Synthesis, Characterization, and Biocidal Studies of the Newly Synthesized Di- and Triorganotin(IV) Complexes with *n*-Butylhydrogen Phthalate

Sadiq-ur-REHMAN¹, Saqib ALI^{1*}, Saira SHAHZADI¹, Abdul MALIK² and Ejaz AHMED²

¹Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad-PAKISTAN ²HEJ Research Institute of Chemistry, University of Karachi, 75270 Karachi-PAKISTAN e-mail: drsa54@yahoo.com

Received 06.12.2006

Di-(1, 3, 8) and triorganotin(IV) complexes (2, 5, 7) with the general formula $R_n SnL_{4-n}$, where R = Me, Et, *n*-Bu, *n*-Oct, Ph, and Bz, and $L = the n-C_4H_9OCOC_6H_4COO^-$ monoanionic ligand have been synthesized by the reaction of the silver salt of the *n*-butylhydrogen phthalate with di- and triorganotin chloride in dry chloroform. However, di-*n*-butyl- and di-*n*-octyltin(IV) derivatives (4 and 6, respectively) were synthesized by the reaction of the corresponding organotin(IV) oxide with *n*-butylhydrogen phthalate in dry toluene. All the synthesized complexes were characterized by elemental analysis, FT-IR, multinuclear (¹H, ¹³C, ¹¹⁹Sn) NMR, and mass spectrometric techniques to assess the binding mode of the *n*-butylphthalate (*n*-C₄H₉OCOC₆H₄COO⁻) anion. The diorganotin(IV) derivatives were found to adopt distorted octahedral and triorganotin(IV) *n*-butylphthalates and to have linear, polymeric trigonal bipyramidal structures in which *n*-butylphthalate is a monoanionic bidentate coordinating through the C(O)O group. The biocidal activity and LD₅₀ values of the synthesized compounds are also reported. Some complexes exhibited good activity comparable to that of standard drugs. Furthermore, triorganotin(IV) derivatives exhibited significantly better activity than the diorganotin(IV) derivatives.

Key Words: Organotin(IV) complexes, *n*-butylhydrogen phthalate, spectral characterization, biological activity.

Introduction

Tin(IV) is known to form stable complexes with oxygen, sulfur-, carbon-, and nitrogen-containing ligands.¹ Organotin(IV) compounds of oxygen and nitrogen donor ligands are well known for their biological activity.²⁻⁴ Moreover, some tin complexes are also known to exhibit anti-bacterial and anti-tumor activity.^{1,4,5} Recently, particular attention has again been given to triorganotin(IV) derivatives because of their strong in vitro anti-fungal activity against some medically important fungi.⁶ In view of the well-known industrial

 $^{^{*} {\}rm Corresponding} \ {\rm author}$

applications⁷⁻⁹ and biocidal properties of organotin(IV) compounds, we are continuously involved in the preparation and characterization of the organotin(IV) carboxylates.¹⁰⁻¹³ In the present work, we report the synthesis, properties, and in vitro biological activity of the di- and triorganotin(IV) complexes of *n*-butylhydrogen phthalate (Figure 1).

Figure 1. Numbering scheme of *n*-butylhydrogen phthalate.

Experimental

Materials and instrumentation

Di- and triorganotin(IV) chlorides/oxides were supplied by Aldrich, Fluka, or Alfa-Aesar chemical companies, and were used without further purification. Dibenzyltin dichloride¹⁴ and the ligand acid *n*butylhydrgenphthalate¹⁵ were prepared by previously reported methods. Organic solvents were obtained from Merck (Germany) and dried in situ using standard procedures.¹⁶ Melting points were determined in capillary tubes using a Mitamura Riken Kogyo MPD (Japan) electrothermal melting point apparatus. The elemental analyses were performed on a CE Instrument model EA 1110 (Italy) organic elemental analyzer. Infrared (IR) spectra in the range of 4000-400 cm⁻¹ were recorded as neat liquids, using KBr cells or KBr pellets (for solid compounds), on a Bio-Rad Excalibur FT-IR model FTS 300 MX spectrometer (USA). The ¹H, ¹³C, and ¹¹⁹Sn-NMR spectra were recorded on a Bruker ARX 250-FT NMR spectrometer (Germany) using CDCl₃ as an internal reference [¹H (CDCl₃ = 7.24; ¹³C (CDCl₃) = 77.0]. ¹¹⁹Sn-NMR spectra were obtained with Me₄Sn as an external reference [Ξ (¹¹⁹Sn) = 37.290665]. Mass spectral data were recorded on a Finnigan MAT 8500 mass spectrometer (Germany).

Synthesis

Organotin(IV) complexes

Methyl-, ethyl-, tri-n-butyl-, triphenyl, and dibenzyltin(IV) complexes (1-3, 5, 7, and 8) were synthesized by heating at reflux for 6-8 h the corresponding diorganotin dichloride (3.04 mmol) or triorganotin chloride (6.08 mmol) with the silver salt of n-butylhydrogen phthalate (2.0 g, 6.08 mmol) in 1:2 and 1:1 molar ratios, respectively, in dry chloroform (60 mL), contained in a 250-mL 2-necked round-bottom flask fitted with a water condenser and a magnet bar (Eqs. (1) and (2)). It was placed overnight at room temperature. The silver chloride (AgCl) formed was then filtered off and the solvent was evaporated under reduced pressure.

Di-n-butyl- and di-n-octyltin(IV) derivatives (4 and 6) were prepared by the condensation of n-butylhydrogen phthalate (2.0 g, 9.01 mmol) in 2:1 molar ratio by heating at reflux temperature for 8-10 h

with di-*n*-butyl- (1.12 g, 4.51 mmol) and di-*n*-octyltin(IV) oxide (1.63 g, 4.51 mmol), respectively, in toluene (80 mL), using a Dean and Stark apparatus (Eq. (3)). The water formed was removed intervally and the solvent was rotary evaporated.

Results and Discussion

The reactions of R_2SnCl_2 and R_3SnCl with the silver salt of *n*-butylhydrogen phthalate (**AgL**) were carried out in 1:2 and 1:1 molar ratios in dry chloroform, respectively. Di-*n*-butyl- and di-*n*-octyltin(IV) derivatives (**4** and **6**) were synthesized by the reaction of (**HL**) with di-*n*-butyl- and di-*n*-octyltin(IV) oxide in 1:2 molar ratios, respectively, in dry toluene using a Dean and Stark apparatus. The ligand acid, *n*-butylhydrogen phthalate (**HL**), was prepared by refluxing a mixture of phthalic anhydride and 1-butanol (dry and in excess) for 4 h, as given in Scheme 1.¹⁵ The composition of the complexes and nature of bonding were elucidated by spectroscopic methods.

All the newly synthesized compounds are crystalline solids, excluding dimethyl-, diethyl-, tri-*n*-butyl-, di-*n*-octyl-, and dibenzyltin(IV)-di-*n*-butylphthalate. They are air stable and soluble in all common organic solvents. These compounds were characterized by elemental analysis, IR spectroscopy, multinuclear NMR (¹H, ¹³C, and ¹¹⁹Sn), and mass spectrometry in order to determine their structures and explore other properties. All the investigated complexes were additionally screened for their biological activity and cytotoxicity. The physical data are given in Table 1.

Comp. No.	Compound (Formula Weight)	M.P. °C	Yield (%)	%C Calc. (Found)	%H Calc. (Found)
(1)	$\begin{array}{c} Me_{2}SnL_{2}\\ C_{26}H_{32}O_{8}Sn\\ (591) \end{array}$	Liquid	80.7	52.79 (52.77)	5.41 (5.47)
(2)	$\begin{array}{c} Me_{3}SnL\\ C_{15}H_{22}O_{4}Sn\\ (385) \end{array}$	118-120	91.0	46.75 (46.77)	5.71 (5.80)
(3)	$\begin{array}{c} Et_2 SnL_2 \\ C_{28} H_{36} O_8 Sn \\ (619) \end{array}$	Viscous Liquid	80.0	54.28 (54.30)	5.82 (5.77)
(4)	$n-\mathrm{Bu}_2\mathrm{SnL}_2$ $\mathrm{C}_{32}\mathrm{H}_{44}\mathrm{O}_8\mathrm{Sn}$ (675)	115-117	88.9	56.89 (56.91)	6.52 (6.60)
(5)	$\begin{array}{c} n\text{-}Bu_3\text{SnL}\\ \text{C}_{24}\text{H}_{40}\text{O}_4\text{Sn}\\ (511)\end{array}$	Liquid	84.8	56.36 (56.29)	7.83 (7.88)
(6)	$n-Oct_2SnL_2$ $C_{40}H_{60}O_8Sn$ (787)	Liquid	78.9	60.99 (60.97)	7.62 (7.58)
(7)	$\begin{array}{c} Ph_{3}SnL\\ C_{30}H_{28}O_{4}Sn\\ (571)\end{array}$	127-129	77.5	63.05 (63.10)	4.90 (4.87)
(8)	$\begin{array}{c} Bz_{2}SnL_{2}\\ C_{38}H_{40}O_{8}Sn\\ (743)\end{array}$	Viscous Liquid	70.6	61.37 (61.41)	5.38 (5.40)

Table 1. Physical data of the synthesized organotin(IV) derivatives of *n*-butylhydrogen phthalate.^a

^aIn all other tables the formulation and number of the compounds are the same as given in this table.

Infrared Spectra

IR spectra of the investigated compounds, ligand acid, and its silver salt were recorded as KBr pellets or neat liquids in the range of 4000-400 cm⁻¹. Determining the coordinating behavior of the ligand (n-C₄H₉OCOC₆H₄COO⁻) with the di- and triorganotin(IV) moieties can be facilitated by comparing the IR spectra of the free acid to its silver salt and the synthesized organotin(IV) compounds. The absorption frequencies assigned to ν_{asym} (COO), ν_{sym} (COO), and ν (C=O) for the free ligand acid, its silver salt, and the synthesized compounds are reported together with bands assigned to ν (Sn-C) and ν (Sn-O) in Table 2.¹⁷ The absorption bands in the range of 1730-1719 cm⁻¹ can most likely be attributed to the C=O stretching vibration of the ester group of the ligand moiety (n-C₄H₉OCOC₆H₄COO⁻) and confirms the assessment that there is no participation of the ester group (C=O) in the bond formation with tin atoms. This evidence predicts the conclusion that the sharp absorption band at 1697 cm⁻¹ is due to carboxyl, ν (COO), stretching and that the band at 1721 cm⁻¹ is the absorption frequency of the ester group, ν (C=O), which contradicts an earlier report.¹⁵ However, this approach is supported by the observation that the ν (C=O) band occurs almost at the same position in the investigated complexes. Moreover, absorption bands in the ranges of 481-456 cm⁻¹ and 591-538 cm⁻¹, assigned to Sn-O and Sn-C bonds, respectively, also support the formation of the complexes.¹⁷

Comp No.	v(C	00)	A.,	₩(C = O)		
Comp. No.	Asym.	Sym.	Δν	V(C=0)	v(Sn–C)	V(Sn–O)
(1)	1599 s	1379 s	220	1726 s	531 w	474 w
(2)	1578 s	1404 s	174	1725 s	549 w	465 m
(3)	1593 s	1370 s	223	1723 s	586 w	468 w
(4)	1578 s	1377 s	201	1727 s	538 w	457 w
(5)	1598 s	1401 m	197	1726 s	591 w	470 w
(6)	1593 s	1382 s	211	1730 s	577 w	469 m
(7)	1582 s	1406 s	176	1727 s	_	481 w
(8)	1597 s	1411 s	186	1719 s	575 m	456 w
HL (Acid)	1697 s	1413 s	284	1721 s	_	_
AgL	1608 s	1383 s	225	1724 s	-	-

Table 2. Infrared data (cm^{-1}) of organotin(IV) derivatives of *n*-butylhydrogen phthalate.^{*a*}

as = strong, m = medium, w = weak.

The IR stretching vibration frequencies of the carboxyl groups $[(\nu_{asym}(\text{COO}) \text{ and } \nu_{sym}(\text{COO})]$ in organotin(IV) carboxylates are important and may help to elucidate the structures and the bonding mode of the ligands.⁴⁻⁷ When the structure changes to a higher symmetric structure, the $\nu_{asym}(\text{COO})$ frequencies shift to a lower and the $\nu_{sym}(\text{COO})$ frequencies to a higher symmetric structure, $\nu\nu$ causing the $\Delta\nu$ value to decrease.^{4,9,10} Thus, a marked decrease in the $\Delta\nu$ value $[\Delta\nu = \nu_{asym}(\text{COO})\nu_{sym}(\text{COO})]$ was observed in all the complexes compared to the corresponding free acid and its silver salt. These results suggest that the tin atom in each of the di- and triorganotin(IV) species approaches 6- and 5-coordination, respectively. Referring to the literature,¹¹ the geometry of the tin atom in the diorganotin(IV) carboxylates is based on skew-trapezoidal bipyramidal geometry (Figure 2 a, b), although triorganotin(IV) carboxylates are known to adopt a variety of motifs in the solid state (Figure 2 c-e).^{11,12} However, in the same way,¹¹ it is likely that the triorganotin(IV) species can form linear polymers, as commonly found for triorganotin(IV) carboxylates, with bidentate ligands leading to *trans*-R₃SnO₂ geometry for tin (Figure 2 e). In conclusion, IR data ($\Delta\nu$) suggest a bidentate coordination of the COO group to tin atoms for carboxylate ligands in the solid state.

Figure 2. Proposed structures (a) for diorganotin(IV) derivatives (b) and for triorganotin(IV) carboxylates (c-e).

Multinuclear NMR

¹H-NMR data

¹H-NMR spectra for the synthesized compounds and free acids were recorded in $CDCl_3$ solution and the data are given in Table 3.

(8) Bz ₂ SnL ₂	4.59-7.66 (m)	7.41-7.51 (m)	7.41-7.51 (m)	7.77 (d, 6.6)	4.26 (t, 6.5)	1.61-1.69 (m)	1.22-1.40 (m)	0.86 (t, 7.3)	Ι	7.17-7.35 (m)	7.17-7.35 (m)	7.01-7.13 (m)	Ι	Ι	3.57 (s)	
(7) Ph ₃ SnL	7.50-7.58 (m)	7.36-7.42 (m)	7.36-7.42 (m)	7.82-7.85 (m)	3.56 (t, 7.0)	1.36-1.49 (m)	1.10-1.19 (m)	0.95 (t, 7.6)	Ι	7.27-7.33 (m)	7.27-7.33 (m)	6.77-7.11 (m)	Ι	Ι	Ι	- 1-1
$(6) \\ n-\operatorname{Oct}_{3}\operatorname{SnL}_{2}$	7.38-7.44 (m)	7.32-7.34 (m)	7.32-7.34 (m)	7.74 (bs)	4.20 (t, 6.5)	1.55-1.61 (m)	1.21-1.29 (m)	0.79 (t, 7.2)	1.75-1.91 (m)	1.75-1.91 (m)	I	I	1.10 (bs)	0.73 (t, 6.0)	Ι	-
(5) n-Bu ₃ SnL	7.45-7.52 (m)	7.28-7.32 (m)	7.28-7.32 (m)	7.65-7.71 (m)	4.17 (t, 8.1)	1.54-1.56 (m)	1.23-1.26 (m)	0.78 (t, 7.9)	1.54-1.56 (m)	1.23-1.26 (m)	1.23-1.26 (m)	0.83 (t, 8.7)	-	Ι	-	
(4) $n-\mathrm{Bu}_{2}\mathrm{SnL}_{2}$	7.50-7.56 (m)	7.28-7.35 (m)	7.41 <i>-7.47</i> (m)	7.67-7.72 (m)	4.15 (t, 6.6)	1.66-1.79 (m)	1.25-1.34 (m)	0.76 (t, 6.7)	1.53-1.60 (m)	1.46-1.52 (m)	1.12-1.22 (m)	0.79 (t, 6.6)	-	Ι	Ι	
$(3) \\ \mathrm{Et}_{s}\mathrm{SnL}_{s}$	7.47-7.50 (d, 6.85	7.35-7.42 (m)	7.35-7.42 (m)	7.48 (d, 6.6)	4.18 (t, 6.6)	1.50-1.61 (m)	1.22-1.34 (m)	0.77 (t, 7.3)	1.70 (q, 7.8)	1.26 (t, 7.8)	Ι	I	-	I	-	
(2) Me ₃ SnL	7.46-7.51 (m)	7.34-7.41 (m)	7.34-7.41 (m)	7.66-7.71 (m)	4.18 (t, 6.7)	1.55-1.64 (m)	1.24-1.42 (m)	0.85 (t, 7.3)	0.54 (s, 56.8, 58.6)	I	Ι	I	I	Ι	I	· mil min · · · · · · ·
(1) $Me_{\gamma}SnL_{\gamma}$	7.48-7.55 (m)	7.30-7.35 (m)	7.30-7.35 (m)	7.66-7.69 (m)	4.09 (t, 8.0)	1.54-1.76 (m)	1.03-1.29 (m)	0.77 (t, 7.2)	1.13 (s, 74.1)	I	Ι	I	I	Ι	I	#117/119cs 1113 2 1119c
(HL) Acid	7.56-7.60 (m)	7.40-7.51 (m)	7.40-7.51 (m)	7.76-7.80 (m)	4.23 (t, 6.6)	1.55-1.67 (m)	1.25-1.40 (m)	0.82 (t, 7.3)	I	I	I	I	Ι	Ι	Ι	2. 2. 2.
H ¹ No.	4	5	6	7	6	10	11	12	α	β	λ	δ	$\gamma - \gamma$	8′	α^*	

Table 3. ¹H NMR data of organotin (IV) derivatives of n-butylhydrogen phthalate. $a^{a,b,c}$

Sn-

Sn-

ರ

Ś'n

Sn

Sn-CH₃ ಶ

Synthesis, Characterization, and Biocidal Studies of..., S.-ur-REHMAN, et al.,

^aChemical shifts (δ) in ppm. ²J^{[17/119}Sn,¹HJ, ²J^{[19}Sn,¹HJ, and ³J^{[1}H, ¹H], in Hz, are listed in parentheses. Multiplicity is given as s = singlet, bs = broad signal, d = doublet, t = triplet, q = quartet, and m = multiplet. ^bNumbering is according to Figure 1. c

¹H-NMR data of the *n*-butylhydrogen phthalate (**HL**) were assigned according to an earlier report.¹⁸ The CH₂ (9) and CH₃ (12) protons of the ligand moiety resonate as a triplet at 4.23 and 0.82 ppm, with ${}^{3}J[{}^{1}\text{H}, {}^{1}\text{H}] = 6.6$ and 7.3 Hz, while CH₂ (10) and CH₂ (11) are multiplets in the range of 1.55-1.67 and 1.25-1.40 ppm, respectively. The analogous pattern of the ¹H signals at rather similar positions for the ligand was observed in almost all the investigated compounds.

The CH₃ protons of dimethyl- and trimethyltin(IV) derivatives (1 and 2) appear as sharp singlets at 1.13 and 0.54 ppm, both with well-defined satellites, ${}^{2}J[{}^{119}Sn, {}^{1}H] = 74.1$ and 58.6 Hz. The α -CH₂ protons of the diethyltin(IV) compound resonate as a quartet at 1.70 ppm and have a well-resolved coupling constant, ${}^{3}J[{}^{1}H, {}^{1}H] = 7.8$ Hz, whereas β -CH₃ protons resonate as a triplet at 1.26 ppm with ${}^{3}J[{}^{1}H, {}^{1}H] = 7.8$ Hz. The protons of *n*-butyltin and of the phenyl moieties of the triphenyltin(IV) derivatives show a complex pattern and were assigned according to the literature; 18,19 however, δ -CH₃ protons of both di-*n*-butyl- and tri-*n*-butyltin(IV) moieties of compounds 4 and 5 appear as a triplet at 0.79 and 0.83 ppm, with ${}^{3}J[{}^{1}H, {}^{1}H] = 6.6$ and 8.7 Hz, respectively, while the α -CH₂, β -CH₂ and γ -CH₂ protons appear as multiplets.

Similarly, the α -CH₂ and β -CH₂ protons of the *n*-octyltin(IV) derivative **6** give a multiplet at 1.75-1.91 ppm and γ -CH₂ to γ /-CH₂ protons appear as a broad signal at 1.10 ppm, which are consistent with those calculated by the incremental method.²⁰ However, the δ /-CH₃ protons resonate as a triplet at 0.73 ppm with ³J[¹H,¹H] = 6.0 Hz.

In the dibenzyltin(IV) complex a complex pattern is also observed due to the aromatic protons of the ligand and phenyl groups, whereas the α^* -CH₂ protons of the benzyl moiety show a singlet at 3.57 ppm.

Various methods have been applied to calculate the C-Sn-C bond angles in solution based on ${}^{2}J[{}^{119}Sn,{}^{1}H]$ coupling constants as given in Table 5. ${}^{21-23}$ The coupling constants and the calculated C-Sn-C bond angles support a 5-coordinated geometry for the diorganotin and a 4-coordinated one for the triorganotin(IV) carboxylates in non-coordinating solvents. 22,23

¹³C-NMR data

¹³C-NMR data taken from the CDCl₃ solution of the ligand acid (**HL**) and its di- and triorganotin(IV) derivatives are given in Table 4.

The ¹³C-NMR spectral data for the R groups attached to the tin atom, where R = Me, Et, *n*-Bu, *n*-Oct, Ph, and Bz, were assigned by comparison to related analogues as model compounds.^{18,5,24–26} The assignment of the ¹³C resonances associated with the carboxylate ligand is based on comparison to the results obtained from the incremental methods²⁷ and earlier reports.¹⁵

The magnitudes for ${}^{n}J[{}^{119}\text{Sn}, {}^{13}\text{C}]$ coupling were also observed and are given in Table 4. The coupling constants, ${}^{n}J[{}^{119}\text{Sn}, {}^{13}\text{C}]$, are important parameters for the determination of C-Sn-C bond angles (Table 5) and structure characterization of organotin(IV) compounds. For triorganotin compounds, the magnitudes of ${}^{1}J[{}^{119}\text{Sn}, {}^{13}\text{C}]$ coupling suggest the typical tetrahedral geometry around the tin atom in solution, 18,28,29 while diorganotin dicarboxylates in non-coordinating solvents may acquire penta-coordinated geometry around the tin atom. 30,31

		(U)	6	(3)	Ŵ	(E)	(6)		(0)
13 C NO		(1)	(7)	(c)	(t	(c)	0)	(\mathbf{r})	(0)
	Acid	Me_2SnL_2	Me_3SnL	Et_2SnL_2	$n-Bu_2SnL_2$	$n-Bu_3SnL$	$n-\text{Oct}_2\text{SnL}_2$	Ph_3SnL	Bz_2SnL_2
1	176.66	172.22	172.75	175.27	177.11	172.79	176.73	175.64	173.32
2	130.75	130.24	133.80	130.91	129.13	133.91	131.63	130.18	131.00
ю	134.41	131.29	133.93	134.55	132.40	134.26	134.75	134.13	134.20
4	129.53	128.44	128.94	129.12	128.0	128.71	128.88	129.49	129.58
5	133.03	133.15	131.34	132.69	133.75	131.15	132.19	133.95	132.97
9	131.57	132.18	131.24	131.38	130.23	130.96	131.03	132.27	131.71
7	130.53	130.46	130.28	130.66	129.65	130.29	130.58	130.93	130.59
8	169.08	167.13	169.59	169.23	168.18	169.45	168.89	168.38	169.21
6	66.68	65.24	66.21	66.56	65.31	65.96	66.18	65.65	66.78
10	31.21	31.68	31.42	31.25	30.49	31.42	31.39	31.16	31.26
11	19.97	21.83	20.06	19.94	19.08	20.00	19.97	19.68	20.02
12	14.48	13.73	14.61	14.49	13.56	14.41	14.48	14.54	14.57
5		6.82	-1.41	19.94	25.53	17.49	26.69	130.07	136.12
ά	Ι	(536.6)	(382.7, 394.4)	(517.6, 544.1)	(517.6, 543.7)	(345.5, 365.4)	(476.7)	10.001	(78.5)
β	Ι	-	-	9.90(41.9)	26.64 (21.3)	28.62 (21.3)	25.42 (31.0)	136.72	131.88
λ	Ι		-	I	26.36 (69.9)	27.87 (65.4)	34.21 (92.9)	129.17	129.68
8	Ι	-	-	I	13.48	14.41	29.97	128.43	126.00
α,	Ι	Ι	Ι	Ι	Ι	Ι	29.90	Ι	-
β,	Ι	-	Ι	I	I	-	32.61	I	I
٨	Ι	-	-	I	I	Ι	23.40	I	Η
8	Ι	-	-	I	I	I	14.82	I	I
*2									39.56
'n	I	I	Ι	-	I	-	I	I	(604.3)
δ^{-119} Sn	Ι	-290.29	141.73	-135.79	-140.72	110.48	-141.50	-109.75	-227.72

Table 4. $^{13}\mathrm{C}$ NMR data of organotin (IV) derivatives of n-butylhydrogen phthalate. a,b,c

^aChemical shifts (δ) in ppm. ^a $J^{117/19}$ Sn,¹³C] and ^a J^{119} Sn,¹³C], in Hz, are listed in parentheses. ^bNumbering is according to Figure 1. ^cSee foomotes of Table 3 for α , β , γ , δ , α^* , β^* .

Comp No	Compound	$1 u^{119} \text{Sp} {}^{13} \text{Cl} (\text{Hz})$	$2 I I^{119} S p^{-1} H I (Hz)$	Ang	le (°)
Comp. No.	Compound	J[SII, C](HZ)	$J[$ SII, $\Pi](\Pi Z)$	^{1}J	^{2}J
(1)	Me ₂ SnL ₂	536.6	74.1	123.8	124.0
(2)	Me ₃ SnL	394.4	58.6	111.4	111.3
(3)	Et_2SnL_2	544.1	_	129.1	-
(5)	<i>n</i> -Bu ₃ SnL	365.4	_	111.3	_
(6)	n-Oct ₂ SnL ₂	476.7	_	122.4	_

Table 5. C-Sn-C angles (°) based on NMR parameters of selected $\operatorname{organotin}(IV)$ derivatives of *n*-butylhydrogen phthalate.

¹¹⁹Sn-NMR data

The ¹¹⁹Sn-NMR spectra were recorded as CDCl₃ solution, a non-coordinating solvent, and the data obtained are reported in Table 4. The ¹¹⁹Sn chemical shift values obtained for the triorganotin(IV) derivatives lie in the range expected for a tetrahedral geometry, whereas the diorganotin(IV) compounds indicate a higher coordination number.³¹

To obtain some more information about the possible coordination geometries in solution, the ${}^{1}J[{}^{119}Sn, {}^{1}Sn]$ and ${}^{2}J[{}^{119}Sn, {}^{1}H]$ coupling constants were used for the enumeration of C-Sn-C bond angles, using methods described in the literature, ${}^{21-23}$ and are summarized in Table 5. For the tri-*n*-butyltin(IV) derivative, the ${}^{1}J[{}^{119}Sn, {}^{13}C]$ value was 365.4 Hz, and by the use of the Holeček and Lycka equation 32,33 established for tetra-, penta-, and hexa-coordinated butyltin(IV) compounds, the C-Sn-C bond angle –value of 111.3° was calculated, which corresponds to a quasi-tetrahedral geometry in CDCl₃ solution. The geometric data calculated, as just described, are consistent with tetrahedral geometries for the triorganotin(IV) species, i.e. monomers in solution. For the diorganotin(IV) species, for which earlier results indicate 5-coordination, the calculated C-Sn-C angles are consistent with skew-trapezoidal bipyramidal geometries, with the lower apparent coordination number arising from the asymmetric coordination mode of the carboxylate ligands.

Mass spectrometric data

The molecular ion peak was not observed for either the di- or triorganotin(IV) complexes. In all of the investigated compounds (1-8), the base peak is due to the ligand moiety, $[OCH(C_6H_4)COO]^+$ or $[C_4H_9OCH_2OH]^+$, with m/z = 149 and 104, respectively,.

In diorganotin(IV) derivatives, the primary fragmentation is due to the loss of the ligand (R"COO), while the secondary fragmentation occurs through elimination of hydrogen (H) or CO₂, or simply involves loss of the ligand (R"COO). Tertiary fragmentation occurs via cleavage of the ligand or the ligand moiety (R') and gives the fragments [RSnR"]⁺ and [R₂Sn]⁺, respectively, which is followed by elimination of R or R", ending at [Sn]⁺ (m/z = 120).

In triorganotin(IV) carboxylates, the primary fragmentation is due to the loss of the R'COO group, followed by successive cleavage of R groups, ending at $[Sn]^+$. A second fragmentation pathway is characterized by the loss of the R group in primary fragmentation, followed by liberation of CO₂. The secondary and tertiary fragmentations involve the loss of R or R', and end at $[Sn]^+$. This route is much more probable than the first one. The most common fragments, together with their m/z ratios and relative abundances, are given in Tables 6 and 7.

Table 6. Fragmentation pattern and relative abundance of diorganotin(IV) derivatives of n-butylhydrogen phthalate.

Fragment Ions	(1) [m/z(%)] R=CH ₃	(3) [m/z(%)] R=C ₂ H ₅	(4) [m/z(%)] R=n-C ₄ H ₉	(6) [m/z(%)] $R=n-C_8H_{17}$	(8) [m/z(%)] R=C ₆ H ₅ CH ₂
$[R_2Sn(OCO(C_6H_4)COOC_4H_9)_2]^+$	_	-	_	-	-
$[RSn(OCO(C_6H_4)COOC_4H_9)_2]^+$	_	591(6)	619(57)	675(4)	_
$[R_2SnOCO(C_6H_4)COOC_4H_9]^+$	_	-	399(30)	455(58)	567(5)
$[R(R')Sn(OCO(C_6H_4)COOC_4H_9]^+$	_	355(1)	411(2)	523(3)	_
$[SnC_6H_4COOC_4H_9]^+$	297(4)	297(5)	297(49)	297(4)	297(6)
$[R_2Sn]^+$	150(47)	178(3)	234(12)	346(11)	302(2)
$[RSnR']^+$	149(80)	177(13)	233(31)	345(8)	301(4)
$[RSn]^+$	135(13)	149(13)	177(53)	233(24)	211(6)
[SnR'] ⁺	134(3)	148(16)	176(16)	232(8)	210(4)
$[Sn]^+$	120(6)	120(4)	120(22)	120(4)	120(5)
$[C_4H_9OOC(C_6H_4)COOH]^+$	222(2)	222(1)	222(5)	-	_
$[C_4H_9OOC(C_6H_4)COO]^+$	221(3)	221(7)	221(9)	-	221(2)
$[OCH(C_6H_4)COO]^+$	149(100)	149(13)	149(98)	149(39)	149(100)
[C ₄ H ₉ OCH ₂ OH] ⁺	104(40)	104(100)	104(100)	104(100)	104(84)
$[C_6H_5CH_2]^+$	_	-	_	-	91(89)
$[CH_3(CH_2)_2CH_2]^+$	57(83)	57(6)	57(95)	57(51)	57(88)
$[C_4H_2]^+$	50(11)	50(20)	50(85)	_	50(80)

^aR' = CH₂, C₂H₅, *n*-C₄H₉, *n*-C₈H₁₇, C₇H₇.

Fragment Ions	(2) [m/z(%)] R=CH ₃	(5) [m/z(%)] R=n-C ₄ H ₉	(7) [m/z(%)] R=C ₆ H ₅
$[R_3SnOCO(C_6H_4)COOC_4H_9]^+$	386(n.o)	512(n.o)	572(n.o)
$[R_2SnOCO(C_6H_4)COOC_4H_9]^+$	371(67)	455(83)	495(1)
$[R_2SnC_6H_4COOC_4H_9]^+$	327(5)	-	451(5)
$[RSnC_6H_4COOC_4H_9]^+$	312(12)	-	-
$[SnC_6H_4COOC_4H_9]^+$	297(7)	297(6)	297(2)
$[R_3Sn]^+$	165(74)	291(3)	351(3)
$[R_2Sn]^+$	150(61)	234(18)	274(1)
[RSn] ⁺	135(63)	177(50)	197(15)
[Sn] ⁺	120(43)	120(7)	120(9)
$[C_4H_9OOC(C_6H_4)COOH]^+$	222(45)	222(3)	-
$[C_4H_9OOC(C_6H_4)COO]^+$	221(59)	221(4)	-
$[OCH(C_6H_4)COO]^+$	149(100)	149(100)	149(100)
$[C_6H_5]^+$	-	-	77(47)
$[CH_3(CH_2)_2CH_2]^+$	57(28)	57(43)	57(50)
$[C_4H_2]^+$	50(30)	_	50(60)

Table 7. Fragmentation pattern and relative abundance of triorganotin(IV) derivatives of n-butylhydrogen phthalate.

Biological activity

Biological screening tests for the synthesized complexes were carried out against various bacteria and fungi by the agar well diffusion and tube diffusion methods, respectively^{34,35}. The results are given in Tables 8 and 9.

The results show that tri-*n*-butyltin(IV) is potent against *Bacillus subtilis* and *Staphlococcus aureus*, and that it exhibits moderate activity against *Pseudomonas aeruginosa*. The other investigated compounds showed either low or no activity, including the ligand acid (Table 8). It is well established that tri-*n*-butyltin compounds are significantly more biologically active than other classes of alkyltin species.³⁶

Ref.	Drug	30	31	33	43	25	41
	(HL)	I	Ι	I	Ι	I	I
	(8)	I	-	I	Ι	12	I
	(7)	I	15	I	6	11	11
(mm)	(9)	I	6	I	I	11	11
of Inhibition	(5)	I	22	I	20	11	I
Zone o	(4)	I	13	I	15	14	I
	(3)	I	I	10	I	I	10
	(2)	Ι	-	I	Ι	I	I
	(1)	I	6	I	I	11	I
Clinical Imalization		Infection of wounds, urinary tract and dysentery	Food poisoning	Blood diarrhea with fever and severe prostration	Food poisoning, scaled skin syndrome, endocarditis	Infection of wounds, eyes, septicemia	Typhoid fever, localized infection
Nome of Bootenium		Escherichia coli	Bacillus subtilis	Shigella flexenari	Staphlococcus aureus	Pseudomonas aeruginosa	Salmonella typhi

q^{\prime}
$phthalate.^{a}$
of n-butylhydrogen
derivatives
\geq
organotin(I
\mathbf{of}
data
activity
Antibacterial
ò
Table

^aIn vitro, agar well diffusion method, concentration: 1 mg/mL of DMSO. ^bReference drug, imipenum.

Nomo of Dunance				Per	cent Inhibiti	uo				Ctondord Duric	Percent	MIC
Induite of Fungus	(1)	(2)	(3)	(4)	(5)	(9)	(L)	(8)	(HL)	Stalidatu Diug	Inhibition	µg/mL
Trichophyton longifusus	25	80	20	I	85	I	70	I	I	Miconazole	100	70
Candida albicans	Ι	75	25	I	100	I	Ι	I	80	Miconazole	100	110.8
Aspergillus flavus	19	70	30	60	06	40	09	50	06	Amphotericin B	100	20
Microsporum canis	22	06	10	60	95	75	I	06	I	Miconazole	100	98.4
Fusarium solani	Ι	65	25	55	06	I	65	I	09	Miconazole	100	73.25
Candida glaberata	I	I	10	I	I	I	I	Ι	Ι	Miconazole	100	110.8

Table 9. Antifungal activity data of organotin(IV) derivatives of n-butylhydrogen phthalate. a, b

^aConcentration: 200 $\mu g/mL$ of DMSO. ^bMIC = Minimum inhibitory concentration.

The antifungal activity of di- and triorganotin(IV) derivatives is given in Table 9, which shows that the triorganotin(IV) carboxylates are more active than the diorganotin(IV) derivatives.^{18,36} Furthermore, tri-n-butyltin(IV) complex showed the same activity as the reference drug (miconazole) against *Candida albicans*. The ligand acid also exhibits good activity, though only against *Candida albicans*. Thus, activity of the compounds against various fungi was observed to decrease in the following order: 5 > 2 > 7 > 3 > $4 > 8 \sim 6 > 1$ (Table 9).

The synthesized compounds were also evaluated for their cytotoxicity to determine LD_{50} data using the brine-shrimp bioassay lethality method³⁷ (Table 10). It was observed that compounds **2**, **4**, and **7** showed positive lethality, with LD_{50} values of 0.7151, 129.7894, and 83.6901 µg/mL, respectively. Thus, compound **2** was the most toxic and compound **4** was the least toxic of all the synthesized organotin(IV) derivatives. The other compounds, **1**, **3**, **5**, **6**, **8**, and **HL**, did not exhibit cytotoxicity.

Table 10. Cytotoxicity data of organotin(IV) derivatives of *n*-butylhydrogen-phthalate.^{*a,b,c*}

Comp.	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(HL)
LD ₅₀	_	0.7151	-	129.7894	_	_	83.6901	_	_

^aAgainst brine-shrimp, Artemia salina (in vitro).

^bNo cytotoxicity for compounds 1, 2, 5, 6, 8, and HL.

^cReference drug: etoposide.

Acknowledgments

SA is thankful to the Quaid-i-Azam University, Islamabad, Pakistan, for financial support of this work. SR is grateful to the University of Azad Jammu and Kashmir, Muzaffarabad, for the grant of a study leave.

References

- 1. P.J. Smith, "Chemistry of Tin", 2nd Ed. Blackie Academics of Professionals, London (1998).
- L. Tian, Z. Zhon, B. Zhao, H. Sun, W. Yu and P. Yang, Synth. React. Inorg. Met.-Org. Chem. 30, 307 (2000).
- 3. H.L. Sing, M.A. Sharma and K. Varshancy, Synth. React. Inorg. Met.-Org. Chem. 30, 445 (2000).
- K.C. Molly, "The Chemistry of Metal-Carbon Bond, Bio-organotin Compounds", ed. F.R. Hartley, John Wiley, New York (1995).
- S. Shahzadi, M.H. Bhatti, K. Shahid, S. Ali, S.R. Tariq, M. Mazhar and K.M. Khan, Monatsh. Chem. 133, 1089 (2002).
- A. Ruzicka, L. Dostal, R. Jambor, V. Buchta, J. Brus, I. Cisarova and M. Holcapek, J. Appl. Organomet. Chem. 16, 315 (2002).
- S.J. Blunden, P.A. Cusaked and R. Hill, "The Industrial Uses of Tin Chemicals", The Royal Society of Chemistry, London (1985).

- 8. C.J. Evans, "Chemitry of Tin", ed. P.G. Harrison, Blackie, Glasgow (1989).
- 9. Z. Ahmad, H.U. Rehman, S. Ali and M. I. Sarwar, Int. J. Polym. Mater. 46, 547 (2000).
- 10. Sadiq-ur-Rehman, S. Ali, M. Parvez, M. Mazhar and A. Badshah, Heteroatom Chem. 15, 398 (2004).
- Sadiq-ur-Rehman, S. Ali, A. Badshah, A. Malik, E. Ahmed, G.-X. Jin and E.R.T. Tiekink, Appl. Organomet. Chem. 18, 401 (2004).
- Sadiq-ur-Rehman, K. Shahid, S. Ali, M. Mazhar, A. Badshah, G. Eng, X. Song and J. Ryczkowski, Heteroatom. Chem. 16, 175 (2005).
- 13. Sadiq-ur-Rehman, K. Shahid, S. Ali, M.H. Bhatti and M. Parvez, J. Organomet. Chem. 690, 1396 (2005).
- 14. K. Sisido, Y. Takeda and Z. Kingawa, J. Am. Chem. Soc. 83, 538 (1961).
- 15. M. K. Leung and J. M. Frechet, J. Chem. Soc. Perkin Trans. 2, 2329 (1993).
- (a) W.L.F. Armarego and D.D. Perrin, "Purification of Laboratory Chemicals", 5th ed. Pergamon, Oxford (1997). (b) W.L.F. Armarego and C.L.L. Chai, "Purification of Laboratory Chemicals", 5th ed. Butterworth-Heinemann, London, New York (2003).
- 17. G.B. Deacon and R. Phillips, J. Coord. Chem. Rev. 33, 227 (1980).
- M.H. Bhatti, S. Ali, H. Masood, M. Mazhar and S.I. Qureshi, Synth. React. Inorg. Met.-Org. Chem. 30, 1715 (2000).
- S. Ali, F. Ahmad, M. Mazhar, A. Munir and M.T. Masood, Synth. React. Inorg. Met.-Org. Chem. 32, 357 (2002).
- D.H. Williams and I. Fleming, "Spectroscopic Methods in Organic Chemistry", 4th ed. McGraw-Hill Book Company, Ltd., UK (1987).
- 21. T.P. Lockhart, W.F. Manders and E.M. Holt, J. Am. Chem. Soc. 108, 6611 (1986).
- 22. T.P. Lockhart and W. F. Manders, Inorg. Chem. 25, 892 (1986).
- 23. M. Nadvornik, J. Holeček, K. Handlir and A. Lycka, J. Organomet. Chem. 275, 43 (1984).
- 24. F. Ahmed, S. Ali, M. Parvez, A. Munir, M. Mazhar and T.A. Shah, Heteroatom Chem. 13, 638 (2002).
- M. Danish, S. Ali, M. Mazhar, A. Badshah, M.I. Choudhary, H.G. Alt and G. Kehr, Polyhedron. 14, 3115 (1995).
- K. Shahid, S. Ali, S. Shahzadi, A. Badshah, K.M. Khan and G.M. Maharvi, Synth. React. Inorg. Met.-Org. Chem. 33, 1221 (2003).
- 27. H.O. Kalinowski, S. Berger and S. Braun, ¹³Carbon NMR Spectroscopy, John Wiley: Chichester, UK (1988).
- A. Badshah, M. Danish, S. Ali, M. Mazhar, S. Mahmood and M.I. Choudhary, Synth. React. Inorg. Met.-Org. Chem. 24, 1155 (1994).
- M. Danish, S. Ali, A. Badshah, M. Mazhar, H. Masood, A. Malik and G. Kehr, Synth. React. Inorg. Met.-Org. Chem. 27, 863 (1997).
- 30. M. Danish, H.G. Alt, A. Badshah, S. Ali, M. Mazhar and N. Islam, J. Organomet. Chem. 486, 51 (1995).
- 31. B. Wrackmeyer, G. Kehr and J. Suss, Chem. Ber-Recl. 126, 2221 (1993).
- 32. J. Holeček and A. Lycka, Inorg. Chim. Acta. 118, L15-L16 (1986).

- M.A. Demertzis, S.K. Hadjikakou, D.K. Demertzi, A. Koutsodimou and M. Kubicka, Helv. Chim. Acta. 83, 2787 (2000).
- 34. S.S. Shoukat, N.A. Khan and F. Ahmed, **Pak. J. Bot. 12**, 97 (1980).
- 35. A. Rahman, M.I. Choudhary and W.J. Thomsen, **Bioassay Techniques for Drug Development**; Harward Academic Press: Amsterdam (2001).
- K.C. Molloy, Biorganotin Compounds. In the Chemistry of Metal-Carbon Bond; F.R. Hartley, (Ed.); Wiley: New York (1989).
- B.N. Meyer, N.R. Ferrigni, J.E. Putnam, L.B. Jacobson, D.E. Nichols and J.L. McLaughlin, Planta Med. 45, 31 (1982).