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A quantitative structure-property relationship study is suggested for the prediction of the acidity

constants of some thiazolidine-4-carboxylic acid derivatives in aqueous solution. Ab initio theory was

used to calculate some quantum chemical descriptors, including electrostatic potentials and local charges

at each atom, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital

(LUMO) energies, etc. Modeling of the acidity constant of thiazolidine-4-carboxylic acid derivatives

as a function of molecular structures was established by means of the partial least squares algorithm.

The subset of descriptors, which resulted in a low prediction error, was selected by genetic algorithm.

This model was applied for the prediction of the acidity constant of some thiazolidine-4-carboxylic acid

derivatives, which were not in the modeling procedure. Relative errors of prediction lower than 1.5%

were obtained by using the genetic algorithm-partial least squares (GA-PLS) method. The developed

model has good prediction ability with a root mean square error of prediction of 0.0419 and 0.1013 for

PLS and GA-PLS models, respectively.

Key Words: Ab initio, partial least squares, genetic algorithm, acidity constant, thiazolidine-4-

carboxylic acid.

Introduction

Acidity constants can be a key parameter for understanding and quantifying chemical phenomena, such

as reaction rates, biological activity, biological uptake, biological transport, and environmental fate.1 It

has been shown that acid-base properties affect the toxicity2, chromatographic retention behavior,3 and

pharmaceutical properties4 of organic acids and bases. Much of the theoretical foundation of modern organic

chemistry is based on the observation of the effects on acid-base equilibrium of changing molecular structure.5

A successful strategy for the prediction of the acidity constant is the construction of quantitative

structure-activity relationships (QSARs).6 QSARs are mathematical equations relating chemical structure

to a wide variety of physical, chemical, biological and technological properties. QSAR models can be used
∗Corresponding author
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to predict properties of compounds as yet unmeasured or even unknown. Thus, the QSAR approach saves

resources and expedites the process of development of new molecules.7

A major step in constructing QSAR models is finding one or more molecular descriptors that represent
variation in the structural property of the molecules by a number. A wide variety of descriptors have been

reported to be used in QSAR analysis.8−10 Recent progress in computational hardware and the development
of efficient algorithms have assisted the routine development of molecular quantum chemical calculations.
Quantum chemical calculations are thus an attractive source of new molecular descriptors, which can, in

principle, express all of the electronic and geometric properties of molecules and their interactions.11 Atomic

charges, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

energies, molecular polarizability, dipole moments, and energies of molecule are examples of quantum
chemical descriptors used in QSAR studies.

Multiple linear regression (MLR) is commonly used in QSAR modeling.12 The co-linearity problem

of the MLR method has been overcome through the development of the partial least squares (PLS) method,

which plays an important role in QSAR analysis.13,14 PLS is a factor analysis-based method that was

originally suggested and chemically applied by Wold et al.14 We have recently reported the application of PLS

modeling in spectrophotometric multivariate calibration.15−22 PLS is used in conjunction with optimization

techniques for feature selection.23 It has already been shown that genetic algorithms (GAs)24−30 can be

successfully used as a feature selection technique.31−35

A GA is a stochastic method to solve optimization problems defined by a fitness criterion applying

the evolution hypothesis of Darwin and different genetic functions, i.e. crossover and mutation.30 Leardi

et al.30 demonstrated that GAs, after suitable modifications, produce more interpretable results, since the
selected variables are less dispersed than in other methods.

Thiazolidine-4-carboxylic acid derivatives, as the largest group of 2-substituted thiazolidine-4-carboxylic
acids, are important, both in biochemistry and pharmacology. The attractivity and biological activity of

thiazolidines in biochemistry and pharmacology is evident.36−38 In 1999, Butvin et al.38 studied the acidity
constant of thiazolidine-4-carboxylic acid derivatives in aqueous solution. In the present paper, the GA-PLS
method was applied in QSAR for modeling the relationship between the acidity constant of 23 thiazolidine-
4-carboxylic acid derivatives. Ab initio geometry optimization was performed at the B3LYP level, with a

known basis set, 6-31++G∗∗. Local charges, dipole moment, polarizability, HOMO-LUMO energies, electro-
static potential on each atom, hardness, softness, electronegativity, and electrophilicity were calculated for
each compound. A GA-PLS was used to model the relationship that existed between the selected descriptors
and the acidity constant.

Materials and Methods

Hardware and software

The computations were made with an AMD 2000 XP (512 Mb RAM) microcomputer with the Windows

XP operating system. All programs needed for GA variable selection and PLS modeling were written in

MATLAB (version 6.5, MathWork, Inc.). The source code of the program is available from the authors upon

request. Hyperchem (version 6.03, Hypercube, Inc.) and Gaussian 98 software39 were used for geometric

optimization of the molecules and calculation of the quantum chemical descriptors.
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Acidity constant and descriptor generation

Butvin et al.38 previously reported the acidity constant values of several 2-substituted thiazolidine-4-
carboxylic acid derivatives in aqueous solution. These data are included in Table 1. Here, we used these
data for the development of a QSAR on acidity constant. The molecular structures of all the thiazolidine-

4-carboxylic acid derivatives were built with Hyperchem software for structural chemistry. Gaussian 9839

was operated to optimize with the 6-31++G∗∗ basis set for all atoms at the B3LYP level.40,41 No molecular
symmetry constraint was applied; instead, full optimization of all bond lengths and angles was carried out at

the B3LYP/6-31++G∗∗level. The calculated descriptors for each molecule are summarized in Table 2. Local

charges (LC) and electrostatic potential (EP)42 at each atom, HOMO and LUMO energies, molecular polar-

izabilities (MP), and molecular dipole moment (MDP) were calculated by Gaussian 98. Quantum chemical

indices of hardness (η), softness (S), electronegativity (χ), chemical potential (µ), and electrophilicity (ω)

were calculated according to the method proposed by Thanikaivelan et al.43

Table 1. Acidity constant for different thiazolidine-2-carboxylic acid derivatives in aqueous solution (Experimental),

the corresponding values calculated by PLS and GA-PLS methods (Predicted), and percent relative error (% RE).

PLS (Run a) GA-PLS (Run b)
Compounds Substituent pKa

38 (Exp.) Predicted % RE Predicted % RE
A1 H 6.19t 6.26 1.13 6.20 0.16
A2 Methyl 6.17p 6.25 1.30 6.20 0.49
A3 Dimethyl 5.86t 5.75 -1.88 5.82 -0.68
A4 Ethyl-methyl 5.73p 5.64 -1.57 5.68 -0.87
A5 Propyl 6.12t 6.18 0.98 6.16 0.65
A6 Carboxyl 5.86t 5.90 0.68 5.87 0.17
A7 Butyl 6.08t 5.91 -2.80 6.05 -0.49
A8 Isobutyl 6.10t 6.23 2.13 6.12 0.33
A9 Hexyl 5.94p 5.89 -0.84 5.98 0.67
A10 Phenyl 5.31t 5.24 -1.32 5.33 0.38
A11 Tolyl 5.50t 5.61 2.00 5.48 -0.36
A12 2-Hydroxyphenyl 5.67p 5.62 -0.88 5.70 0.53
A13 4-Hydroxyphenyl 5.51t 5.68 3.09 5.56 0.91
A14 Styryl 5.35t 5.25 -1.87 5.32 -0.56
A15 4-Metthoxyphenyl 5.80p 5.64 -2.76 5.75 -0.86
A16 2-Chlorophenyl 4.95p 5.10 3.03 4.91 -0.81
A17 4-Chlorophenyl 5.24t 5.09 -2.86 5.19 -0.95
A18 4-Dimethylaminophenyl 5.83t 5.76 -1.20 5.80 -0.51
A19 4-Carboxyphenyl 5.01p 4.92 -1.80 4.96 -1.00
A20 3-Nitrophenyl 4.70t 4.79 1.91 4.63 -1.49
A21 2-Hydroxy-3-methoxyphenyl 5.39t 5.31 -1.48 5.35 -0.74
A22 5-Bromo-2-hydroxyphenyl 5.53p 5.45 -1.45 5.49 -0.72
A23 1,4-Phenylenebis 5.17t 5.11 -1.16 5.11 -1.16

t, the data used in the training set; p, the data used in the prediction set.

Data processing

The acidity constants of 23 specified thiazolidine-4-carboxylic acid derivatives were randomly classified into

a training set (15 acidity constants data) and a prediction set (8 acidity constants data). The data were
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centered to zero means and scaled to the unit variance. The GA was used to select the set of descriptors,
which resulted in the best PLS model. The GA applied in this paper is an evolution of the algorithm

described by Leardi33and uses a binary representation as the coding technique for the given problem; the

presence or absence of a descriptor in a chromosome is coded by 1 or 0.32,33

Table 2. The calculated quantum chemical descriptors used in this study.

Descriptor name Notation Description
Local charges LCi The local charges at each atom of the base unit of

thiazolidine-2-carboxylic acids
Electrostatic potential EPi The electrostatic potential at each atom of the base unit of

thiazolidine-2-carboxylic acids
Molecular polarizability MP Total molecular polarizability
Dipole moment DM Total molecular dipole moment
HOMO EHOMO Highest occupied molecular orbital energy
LUMO ELUMO Lowest unoccupied molecular orbital energy
Electronegativity χ –0.5 (EHOMO− ELUMO)
Hardness η 0.5 (EHOMO + ELUMO)
Softness S 1/η
Electrophilicity ω χ2/2η

Regression methods

MLR modeling

The program used for MLR analysis was written in MATLAB. At the beginning, the correlations of each
of the descriptors employed with pKa values were examined. Meanwhile, the correlations of the remaining
descriptors to each other were investigated, and those pairs with collinear relationships were determined.
Finally, the remaining descriptors were used to construct the MLR model, in accordance with the forward

selection method.12

PLS modeling

PLS is a method for building regression models on the latent variable decomposition, relating 2 blocks,
matrices X and Y, which contain the independent, x, and dependent, y, variables, respectively. These
matrices can be simultaneously decomposed into a sum of f latent variables, as follows:

X = TP T + E =
∑

tfp
′
f + E (1)

Y = UQT + F =
∑

ufq
′
f + F (2)

in which T and U are the score matrices for X and Y , respectively, P and Q are the loadings matrices for X

and Y , respectively, and E and F are the residual matrices. The 2 matrices are correlated by the scores T

and U , for each latent variable, as follows:

uf = bf tf (3)
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in which bf is the regression coefficient for the f latent variable. The matrix Y can be calculated fromuf , as

Eq. (4), and the acidity constants of the new samples can be estimated from the new scores T ∗, which are

substituted in Eq. (4), leading to Eq. (5):

Y = TBQT + F (4)

Ynew = T ∗BQT (5)

In this procedure, it is necessary to find the best number of latent variables, which normally is
performed by using cross-validation based on determination of the minimum prediction error. Applications

of PLS have been discussed by several researchers.14−22

Results and Discussion

The molecular structures of the 2-substituted thiazolidine-4-carboxylic acid derivatives are shown in Figure
1 and their acidity constants are represented in Table 1. The acidity constant values of these compounds
vary between 4.70 and 6.19, as –R and –R’ groups at the C2 position of the thiazolidine-2-carboxylic acids

changes. The PLS model was run twice. In the first run (run a), all calculated descriptors were considered

in modeling, while in the second run (run b), after selection of descriptors by the GA, only the selected

descriptors were considered in the modeling procedure.
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Figure 1. Structure of thiazolidine-4-carboxylic acids, in which R=R’=H is A1, R=CH3 and R’ = methyl radical is

(A3), R=CH3 and R’= ethyl radical is (A4), and in all other cases R=H and R’ is alkyl or aryl substituent (Table

1).

Selection of descriptors using genetic algorithms

In order to select the most effective descriptors, the evolution of the population was simulated. Each indi-
vidual of the population defined by a chromosome of binary values represented a subset of descriptors. The

number of genes at each chromosome was equal to the number of descriptors (i.e. 13 local charges and 13

electrostatic potentials at each atom of the base unit of thiazolidine-2-carboxylic acids (Figure 1) and 8 de-

scriptors, including molecular polarizability, HOMO and LUMO energies, electrophilicity, electronegativity,

chemical potential, softness, and hardness). A gene took a value of one if its corresponding descriptor was

included in the subset; otherwise, it took a value of zero. The population of the first generation was selected

randomly. The parameters of the GAs used in this study were as follows: probability of mutation 1% and

90% for crossover; 100 runs; window size for smoothing was 3.
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MLR analysis

Among the descriptors mentioned in Table 2, the most significant molecular descriptors were identified using
MLR analysis with a stepwise forward selection method. The best equation obtained for the acidity constant
of thiazolidine-2-carboxylic acids was:

pKa = 48.62 + 14.23LC5 + 8.23EP6 +3.21EP8 + 1.02MP + 0.86DM + 0.21χ + 0.16S

where LC5, EP6, EP8, MP, DM, χ, and S are the local charge on carbon atom C5, electrostatic potentials
on carbon atom C6 and oxygen atom O8, molecular polarizability, dipole moment, softness, and electroneg-
ativity, respectively. In this model, the highly correlated descriptors were not considered. As seen, the
resulting model has 7 significant descriptors. Table 3 shows the descriptors’ coefficients, the standard error
of coefficients, the t values for the null hypothesis, and their related P values.

Table 3. Results of multiple linear regression analysis.

Descriptor Coefficient Standard error of coefficient t value P value
Intercept 48.62 2.89 10.23 0.0001
LC5 14.23 2.06 4.56 0.0001
EP6 8.23 2.23 3.28 0.001
EP8 3.21 1.44 2.14 0.001
MP 1.02 0.75 5.65 0.021
DM 0.86 0.46 8.74 0.001
χ 0.21 0.09 2.36 0.0001
S 0.16 0.03 2.55 0.0001

PLS modeling

Only the selected descriptors were considered in the modeling procedure. Local charges (LC5), electrostatic

potential (EP2, EP6, and EP8), MP, DM,χ, and S were selected by GAs and used in PLS modeling. These

descriptors were the effective parameters in determining the acidity constant of the studied thiazolidine-2-
carboxylic acid derivatives.

The optimum number of factors (latent variables) to be included in the calibration model was

determined by computing the prediction error sum of squares (PRESS) for cross-validated models using

a high number of factors (half the number of the total standard +1), which is defined as follows:

PRESS =
n∑

i=1

(yi − ŷi)2 (6)

where yi is the reference acidity constant for the ith compound and ŷi represents the estimated acidity
constant. The cross-validation method employed was to eliminate only one compound at a time and then
PLS calibrated the remaining standard spectra. The acidity constants of the left-out sample were predicted
by using this calibration. This process was repeated until each compound in the training set had been left
out once.

One reasonable choice for the optimum number of factors would be the number that yielded the
minimum PRESS. Since there are a finite number of compounds in the training set, in many cases, the
minimum PRESS value causes overfitting for unknown acidity constants of compounds that were not included
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in the model. A solution to this problem has been suggested by Haaland et al.44 in which the PRESS values
for all previous factors are compared to the PRESS value at the minimum. The F-statistical test can be
used to determine the significance of PRESS values greater than the minimum. The maximum number of
factors used to calculate the optimum PRESS was 8. In all instances, the number of factors for the first
PRESS values whose F-ratio probability dropped below 0.75 was selected as the optimum. In Figure 2, the
PRESS obtained by optimizing the training set of the descriptor data with PLS and GA-PLS models is
shown; however, modeling of all descriptors by PLS requires an increased number of factors. The optimal
number of factors for this data by PLS and GA-PLS models was 3 and 2, respectively. PRESS values were
0.1231 and 0.0345, using PLS and GA-PLS models, respectively.
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Figure 2. Variation of PRESS against number of factors obtained by the PLS and GA-PLS models.

In Table 1, the predicted values of pKa obtained by the PLS and GA-PLS methods and the percent
relative errors of prediction are presented. The plots of predicted pKa versus experimental pKa obtained

by PLS and GA-PLS models are shown in Figure 3 (line equations and R2 values are also shown). An

agreement is observed between the predicted acidity constant and experimental values. The relative errors

of prediction lower than 1.5% were obtained by using the GA-PLS method. The present study shows that
the GA can be a good method for descriptor selection in QSAR studies. The results obtained on the data
set of acidity constants demonstrate that the predictive ability of the models obtained with the descriptors
selected by the GA is very often much better.

For the evaluation of the predictive ability of a multivariate calibration model, the root mean square

error of prediction (RMSEP) can be used:24

RMSEP =

√∑n
i=1 (ypred − yobs)2

n
(7)

where ypred is the predicted acidity constant, yobs is the experimental value of the acidity constant, and n

is the number of data in the prediction set. The RMSEP for this data set by PLS and GA-PLS was 0.1013
and 0.0419, respectively.
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Figure 3. Plot of predicted pKa estimated by PLS and GA-PLS modeling versus experimental pKa, for thiazolidine-

2-carboxylic acid derivatives.

Effective descriptors

Different quantum chemical descriptors were used in this study. Some of them were related to the properties

of individual atoms in the basic structure of the thiazolidine-2-carboxylic acid derivatives (i.e. local charges

and electrostatic potentials). It should be noted that the atomic properties of –R and –R’ groups were

not considered. Other calculated quantum chemical descriptors were related to the entire molecular struc-

ture of the thiazolidine-2-carboxylic acid derivatives (i.e. HOMO and LUMO energies, electronegativity,

electrophilicity, hardness, softness, dipole moment, and polarizability).

The GA was used to select the most informative descriptors among the pool of the quantum chemical
descriptors. In order to have a small subset of descriptors in the final models, the number of genes with a
value of one was kept lower than genes with a value of zero. Among the descriptors relating to the atomic
properties, the population of electrostatic potential was more than that of local charges. According to the
selected descriptors, the electrostatic potentials of the C2, C5, C6, and O8 atoms were used in run b. As
shown in Figure 1, these atoms are near the deprotonation site and the site substitution. According to
the results, the electrostatic potential is more effective than local charges. This indicates the superiority of
electrostatic potential for use in QSAR studies. Although GA did not select HOMO and LUMO energies
for the modeling by PLS, it selected some combinations of these quantum chemical descriptors, such as
electrophilicity, electronegativity, hardness, and softness. This fact is in direct agreement with the previous

report.9

Conclusion

A GA-PLS model was established to predict the acidity constants of some thiazolidine-2-carboxylic acid
derivatives in aqueous solution. A suitable model with high statistical quality and low prediction errors was
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obtained. The model can accurately predict acidity constants of thiazolidine-2-carboxylic acid derivatives
that do not exist in the modeling procedure. The quantum chemical descriptors concerning all the molecular
properties and those of individual atoms in the molecule were found to be important factors controlling acidity
behavior. It was found that the atoms near the deprotonation center and the site of substitution affected
the acidity of the studied thiazolidine-2-carboxylic acids. Moreover, in this study, the electrostatic potential
was more informative than the local charge.
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