y strong, s: stron	g; m: medium;
w: weak; vw:	very weak; sh: sł	houlder							

Table 2. The IR wavenumbers (cm^{-1}) of free IN and metal halide complexes.

Synthesis and Vibrational Spectroscopic Study of..., A. ATAÇ, F. BARDAK,

1563, 1472, and 1411 cm⁻¹ in the spectrum of free IN and assigned Py(CC + CN)strength, Py(CC + CN)strength, CH bending, and CH bending, respectively. The bands observed at 1616 and 1563 cm⁻¹ in the spectrum of free IN undergo a slight negative shift in the metal halide complexes studied here. These variations clearly indicate that the other coordination of IN takes place via the pyridine ring nitrogen to the metal atoms (Cu, Cd, and Zn). It is also known that the donor power of pyridine ring nitrogen is strong.²⁷

Figure 2. The hydrogen-bonded $Cu(IN)X_2$ complexes.

Figure 3. The hydrogen-bonded linear infinitive network of Cd(IN)₂X₂ complexes.

Figure 4. The polynuclear network structure of $Zn(IN)_4X_2$ complexes.

Similar bindings were also seen in different isonicotinic acid metal complexes.^{7,23,26} Based on frequency analysis, the coordination of IN takes place through the pyridine ring nitrogen to the metal atoms (Cd and Cu), as illustrated in Figures 2 and 3, for the Cu(IN)X₂ and Cd(IN)₂X₂ complexes. The coordination of zinc atoms to ligand molecules formed both the carboxyl oxygen and pyridine ring nitrogen in the Zn (IN)₄X₂ complexes illustrated in Figure 4. These geometric conformations were confirmed by shift values and elemental analysis results. As shown in Figure 2, the Cu atom coordinated with a pair of halogens and a pyridine ring nitrogen, and an interesting bonding took place between the carboxyl groups of ligand molecules. A similar coordination was assumed for the Cd(IN)₂X₂ complexes because of the exhibition of a similar band pattern in its IR spectrum; this structure has linear infinitive networks as seen in Figure 3. On the other hand, the zinc atom surrounded by the 4 ligand molecules coordinated from the ring nitrogen and a pair of halogens with a distorted octahedral environment at the first center of the polynuclear network structure, which is surrounded by 4 carboxyl groups and the other pairs of halogens at the second center of the structure in the Zn(IN)₄X₂ complexes, as shown in Figure 4.

The Ni(CN)₄ group vibrations of the $M(IN)_2Ni(CN)_4$ complexes

The wavenumbers of the Ni(CN)₄ group vibrations of the compounds studied are given in Table 3. In the IR spectrum of NaNi(CN)₄, the CN stretching vibration mode was observed at 2132 cm⁻¹,²⁸ and, for the corresponding modes of M(IN)₂Ni(CN)₄ complexes, an upward shift was observed. The spectra of Cu(IN)₂Ni(CN)₄ and Mn(IN)₂Ni(CN)₄ are given in Figure 5a and b. The ν (CN) and δ (NiCN) vibrational frequencies were also found to be similar to the Hoffmann-type clatrates²⁹ aniline and isonicotinamide complexes,^{13,30} indicating that the |M-Ni(CN)₄|_∞ polymeric layers were preserved. If the cyanide group around the nickel atoms has a local D_{4h} environment, only one ν (CN)(E_u) band is expected in the IR spectrum. A strong band was observed at 2148, 2169, and 2159 cm⁻¹ in the spectrum of Mn, Cu, and Zn complexes, respectively, belonging to ν (C-N)(E_u). The other 2 strong bands that were observed belonging to ν (NiCN) and δ (Ni-CN) are given in Table 3. These frequency variations were found to be slightly dependent upon the metal atoms (M) and it was probably due to changes in the strength of the M-NC bonds, since it is known that there is a mechanical coupling between the M-N and C≡N stretching modes.²¹

Table 3. The IR wavenumbers of the $Ni(CN)_4$ group vibrations of the $M(IN)_2Ni(CN)_4$ complexes.

Complexes	Vibrational modes				
Complexes	ν (C-N)(E _u)	$\nu \operatorname{Ni}(\operatorname{CN})$	$\delta \operatorname{Ni}(\operatorname{CN})$		
$Mn(IN)_2Ni(CN)_4$	2148 vs	532m	430s		
$Cu(IN)_2Ni(CN)_4$	2169 vs	576s	443s		
$\operatorname{Zn}(\operatorname{IN})_2\operatorname{Ni}(\operatorname{CN})_4$	2156 vs	535m	430 vs		

Figure 5. The FT-IR spectra of $Cu(IN)_2Ni(CN)_4$ and $Mn(IN)_2Ni(CN)_4$ complexes.

Conclusion

The analysis of the IR spectra of 3 new Hofmann-type complexes showed that they have structures consisting of polymeric layers of $M-Ni(CN)_{4\infty}$ with the IN molecules bound directly to metal (M) and metal halide complexes of IN, indicating that there were some structure-spectrum correlations. It is concluded that the

ring nitrogen and carboxyl group of IN are involved in a complex formation. In addition, it is found that the shift values depend on the halogen for a given metal and it decreases in the following order: Cl > Br > I.

Acknowledgments

This study was funded by the Celal Bayar University Research Fund through research grant no: FEF-2005/65

References

- 1. W.F.I. Cuthbenstone, D.M. Ireland and W. Wolff, J. Biochem. 55, 669-71 (1953).
- H. Zhang "Standard Methods of Analysis for Hygienic Chemists Authorized by the Pharmaceutical Society of Japan", HW Press, Beijing, pp 80-81, 1995.
- J.R.J. Sorensen, "Metal Ions in Biological Systems", H. Sigel (Ed.) vol. 14, pp 77, Marcel Decker, New York, 1982.
- 4. Y. Jiang, N. Lu, F. Yu, Q. Li and H. Xu, Fresenius J. Anal. Chem. 364, 786-87 (1999).
- 5. M.S. Afifi and A.A. Shabana, Analysis 10, 239-44 (1982).
- 6. A. Kleinstein and G.A. Webb, J. Inorg. Chem. 33, 405-12 (1971).
- M. Palicova, P. Segl'a, D. Miklos, M. Kopcova, M. Melnik, B. Dudova, D. Hudecova, and T. Glowiak, Polyhedron 19, 2689-95 (2000).
- 8. M. Melnik and L. Macaskova, Coordin.Chem.Rev. 126, 71-92 (1993).
- 9. M.A.S. Goher and T.C.W. Mak, Inorg. Chim. Acta 101, L27-L30 (1985).
- 10. P. Koczon, J.Cz. Dobrowolski, W. Lewandowski and A.P. Mazurek, J. Mol. Struct. 655, 89-95 (2003).
- 11. S. Yurdakul, A. Atac, E. Sahin and S. Ide, Vib. Spectrosc. 31, 41-49 (2003).
- 12. A. Atac, S. Yurdakul and S. Ide, J. Mol. Struct. 788, 79-87 (2006).
- 13. S. Yurdakul and A. Atac, Spectrosc. Lett. 37, 33-42 (2004).
- 14. S. Bayari, A. Atac and S. Yurdakul, J. Mol. Struct. 655, 163-70 (2003).
- 15. S. Ide, A. Atac and S. Yurdakul, J. Mol. Struct. 605, 103-07 (2002).
- 16. E. Sahin, S. Ide, A. Atac and S. Yurdakul, J. Mol. Struct. 616, 253-58 (2002).
- 17. S. Akyuz, A.B. Dempster and J.E.D. Davies, J. Chem. Soc. Dalton 1746, (1976).
- 18. S. Akyuz, J.E.D. Davies and K.T. Holmes, J. Mol. Struct. 42, 59 (1977).
- 19. S.Yurdakul, S.Akyuz and J.E.D. Davies, Spectrosc. Lett. 29, 175 (1996).
- L.J. Bellamy, "The Infrared Spectra of Complex Molecules" Third Ed. Chapman and Hall, London, 1975.
- 21. S. Akyuz, J.B. Dempster and R.L. Morehause, J. Mol. Struct. 17, 105 (1973).
- 22. N. Can, A. Atac, F. Bardak and S.E.S. Can, Turk. J. Chem. 29, 1-7 (2005).
- 23. J.H. Yu and J.Q. Xu et al, Inorg. Chem. Commun. 5, 972-76 (2002).
- 24. J.Y. Lu and A.M. Babb, Chem. Commun. 821-22 (2001).

- 25. K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds", 2nd Edition, Wiley-Interscience, New York, 1970.
- 26. J.K. Bera, T.T. Vo, R.A. Walton and K.R. Dunbar, Polyhedron 22, 3009-14 (2003).
- 27. M. Sandstrom and I. Perssan, Acta Chem. Scand. 44, 653 (1990).
- 28. R.L. McCullough, L.H. Jones and G.A. Crosby, Spectrochim. Acta 16, 929-44 (1960).
- T. Iwamoto, T. Nakano, M. Morita, T. Miyoshi, T. Miyamoto and Y. Sasaki, Inorg. Chim. Acta 2, 313-17 (1968).
- 30. S. Akyuz, J.E.D. Davies and K.T. Holmes, J. Mol. Struct. 38, 43-50 (1977).