Turk J Chem 31 (2007) , 155 – 162. © TÜBİTAK

Iridoid Glucosides from Lamium garganicum subsp. laevigatum

Tayfun ERSÖZ^{1*}, Duygu KAYA¹, Funda Nuray YALÇIN^{1,2}, Cavit KAZAZ³, Erhan PALASKA⁴, Charlotte H. GOTFREDSEN⁵, Søren R. JENSEN⁵, İhsan ÇALIŞ¹

 ¹Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-06100 Ankara, TURKEY e-mail: tersoz@hacettepe.edu.tr
²Hacettepe University, Faculty of Pharmacy, Department of Pharmacy Management, TR-06100 Ankara-TURKEY
³Atatürk University, Faculty of Arts and Science, Department of Chemistry, TR-25240 Erzurum-TURKEY
⁴Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, TR-06100 Ankara-TURKEY
⁵The Technical University of Denmark, Department of Chemistry Building 201,

³ The Technical University of Denmark, Department of Chemistry Building 201, DK-2800 Lyngby-DENMARK

Received 18.10.2006

Phytochemical investigations on the above-ground parts of Lamium garganicum subsp. laevigatum resulted in the isolation of 7 iridoid glucosides: shanzhiside methyl ester (1), barlerin (8-O-acetylshanzhiside methyl ester) (2), 6-O-syringyl-8-O-acetylshanzhiside methyl ester (3), 6β -hydroxyipolamiide (4), lamalbide (5), dehydropenstemoside (6), and sesamoside (7). The structure of the iridoids was elucidated by spectroscopic (UV, IR, 1D- and 2D-NMR, and ESI-MS) evidence.

Key Words: Lamium garganicum L. subsp. laevigatum, Lamiaceae, iridoid glucosides.

Introduction

The genus Lamium L. (Lamiaceae) comprises about 40 species distributed in Europe, Asia, and Africa.¹ There are 30 Lamium species recorded in the Flora of Turkey.² Some Lamium species have been used in folk medicine. Lamium album is the most popular species, with blood tonic, uterotonic, astringent, antispasmodic, and anti-inflammatory activities. L. maculatum has been used in Chinese folk medicine for treatment of trauma, fracture, injuries from falls, putrescence, paralysis, leukorrhea, and hypertension.^{3,4} Lamium album and L. maculatum have been used in Anatolian folk medicine as tonics.⁵ In previous studies, different types of compounds, such as iridoid and secoiridoid glucosides, ⁶⁻¹² phenylpropanoids, ^{4,11,14} flavonoids, ^{4,13,14} essential oils, ¹⁵ phytoecdysteroids, ^{11,16} benzoxazinoids, ¹¹ and triterpene saponins, ¹⁷ as well

 $^{^{*}\}mathrm{Corresponding}$ author

Iridoid Glucosides from Lamium garganicum subsp. laevigatum, T. ERSÖZ, et al.,

as megastigmenone¹⁸ and hemiterpene¹⁹ type compounds, have been isolated from *Lamium* species. To date, shanzhiside methyl ester, 8-O-acetylshanzhiside methyl ester (= barlerin), lamalbide, and sesamoside have been identified in *L. garganicum*^{10,11} and the essential oil from *L. garganicum* subsp. *laevigatum* has been examined by GC and GC-MS.¹⁵ As a part of our ongoing phytochemical studies of members of the Lamiaceae growing in Turkey, we investigated *Lamium garganicum* L. subsp. *laevigatum* Arcangeli. The current study describes the isolation and structure elucidation of the iridoid glucosides from the title plant.

Experimental

General Experimental Procedures: Optical rotations were determined on a Rudolph Autopol IV Automatic polarimeter using MeOH as solvent. UV spectra were recorded in MeOH using an Agilent 8453 spectrophotometer. 1D- and 2D-NMR measurements were recorded at room temperature on a Bruker AVANCE 400 MHz spectrometer for 1, 3-5 and 7 and on a Varian Unity Inova 500 MHz spectrometer for 2 and 6 (¹H: 500 and ¹³C: 125 MHz). All compounds were dissolved in CD₃OD and the spectra were referenced according to the solvent peaks (δ_H 3.31 or δ_C 49.0). ESI-MS was performed on a Water ZQ Mass Spectrometer (ESI positive ion, MeOH, m/z). Polyamide 6 (Fluka, 50-160 μ m) and Kieselgel 60 (Merck, 0.063-0.200 mm) were used for open column chromatography (CC). Medium-pressure liquid chromatographic (MPLC) separations were carried out on Büchi (3 x 25 cm) glass columns packed with LiChroprep C₁₈ (Merck, 40-63 μ m), using a Büchi 681 pump. LiChroprep C₁₈ (Merck, 40-63 μ m) was used for vacuum-liquid chromatography (VLC) (column 5.2 x 10 cm, vacuum by H₂O aspiration). TLC analyses were carried out on pre-coated Kieselgel 60 F₂₅₄ aluminum plates (Merck). Compounds were detected by UV fluorescence and spraying 1% vanillin/H₂SO₄, followed by heating at 100 °C for 1-2 min.

Plant Material: Lamium garganicum L. subsp. laevigatum Arcangeli (Lamiaceae) was collected in July 2005 at Uludağ (Bursa), in the vicinity of the Kuşaklıkaya region. Voucher specimens (HUEF-05004) have been deposited at the Herbarium of the Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.

Extraction and Isolation: Dried and powdered aerial parts of L. garganicum subsp. laevigatum (285 g) was extracted with MeOH (4 x 1.5 L) at 40 °C and combined MeOH extracts were concentrated under reduced pressure. The resultant extract was then dissolved in H_2O (150 mL) and the water-soluble portion was partitioned between CH₂Cl₂ (4 x 150 mL) and n-BuOH (4 x 150 mL). An aliquot (20 g) of the n-BuOH extract was chromatographed over polyamide (100 g), eluting with H_2O , followed by increasing concentrations of MeOH in H₂O (25%, 50%, 75%, and 100%, each 250 mL) to yield 11 main fractions (Frs. A-K). Fr. A (10 g) was subjected to VLC on LiChroprep C_{18} and elution with H_2O , followed by MeOH- H_2O (0% \rightarrow 100%) solvent system, yielded 9 fractions (Frs. A₁-A₉). Fr. A₅ (505 mg) was first subjected to silica gel column chromatography with a gradient of EtOAc-MeOH-H₂O (10:5:2 \rightarrow 100:17:13) to give 5 subfractions (Frs. $A_{5A}-A_{5E}$). Fr. A_{5A} was found to be compound 7 (40.5 mg) in pure form. Fr. A_{5D} (36 mg) was subjected to VLC (LiChroprep C_{18}) and elution with MeOH-H₂O (0% \rightarrow 100%) mixture afforded compound 4 (10.8 mg). VLC fractionation of fr. A_{5E} (45 mg) on LiChroprep C_{18} using the same solvent system yielded compound 5 (2 mg). Fr. A₆ (1.2 g) was first applied to silica gel CC with EtOAc-MeOH-H₂O $(10:5:2 \rightarrow 100:30:2)$ mixture and a fraction rich in compound **1** (Fr. A_{6B}, 454 mg) was collected. Fr. A_{6B} was then applied to MPLC (LiChroprep C_{18}) and eluted with H_2O followed by increasing concentrations of MeOH in H₂O (0% \rightarrow 100%) to give compound 1 (98 mg). CC fractionation of fr. A₈ (295 mg) on silica gel with EtOAc-MeOH-H₂O (10:5:2 \rightarrow 100:17:13) mixture as eluent gave compound **6** (20 mg). Fr. A₉ was compound **2** (67 mg) in pure form. Fractionation of fr. D (390 mg) by MPLC (LiChroprep C₁₈; MeOH-H₂O (0% \rightarrow 100%)) afforded 3 subfractions (Frs. D₁-D₃). Fr. D₂ (115 mg) was then purified on a silica gel column, eluting with EtOAc-MeOH-H₂O (10:10:0 \rightarrow 100:17:13) mixture, and yielded compound **3** (80 mg).

Shanzhiside methyl ester (1): $C_{17}H_{26}O_{11}$; $[\alpha]_D^{33}$ -122° (*c* 0.1, MeOH); UVg λ_{max} (MeOH) nm: 236; IR v_{max} (KBr) cm⁻¹ 3408, 2929, 1690, 1645, 1299, 1078; ¹³C (100 MHz, CD₃OD) and ¹H (400 MHz, CD₃OD) NMR data are given in Table 1; ESI-MS: m/z 429 [M+Na]⁺.

		1				2		3				
C/H	DEPT	δ _C	δ _H	J (Hz)	δ _C	δ _Η	J (Hz)	δ	δ _Η	J (Hz)		
1	CH	94.8	5.57 d	(2.4)	95.7	5.92 d	(2.4)	95.4	5.91 d	(3.4)		
3	CH	152.8	7.41 s		153.7	7.46 d	(1.4)	154.5	7.55 s			
4	С	111.5			109.8			108.7				
5	CH	41.5	3.00 dd	(10.1/3.2)	42.3	3.08 dd	(8.9/1.4)	40.1	3.46 d	(8.5)		
6	CH	77.5	4.06 ddd	(6.4/6.0/3.2)	76.0	4.34 m		79.6	5.49 br.d	(5.2)		
7	CH_2	49.2	2.01 dd	(13.2/6.4)	47.7	2.22 d	(14.9)	45.1	2.50 d	(15.6)		
			1.83 dd	(13.2/6.0)		2.06 dd	(14.9/5.4)		2.23 dd	(15.6/5.2)		
8	С	79.1			89.8			89.2				
9	CH	51.8	2.62 dd	(10.1/2.4)	50.0	3.01 dd	(8.9/2.2)	50.5	3.09 dd	(8.5/3.4)		
10	CH_3	24.7	1.26 s		22.3	1.53 s		21.8	1.61 s			
11	С	169.7			168.3			168.5				
COOCH3	CH_3	51.9	3.73 s		51.8	3.74 s		51.9	3.69 s			
OCOCH ₃	С				173.1			172.7				
OCOCH ₃	CH_3				22.3	2.03 s		22.3	1.91 s			
- 1'	CH	99.8	4.63 d	(8.0)	100.4	4.65 d	(7.9)	100.3	4.71 d	(7.8)		
2'	CH	74.7	3.17 dd	(8.8/8.0)	74.7	3.19 dd	(8.8/7.9)	74.7	3.17 dd	(7.8/8.0)		
3'	CH	78.4	3.36 t	(8.8)	78.1	3.38 t	(8.8)	78.0	3.36 t	(8.9)		
4'	CH	71.7	3.26 dd	(8.8/8.7)	71.7	3.29 dd	(8.6/8.8)	71.7	3.23 dd	(8.4/8.5)		
5'	CH	78.1	3.32 m		78.4	3.31 m		78.5	3.32 m			
6'	CH_2	62.9	3.89 dd	(11.9/2.2)	63.0	3.93 dd	(12.0/2.1)	63.0	3.90 dd	(11.9/2.2)		
			3.65 dd	(11.9/6.0)		3.67 dd	(12.0/6.1)		3.67 dd	(11.9/5.6)		
1"	С						. ,	121.7		·		
2''	CH							108.5	7.35 s			
3''	С							149.0				
4''	С							142.4				
5''	С							149.0				
6''	CH							108.5	7.35 s			
C=O	С							167.4				
Ar. OCH ₃	CH_3							57.1	3.89 s			

Table 1.¹³C-NMR and ¹H-NMR spectroscopic data for compounds 1-3 (in CD₃OD)^a.

 $^{a\ 13}\text{C}:$ 100 MHz; $^1\text{H}:$ 400 MHz for 1 and 3; $^{13}\text{C}:$ 125 MHz; $^1\text{H}:$ 500 MHz for 2

Barlerin (2): C₁₉H₂₈O₁₂; $[\alpha]_D^{33}$ -79° (*c* 0.1, MeOH); UVg λ_{max} (MeOH) nm: 234; IR v_{max} (KBr) cm⁻¹ 3400, 2930, 1700, 1633, 1286, 1092; ¹³C (125 MHz, CD₃OD) and ¹H (500 MHz, CD₃OD) NMR data are given in Table 1; ESI-MS: m/z 471 [M+Na]⁺.

6-O-Syringyl-8-O-acetylshanzhiside methyl ester (3): $C_{28}H_{36}O_{16}$; $[\alpha]_D^{33}$ -62° (c 0.1, MeOH); UVg λ_{max} (MeOH) nm: 278, 214; IR v_{max} (KBr) cm⁻¹ 3446, 2940, 1713, 1637, 1372, 1282, 1080; ¹³C (100 MHz, CD₃OD) and ¹H (400 MHz, CD₃OD) NMR data are given in Table 1; ESI-MS: m/z 651 [M+Na]⁺.

6β-hydroxyipolamiide (4): C₁₇H₂₆O₁₂; $[\alpha]_D^{33}$ –161° (*c* 0.2, MeOH); UVgλ_{max} (MeOH) nm: 231; IR v_{max} (KBr) cm⁻¹ 3400, 2928, 1710, 1645, 1395, 1310, 1080; ¹³C (100 MHz, CD₃OD) and ¹H (400 MHz, CD₃OD) NMR data are given in Table 2; ESI-MS: m/z 445 [M+Na]⁺.

7	J (Hz)) d (8.4)	s s			2 brs	7 brs (8.8)			2 d	s		5 s	3 d (8.0)	3 dd (9.2/8.0)	3 t (9.2)	5t (8.4)	2 m	3 dd (11.9/ 2.1)	2 dd (11.9/ 5.9)
	δ _c δ _H	96.9 5.49	155.5 7.58	113.1	74.9	77.6 4.3	66.0 3.4		63.0	54.5 2.52	17.8 1.5	169.1	51.9 3.75	99.9 4.7	74.8 3.2	77.8 3.38	71.8 3.20	78.8 3.32	63.1 3.93	3.6
	DEPT	CH	CH	C	C	CH	CH		C	CH	CH_3	C	CH_3	CH	CH	CH	CH	CH	CH_2	
	J (Hz)	(2.4)				(1.1)	(2.4/1.6)			(2.4)	(1.2)			(6.7)	(8.8/7.9)	(8.8)	(8.6)		(12.0/2.1)	(12.0/6.1)
9	δ _H	5.85 d	7.52 s			4.53 d	5.55 dd			3.13 d	1.83 d		3.74 s	4.59 d	3.23 dd	3.38 t	3.29 t	3.31 m	3.93 dd	3.67 dd
	o c	94.9	155.1	112.8	73.7	78.9	128.9		143.5	56.8	15.8	168.3	51.8	100.0	74.4	77.5	71.7	78.5	62.8	
	DEPT	CH	CH	с С	U	CH	CH		U	CH	CH_3	U	CH_3	CH	CH	CH	CH	CH	CH_2	
	J (Hz)	(1.8)			(10.8/3.4)	(4.4/3.4)	(4.4)			(10.8)				(6.7)	(6.0/7.9)	(8.7)	(8.7)		(11.9/2.1)	(11.9/5.9)
5	δ _H	5.60 d	7.40 s		2.92 dd	3.94 dd	3.53 d			2.79 d	1.20 s		3.72 s	4.60 d	3.23 dd	3.38 t	3.29 t	3.31 m	3.88 dd	3.65 dd
	õ.	94.9	152.8	111.7	37.7	78.4	79.1		78.6	49.3	22.1	169.6	51.9	99.8	74.7	77.9	71.7	78.1	62.8	
	DEPT	CH	CH	с С	CH	CH	CH		U	CH	CH ₃	с С	CH_3	CH	CH	CH	CH	CH	CH_2	
	J (Hz)					(8.8/6.4)	(12.4/8.8)	(12.4/6.4)						(6.7)	(8.6/7.9)	(9.2)	(8.6)		(11.9/2.0)	(11.9/5.9)
4	δ _H	5.85 brs	7.50 s			4.06 dd	2.01 dd	1.90 dd		2.60 s	$1.14 \mathrm{s}$		3.74s	4.59 d	3.21 dd	3.39 t	3.29 t	3.32 m	3.90 dd	3.67 dd
	Š c	93.9	154.1	114.4	70.3	74.6	48.2		75.5	60.7	23.9	168.3	51.9	99.8	74.4	77.4	71.8	78.5	62.9	
	DEPT	1 CH	3 CH	4 C	5 C	6 CH	7 CH_2		8 C	9 CH	10 CH ₃	11 C	00 <u>CH</u> 3 CH3	1' CH	2' CH	3' CH	4' CH	5' CH	6' CH ₂	

Table 2. ¹³C-NMR and ¹H-NMR spectroscopic data for compounds 4-7 (in $CD_3OD)^a$.

^{a13}C: 100 MHz, ¹H: 400 MHz for **4,5** and **7**; ¹³C: 125 MHz , ¹H: 500 MHz for **6**

Lamalbide (5): $C_{17}H_{26}O_{12}$; $[\alpha]_D^{33}$ -123° (*c* 0.1, MeOH); UVg λ_{max} (MeOH) nm: 235; IR v_{max} (KBr) cm⁻¹ 3408, 2930, 1727, 1697, 1642, 1290, 1074; ¹³C (100 MHz, CD₃OD) and ¹H (400 MHz, CD₃OD) NMR data are given in Table 2; ESI-MS: m/z 445 [M+Na]⁺.

Dehydropenstemoside (6): $C_{17}H_{24}O_{11}$; $[\alpha]_D^{33} - 94^\circ$ (*c* 0.1, MeOH); UVg λ_{max} (MeOH) nm: 234, 204; IR v_{max} (KBr) cm⁻¹ 3384, 2920, 1698, 1631, 1294, 1076; ¹³C (125 MHz, CD₃OD) and ¹H (400 MHz, CD₃OD) NMR data are given in Table 2; ESI-MS: m/z 427 [M+Na]⁺.

Sesamoside (7): $C_{17}H_{24}O_{12}$; $[\alpha]_D^{33}$ -77° (*c* 0.1, MeOH); UVg λ_{max} (MeOH) nm: 235; IR v_{max} (KBr) cm⁻¹ 3410, 2925, 1696, 1635, 1304, 1043; ¹³C (100 MHz, CD₃OD) and ¹H (400 MHz, CD₃OD) NMR data are given in Table 2; ESI-MS: m/z 443 [M+Na]⁺.

Results and Discussion

From the aerial parts of *L. garganicum* subsp. *laevigatum* 7 iridoid glucosides (1-7) were isolated by fractionation of the *n*-BuOH extract prepared from the overground parts of the title plant through a column chromatography on polyamide, followed by VLC or MPLC on LiChroprep C_{18} and open column chromatography on silica gel (Figure).

Figure. Iridoid compounds (1-7) isolated from Lamium garganicum subsp. laevigatum.

The UV spectra for compounds 1, 2, 4-7 revealed their λ_{max} at 231-236 nm, indicative of an α,β unsaturated carbonyl moiety within each of the molecules. However, the UV spectrum of 3 (λ_{max} 278, 214 nm) showed the presence of an additional aromatic ring in the C-4 substituted iridoid skeleton. Their IR spectra displayed absorption bands typical for hydroxyls, a carbonyl function and an enolic double bond. The ¹H-NMR spectra of compounds 1-7 (Tables 1 and 2) showed proton signals corresponding to an enol-ether system conjugated with a carbomethoxyl group (δ_H 7.40-7.58, H-3; δ_H 3.69-3.75, COOMe), an oxymethine (δ_H 3.94-5.49, H-6), and a β -glucose moiety (δ_H 4.59-4.73, H-1'). In addition to these signals, a tertiary methyl (δ_H 1.14-1.61, H₃-10) signal was observed for compounds 1-5 and 7, while a deshielded methyl signal appeared in the ¹H-NMR spectrum of compound 6 (δ_H 1.83). The secondary hydroxyl function at C-6 in all compounds (1-7) was assigned as β by comparing the ¹³C-NMR data of the compounds with those of model C-6 (OH) epimeric iridoids.^{20,21} The complete assignments of all proton and carbon resonances were based on the DEPT, DQF-COSY, HSQC, HMBC, and NOESY experiments. Compounds 1, 2, 5 and 7 were identified as shanzhiside methyl ester (1),²¹ barlerin (8-O-acetylshanzhiside methyl ester (2),²¹ lamalbide (5),²² and sesamoside (7),²¹ respectively, by direct comparison of their spectroscopic data with those published in the literature.

The molecular formula of compound **3** was determined to be $C_{28}H_{36}O_{16}$ on the basis of positive ion ESI-MS (m/z 651 [M+Na]⁺). ¹³C-NMR and ¹H-NMR data of **3** (Table 1) were identical to those of barlerin (**2**) with additional proton (δ_H 7.35, s, 2H, H-2"/6" and 3.89, s, 6H, Ar.-OCH₃) and carbon (δ_C 167.4, C=O; and 108.5, C-2"/6") resonances, which could be assigned to a syringyl moiety. A 180 mass unit difference between compounds **3** and **2** also supported the presence of a syringyl moiety within **3**. Downfield chemical shifts of both C-6 (δ_C 79.6) and H-6 (δ_H 5.49) resonances, compared with those of **1** and **2**, showed that the syringyl moiety occupied the C-6 position. This proposal was also confirmed by the HMBC couplings observed from H-5 (δ_H 3.46) and H₂-7 (δ_H 2.50 and 2.23) to C-6. Therefore, on the basis of the above evidence and the optical rotation value, the structure of compound **3** was determined as 6-*O*-syringyl-8-*O*-acetylshanzhiside methyl ester.²¹

The positive-ion ESI-MS of compound 4 exhibited a molecular ion peak $[M+Na]^+$ at m/z 445, consistent with the molecular formula $C_{17}H_{26}O_{12}$. The ¹³C-NMR and ¹H-NMR data of 4 (Table 2) were almost identical to those of 1. However, the splitting pattern of the proton resonances of H-3 (δ_H 7.50, s) and H-9 (δ_H 2.60, s) suggested that C-5 is substituted. A 16 mass unit difference between 4 and 1 suggested that presence of a hydroxyl group occupying the C-5 position. Furthermore, prominent NOE correlations between H-1/H₃-10 and H-6/H₃-10 indicated that these protons are on the same side (α) of the cyclopentane pyrane ring system. Thus, the structure of compound 4 was assigned as 6 β -hydroxyipolamiide and the optical rotation value of 4 supported this assumption.²¹

The ESI-MS of **6** revealed the $[M+Na]^+$ ion at m/z 427 in the positive ion mode, which indicated a molecular mass of 404 Da, compatible with the molecular formula $C_{17}H_{24}O_{11}$. In the ¹³C-NMR and ¹H-NMR data of **6** (Table 2), there were signals arising from an olefinic methine (C-7, δ_H 5.55 and δ_C 128.9), an olefinic quaternary carbon (C-8, δ_C 143.5) atom, and a deshielded methyl doublet (C-10, δ_H 1.83, d, J=1.2 Hz). H₃-10 protons showed HMBC correlations to C-7, C-9 (δ_C 56.8), and C-8, and H-7 displayed heteromultiple long-range correlations to C-5 (δ_C 73.7), C-6 (δ_C 78.9), C-9 (δ_C 56.8), and C-10 (δ_C 15.8), confirming the position of the double bond at C-7. Thus, on the basis of its NMR data and optical rotation value, compound **6** was identified as dehydropenstemoside.²³

The cyclopentanopyran ring system of the above iridoid glycosides was supposed to be universallyg β s β cis-fused and therefore the stereochemistry was determined by the interpretation of 1D- and 2D-NMR data and by analogy with the iridoids of known stereochemistry. Nevertheless, reports on the occurrence of iridoids with trans-fused ring junctions in plants²⁴⁻²⁸ have opened up a new field of discussion on the determination of the relative stereochemistry of iridoids. The relative stereochemistry of these trans-fused iridoids was mainly determined based solely on the detailed analysis of the ¹H-¹H NOESY experiments; however, in some cases it was proved by X-ray crystallography.²⁴ In the present work, the ¹H-NMR and ¹³C-NMR data of the isolated barlerin (**2**) and 7,8-didehydropenstemoside (**6**) were almost identical to those of 2 compounds presumed to be 6,9-*epi*-8-O-acetylshanzhiside methyl ester and 5,9-*epi*-7,8-didehydropenstemoside, previously isolated from *Eremostachys glabra*.²⁸ Moreover, compounds **2** and **6** both exhibited the unusual NOE interactions between H-1/H-9. Therefore, **2** and **6** could also be assumed to belong to the 9-epimeric iridoids. However, Franzyk et al.²⁹ have stated that the structure of 10-hydroxy-8-epi-hastatoside (10 α -CH₂) previously isolated from Penstemon secundiflorus and initially assigned due to the NOE interaction between H-1/H₂-10 should be revised to 10-hydroxyhastatoside (10β -CH₂), expressing that the NOE interaction between 2 noncontiguous protons on different faces of an iridoid skeleton is possible. In another work, Tasdemir et al.³⁰ also detected some unusual NOE interactions between H-1/H-9, H-1/H₃-10 and H-5/H-6 for the iridoid glucosides 6-O-acetylajugol and 7,8-epoxy-8-epi-loganic acid isolated from Leonurus persicus. However, performing molecular modeling and X-ray experiments it was concluded that in some conformations $H-1(\alpha)$ and H- $9(\beta)$ protons as well as H-5(β) and H-6(α) protons of an iridoid cyclopentane ring were getting close in space and therefore exhibited the unexpected NOEs. As a consequence of these results, the structures of 6,9-epi-8-O-acetylshanzhiside methyl ester and 5,9-epi-7,8-didehydropenstemoside have recently been revised to 2 and 6, respectively.³¹ Thus, despite the presence of NOE interaction between H-1/H-9 in the NOESY spectra of 2 and 6 we assigned the β configuration to H-9 for both iridoids on the basis of the above-mentioned experimental results. The β -orientations of the C-6(OH) group in 2 and 6 were also assigned by comparing their NMR data with those published for related iridoids.²¹ The relative configurations of the chiral centers of the remaining isolates (1, 3-5, 7) were established in the same manner. Finally, the optical rotation values of the isolates also supported the proposed structures for 1-7.

Alipieva et al.¹¹ isolated shanzhiside methyl ester (1), 8-O-acetyl shanzhiside methyl ester (= barlerin) (2), lamalbide (5), and sesamoside (7) from a Bulgarian population of *Lamium garganicum* and employed the iridoid glucosides as chemotaxonomic markers of the genus *Lamium*. The main compounds found in the present investigation are all C₁₀ iridoids with 11-COOCH₃ substitution, which is in good agreement with the Bulgarian results cited above. Using DNA sequencing results, Wink and Kaufmann³² have shown that the genus *Lamium* is separated into 2 clades, where *L. garganicum* is a member of a clade accumulating 11-COOR iridoids. Thus, the iridoid composition of *L. garganicum* subsp. *laevigatum* is in good agreement with this classification. This is the first report of 6-O-syringyl-8-O-acetylshanzhiside methyl ester (3), 6βhydroxyipolamiide (4), and dehydropenstemoside (6) in the genus *Lamium*.

Acknowledgments

The authors are grateful to Prof. Dr. Hayri Duman (Gazi University, Faculty of Science, Department of Biology, Ankara, Turkey) for authentification of the plant specimen, and Dr. Özgür Özsar (Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey) for recording the NMR spectra.

References

- A. Willis, "A Dictionary of Flowering Plants and Ferns", 8th ed., pp. 624-626, Cambridge University Press, Cambridge, 1973.
- R.R. Mill, Lamium, in "Flora of Turkey and the East Aegean Islands" (Ed. P.H. Davis), Vol. 7, pp. 126-148, University Press, Edinburgh, 1982; H. Duman, Lamium L. in "Flora of Turkey and the East Aegean Islands" (Eds. A. Güner, N. Özhatay, T. Ekim and K.H.C. Başer), Vol. 11 (Suppl. 2), pp. 199-200, University Press, Edinburgh, 2000.

Iridoid Glucosides from Lamium garganicum subsp. laevigatum, T. ERSÖZ, et al.,

- 3. L. Bremness, "The Complete Book of Herbs", Dorling Kindersley, London, 1995.
- 4. C. Shuya, C. Xingguo and H. Zhide, Biomed. Chromatogr. 17, 477-482 (2003).
- T. Baytop, "Therapy with Medicinal Plants in Turkey (Past and Present)", p. 163, Nobel Tip Kitabevi, İstanbul, 1996.
- 6. C.H. Brieskorn and R. Ahlborn, Tetrahedron Lett. 41, 4037-4038 (1973).
- 7. P. Eigtved, S.R. Jensen and B.J. Nielsen, Acta Chem. Scand. B 28, 85-91 (1974).
- 8. A. Agostini, M. Guiso, R. Marini-Bettolo and G. Martinazzo, Gazz. Chim. Ital. 112, 9-12 (1982).
- 9. S. Damtoft, Phytochemistry 31, 175-178 (1992).
- 10. A. Bianco, C. Melchioni, A. Ramunno and M. Serafini, Nat. Prod. Res. 17, 225-227 (2003).
- K.I. Alipieva, R.M. Taskova, L.N. Evstatieva, N.V. Handjieva and S.S. Popov, Phytochemistry 64, 1413-1417 (2003).
- 12. K.I. Alipieva, R.M., Taskova, S.R. Jensen and N.V. Handjieva, Biochem. Syst. Ecol. 34, 88-91 (2006).
- 13. J.B. Harborne, Phytochemistry 6, 1569-1573 (1967).
- 14. J. Budzianowski and L. Skrzypczak, Phytochemistry 38, 997-1001 (1995).
- 15. V. Roussis, I. Chinou, D. Perdetzoglou and A. Loukis, J. Essent. Oil. 8, 291-293 (1996).
- 16. T. Savchenko, M., Blackford, S.D. Sarker and L. Dinan, Biochem. Syst. Ecol. 29, 891-900 (2001).
- M. Kory, V. Hodisan, S. Toader and P. Gugu, Clujul Med. 55, 156-160 (1982); Chem. Abstr. 98, 46480 (1983).
- 18. S.D. Sarker, L. Dinan, V. Şik and H. Rees, Phytochemistry 45, 1431-1433 (1997).
- 19. S. Damtoft and S.R. Jensen, Phytochemistry 39, 923-924 (1995).
- 20. A. Bianco, P. Passacantilli, G. Polidori, M. Nicoletti and I. Messana, Gazz. Chim. Ital. 113, 829-834 (1983).
- 21. C.A. Boros and F.R. Stermitz, J. Nat. Prod. 53, 1055-1147 (1990).
- 22. T. Ersöz, W. Sühly, S. Popov, N. Handjieva, O. Sticher and İ. Çalış, Nat. Prod. Lett. 15, 345-351 (2001).
- 23. C.-Z. Zhang, C. Li, S.-I. Feng and J.-G. Shi, Phytochemistry 30, 4156-4158 (1991).
- 24. T.A. Foderaro, F.R. Stermitz and H. Hope, Tetrahedron Lett. 33, 2953-2954 (1992).
- 25. T.A. Foderaro and F.R. Stermitz, Phytochemistry 31, 4191-4195 (1992).
- 26. R.E. Krull and F.R. Stermitz, Phytochemistry 49, 2413-2415 (1998).
- 27. R.E. Krull, F.R. Stermitz, H. Franzyk and S.R. Jensen, Phytochemistry 49, 1605-1608 (1998).
- A. Delazar, M. Byres, S. Gibbons, Y. Kumarasamy, M. Modarresi, L. Nahar, M. Shoeb and S.D. Sarker, J. Nat. Prod. 67, 1584-1587 (2004).
- 29. H. Franzyk, S.R. Jensen and F.R. Stermitz, Phytochemistry 49, 2025-2030 (1998).
- 30. D. Taşdemir, L. Scappoza, O. Zerbe, A. Linden, İ. Çalış and O. Sticher, J. Nat. Prod. 62, 811-816 (1999).
- 31. S.R. Jensen, İ. Çalış, C.H. Gotfredsen and I. Søtofte, J. Nat. Prod. 70, 29-32, (2007).
- 32. N. Wink and M. Kaufmann, Bot. Acta 109, 139-148 (1996).