Synthesis and Isolation of 1-Cyclohex-1,2-dien-1-ylbenzene from 1-(2-Iodocyclohex-1-en-1-yl)benzene and 1-(2-Iodocyclohex-2-en-1-yl)benzene

Mustafa CEYLAN* Yakup BUDAK, M. Burcu GÜRDERE, İrfan ÖZDEMİR, Esra FINDIK
Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, 60250, Tokat-TURKEY
e-mail: mceylan@gop.edu.tr •ybudak@gop.edu.tr

Received 05.06.2007

The key compounds, 1-(2-iodocyclohex-1-en-1-yl) benzene (12) and 1-(2-iodocyclohex-2-en-1-yl) benzene (13), for the generation of 1-cyclohex-1,2-dien-1-ylbezene (20) were synthesized starting with cyclohexanone. Separate reactions of 12 and 13 with $\mathrm{KO} t \mathrm{Bu}$ in benzene in a sealed tube at $180{ }^{\circ} \mathrm{C}$ gave 6 products: 1-cyclohex-1-en-1-ylbenzene (8), 2-phenylcyclohexanone (10), 1,8-diphenyl-2,3,4,4a,4b,5,6,7octahydrobiphenylene (21), 8a-phenyl-1,2,3,4,6,7,8,8a-octahyd-rotriphenylene (22), 1,2-diphenylcyclohexene (23), and 1-(2-tert-butoxycyclohex-1-enyl) benzene (24). In addition, reactions of $\mathbf{1 2}$ and $\mathbf{1 3}$ under the same conditions in the presence of diphenylisobenzofuran and furan as trapping reagents afforded the $[4+2]$ cyclo-adducts $\mathbf{3 0}, \mathbf{3 1}$, and $\mathbf{3 2}$ in good yields, respectively.

Key Words: Cyclic strained allenes, dehydroiodination, dimerisation, cycloaddition.

Introduction

Early attempts to synthesise and isolate cyclohexa-1,2-diene were made around 1935 by Favorski. ${ }^{1,2}$ The next pioneering work on cyclohexa-1,2-diene was carried out by Ball and Landor, ${ }^{3}$ who successfully generated cyclohexa-1,2-diene. The first clear demonstration of the existence of cyclohexa-1,2-diene was reported by Wittig and Fritze ${ }^{4}$ in 1968. Moore and Moser ${ }^{5}$ have prepared cyclohexa-1,2-diene using a carbenoid route. Balci and Jones ${ }^{6}$ optically isolated active cycloadducts by 2 different routes providing evidence for chirality in cyclohexa-1,2-diene. Sütbeyaz et al. ${ }^{7}$ reported the synthesis of cyclohexa-1,2-diene by fluoride ion-promoted elimination of β-halogenosilane.

[^0]Synthesis and Isolation of 1-Cyclohex-1,2-dien-1-ylbenzene..., M. CEYLAN, et al.,

Previously we applied the base-induced HI -elimination reaction to $\mathbf{1}$ for the generation of $2 .{ }^{8}$ As a result of the reaction of $\mathbf{1}$ with $\mathrm{KO} t \mathrm{Bu}$ in benzene, deuterated benzene, and toluene, we obtained the products $\mathbf{4}$ and $\mathbf{5}$ via transient allene 2. Due to the high reaction temperature $\left(240{ }^{\circ} \mathrm{C}\right)$, the intermediate allene 2 formed by HI-elimination might have been in equilibrium with the corresponding diradical 3. Thus, the addition of benzene to diradical $\mathbf{3}$ could give the phenyl alkene 4 and diphenyl alkene 5 (Figure).

Figure 1. Synthesis of 1-cyclopent-1,2-dien-1-ylbezene.
In order to get more information about the possibility of the formation of $\mathbf{2}$-like transient allenes, we decided to synthesize 1 -like allene precursors with a 6 -membered ring and to study its elimination with base.

Results and Discussion

For the synthesis of $\mathbf{1 2}$ and $\mathbf{1 3}$, key compounds for the preparation of 1-cyclohex-1,2-dien-1-ylbenzene (20), cyclohexanone $\mathbf{6}$ was used as the starting material. Bromobenzene was converted to the Grignard reagent, ${ }^{9}$ which was condensed with cyclohexanone 6 to give 1-phenylcyclohexanol (7). Dehydration ${ }^{10}$ of the crude alcohol $\mathbf{7}$ with p - TsOH in benzene gave alkene $\mathbf{8}$ in 94% yield, and hydroboration ${ }^{11,12}$ of $\mathbf{8}$ followed by oxidation ${ }^{13}$ with PCC led to ketone 10 in a yield of 81% (Scheme 1).

Ketone 10 was converted to the hydrazone derivative 11 by treatment with hydrazine hydrate ${ }^{14}$ at $90-$ $95^{\circ} \mathrm{C}$. Product 11 was estimated to be a 1.5:1 mixture of E and Z isomers. Treatment of this mixture with iodine ${ }^{15}$ in the presence of NEt_{3} in THF resulted in the formation of 3 products $(\mathbf{1 2}, \mathbf{1 3}$, and 14) in a ratio of 5.5:7:1 (68% total yield), which were separated by silica gel column chromatography and recrystallisation (Scheme 2).

Scheme 2

The formation of compound $\mathbf{1 4}$ can be explained by the Wolf-Kishner reduction of hydrazone $\mathbf{1 1}$. The structure of $\mathbf{1 4}$ was identified by comparison with authentic samples. ${ }^{16,17}$

The formation of the key compounds 12 and 13 can be explained ${ }^{14,15}$ as shown in Scheme 3. The hydrazone 11 is oxidised, possibly via the N-iodo derivative 15 , to the aliphatic diazo compound 16. Iodine, acting as an electrophile, converts the diazo compound 16, possibly via an intermediate iododiazonium compound 17 , into an iodocarbonium ion 18 , which gives the products 19 or 12 and 13 together by the attack of the iodide ion or the elimination of a proton, respectively. The subsequent conversion of the gem-diiodide 19 to the vinyl iodides 12 and 13 occurred by β-elimination of the hydrogen iodide.

Scheme 3
The structures 12 and 13 were determined on the basis of spectral data and by comparison with literature data. ${ }^{8}$ The characteristic ${ }^{13} \mathrm{C}$ signals of $=\mathrm{C}-\mathrm{I}$ signals (at 98.73 and 103.33 ppm , respectively) in the ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{1 2}$ and $\mathbf{1 3}$ are in good agreement with the proposed structure of $\mathbf{1 2}$ and $\mathbf{1 3}$.

After the successful synthesis of the key compounds 12 and 13, they were submitted separately to the base-induced HI-elimination reaction. No reaction was observed when the dehydroiodination was carried out in different solvents and at different temperatures $\left(60-160^{\circ} \mathrm{C}\right)$. When more drastic conditions (sealed tube, benzene or THF, at $180-185^{\circ} \mathrm{C}$) were employed, dehydroiodination occurred. The reaction of 12 or $\mathbf{1 3}$ with $\mathrm{KO} t \mathrm{Bu}$ afforded 6 products ($\mathbf{8}, \mathbf{1 0}$, and $\mathbf{2 1 - 2 4)}$ (Scheme 4). In addition, we also observed that the yield of ether 24 increased when we used 2 mol equiv of KOtBu. Temperature is also important for the product distribution: above $200^{\circ} \mathrm{C}$, the yield of diphenylcyclohexene (23) increased. From this latter finding, we conclude that the allenic structure might be converted to a diradicalic structure (Scheme 6) by increasing the reaction temperature.

Scheme 4
The mixture was separated by a silica gel column chromatography. The elemental analysis and molecular peak of $312(\mathrm{M}+)$ of the products 21 and 22 clearly indicated the presence of an allene dimer.

Synthesis and Isolation of 1-Cyclohex-1,2-dien-1-ylbenzene..., M. CEYLAN, et al.,

The head-to-head dimerisation product 21 was isolated in yields of 14% from 12 and 12% from $\mathbf{1 3}$. The observation of only 4 signals in the sp^{3} region of the ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{2 1}$ is evidence for its symmetrical structure.

Other dimerisation products of $\mathbf{2 0}$ were isolated in yields of 38% from $\mathbf{1 2}$ and 39% from $\mathbf{1 3}$.
The structure of $\mathbf{2 2}$ was explained on the basis of its NMR data. The asymmetrical structure of $\mathbf{2 2}$ was established by the observation of 22 signals of its ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum as required by the asymmetry in the molecule.

The formation of 22 was outlined as shown in Scheme $5 .{ }^{18}$ Intermediate allene (20) cyclises via transition state $\mathbf{2 5}$, which is formed by [2+4] synchron in addition with the participation of a phenyl group and furnishes a methylene-1,3-cyclohexadiene derivative (26), which is isomerised to yield $\mathbf{2 2}$ under the influence of $\mathrm{KO} t \mathrm{Bu}$ (Scheme 5).

Scheme 5

The structures of $\mathbf{2 3}$ and $\mathbf{8}$ were established by comparison of the NMR data with the literature. The latter is the result of a reductive elimination reaction. The formation of $\mathbf{8}$ and $\mathbf{2 3}$ can be explained by the following mechanism ${ }^{8}$ (Scheme 6). Firstly, base-induced elimination of HI from 12 or $\mathbf{1 3}$ gives the intermediate, allene 20, which will be in equilibrium with the corresponding diradical $\mathbf{2 7}$ (Scheme 6). The latter reacted with benzene to give the intermediate (28), which can be easily transformed to the neutral compound, diphenylalkene 23, by a hydrogen transfer. The theoretical calculations show that cyclohexa1,2 -diene may exist as a chiral allenic structure, ${ }^{19}$ but it can easily racemise through a species best described as a diradical. The effect of temperature on racemisation of the allenic structure was also demonstrated in the case of 6 - and 7 -membered ring allenes. ${ }^{6}$

The formation of etheric compound $\mathbf{2 4}$ can be explained by the addition of $t \mathrm{BuO}^{-}$to allene $\mathbf{2 0}$. The nucleophilic attack at the central allenic carbon atom and the protonation of the resulting ally anion by $\mathrm{HO} t \mathrm{Bu}$ leads to the enol ether ${ }^{20} \mathbf{2 4}$ (Scheme 7), and the ketone $\mathbf{1 0}$ was formed by the hydrolysis of the enol ether 24. The identification of 24 revealed its structure by the characteristic NMR signals of the enol ether subunit.

In this stage of the study, we examine the reactions of $\mathbf{1 2}$ and $\mathbf{1 3}$ with $\mathrm{KO} t \mathrm{Bu}$ in benzene (in a sealed tube, at $180^{\circ} \mathrm{C}$) in the presence of 1,3-diphenylisobenzofuran (DBI) as a trapping reagent. Reactions of 12 with $\mathrm{KO} t \mathrm{Bu}$ in the presence of DBI yielded allene cycloadducts $\mathbf{3 0}$ and $\mathbf{3 1}$ in a ratio of $4: 1$. The allene cycloadducts $\mathbf{3 0}$ and $\mathbf{3 1}$ were characterised by spectroscopic studies and by comparison to the DBI adducts of cyclohexa-1,2-diene. ${ }^{4,7,21}$

Synthesis and Isolation of 1-Cyclohex-1,2-dien-1-ylbenzene..., M. CEYLAN, et al.,

Scheme 6

Scheme 7

The major product 30 (36%) was determined as an endo adduct of DBI and 1-cyclohex-1,2-dien-1ylbenzene (20) and $\mathbf{3 1}(8 \%)$ were exo adducts. Reaction of $\mathbf{1 3}$ with $\mathrm{KO} t \mathrm{Bu}$ in the same conditions afforded the same products in yields of 38% and 9%, respectively (Scheme 8). Formation of the cycloaddition products $\mathbf{3 0}$ and $\mathbf{3 1}$ can only be explained by the strained allene intermediate $\mathbf{2 0}$. Although the intermediate $\mathbf{2 0}$ has 2 active sides for the cycloaddition reaction, the exclusive formation of $\mathbf{3 0}$ and $\mathbf{3 1}$ shows that the trapping occurs with a high degree of regioselectivity.

Scheme 8

Synthesis and Isolation of 1-Cyclohex-1,2-dien-1-ylbenzene..., M. CEYLAN, et al.,

In addition, the reactions of $\mathbf{1 2}$ and $\mathbf{1 3}$ with $\mathrm{KO} t \mathrm{Bu}$ in benzene (in a sealed tube, at $180^{\circ} \mathrm{C}$) in the presence of furan as a trapping reagent afforded known cycloadduct $\mathbf{3 2}$ as a major product and $\mathbf{3 3}$ in trace amount (Scheme 9).

Scheme 9

The major product 32 was characterised by comparison of the NMR data with those reported in the literature ${ }^{21}$ as an endo adduct of furan and 1-cyclohex-1,2-dien-1-ylbenzene (20). Although compound 33 was observed in the NMR spectrum of the mixture ($\mathbf{3 2}$ and 33), it was not isolated in sufficient amount for full characterisation. The outcomes of these reactions are rationalised by assuming the β-elimination of HI from 12 and 13 with the formation of the desired intermediate $\mathbf{2 0}$.

Conclusions

We have demonstrated that the title intermediate 20, a strained cyclic allene, can be generated from 1-(2-iodocyclohex-1-en-1-yl) benzene (12) and 1-(2-iodocyclohex-2-en-1-yl) benzene (13) by β-elimination of HI with $\mathrm{KO} t \mathrm{Bu}$. Furthermore, the formation of compound $\mathbf{2 3}$ showed that allene $\mathbf{2 0}$ is equilibrium with the diradical form $\mathbf{2 7}$ at especially high temperatures.

Experimental

${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded with Varian 200, Varian 400, and Bruker AC 400 instruments. As internal standards, TMS ($\delta 0.00 \mathrm{ppm}$) was used for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy, and J values are given in Hz. The multiplicities of the signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra are abbreviated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad), and combinations thereof. IR spectra were recorded on a Jasco FT/IR-430 spectrometer. Mass spectra were recorded on a Thermofinnigan Trace GC/Trace DSQ/A1300 (E.I. Quadrapole, 70 eV) equipped with a SGE-BPX5 MS capillary column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ i.d., $0.25 \mu \mathrm{~m}$). Elemental analyses were obtained from a LECO CHNS 932 Elemental Analyser. Melting points were measured on an Electrothermal 9100 apparatus.

All reactions were conducted in anhydrous solvents in an atmosphere of dry N_{2}. All column chromatographies were performed on silica gel (60-230 mesh, Merck) and $\mathrm{Al}_{2} \mathrm{O}_{3}-90$ ($70-230$ mesh, Merck).

1-Phenylcyclohexanol 7: To a stirred mixture of $\mathrm{Mg}(2.5 \mathrm{~g}, 0.11 \mathrm{~mol})$ in 100 mL of dry THF at r.t. were added bromobenzene $(2 \mathrm{~mL})$ and a small amount of I_{2}, and the mixture was heated to $65^{\circ} \mathrm{C}$. To the mixture was added bromobenzene ($18 \mathrm{~g}, 0.11 \mathrm{~mol}$) in 30 mL of THF within 2 h , followed by stirring for

1 h at the same temperature. The mixture was cooled to r.t., cyclohexanone $\mathbf{6}(10 \mathrm{~g}, 0.1 \mathrm{~mol})$ was added, and the mixture was stirred for 3 h . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, and the combined org. extracts were washed with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent $\left(30^{\circ} \mathrm{C}, 20\right.$ mm Hg) gave alcohol $\mathbf{7}(15 \mathrm{~g}, 87 \%)$. ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{g} .54-7.50(\mathrm{~m}$, aromatic, 2 H), 7.38-7.30 $(\mathrm{m}$, aromatic, 3 H$), 1.92-1.71(\mathrm{~m}, 9 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.66,128.45$, $126.93,124.81,73.38,39.07,25.76$. IR $\left(\mathrm{CCl}_{4}\right) \nu 3600,3060,3020,2940,2860,1450,1080,1020,710 \mathrm{~cm}^{-1}$.

1-Cyclohex-1-en-1-ylbenzene 8: To a stirred solution of alcohol 7 ($10 \mathrm{~g}, 57 \mathrm{mmol}$) in 100 mL of benzene was added 4 -toluenesulfonic acid $(p-\mathrm{TsOH})(50 \mathrm{mg})$ and the mixture was refluxed for 3 h . The mixture was then washed with water $(100 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent and distillation $\left(20 \mathrm{mmHg}, 180^{\circ} \mathrm{C}\right.$) gave 1-cyclohex-1-en-1-ylbenzene $8(8.5 \mathrm{~g}, 94 \%) .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.42-$ $7.37(\mathrm{~m}$, aromatic, 2 H$), 7.35-7.30(\mathrm{~m}$, aromatic, 2 H$)$, $7.26-7.21(\mathrm{~m}$, aromatic, 1 H$)$, 6.16-6.13 (m , olefinic, $1 \mathrm{H}), 2.44-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \mathrm{g} \delta 142.94,136.84,128.42,126.75,125.18,124.99,27.65,26.13,23.33,22.42 . \operatorname{IR}\left(\mathrm{CCl}_{4}\right) \mathrm{g} 3050,3030$, 2950, 2840, 1620, 1490, 1440, 1310, 1020, $680 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14}$: C 91.08, H 8.92. Found: C 90.98, H 8.88.

2-Phenylcyclohexanol 9: To a slurry of $\mathrm{NaBH}_{4}(2 \mathrm{~g}, 52.6 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ was added alkene $8(8 \mathrm{~g}, 50.06 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at room temperature under N_{2}. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(7.5 \mathrm{~g}, 52.6 \mathrm{mmol})$ was added over 30 min . The resulting mixture was stirred at room temperature for 3 h . Then, to the mixture were added $\mathrm{NaOH}(20 \mathrm{~mL}, 3 \mathrm{~N})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{~mL}, 35 \%)$, followed by warming to $50^{\circ} \mathrm{C}$ and stirring for 30 min . The aqueous layer was extracted with diethyl ether $(2 \times 150$ mL). The combined organic extracts were washed with $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (2%) and dried (MgSO_{4}). Removal of the solvent gave 2-phenylcyclohexanol 9 (colourless crystal, mp $67-69^{\circ} \mathrm{C}$, Lit. ${ }^{11,12} 64-65{ }^{\circ} \mathrm{C}, 7.2 \mathrm{~g}, 83 \%$). ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.39-7.35(\mathrm{~m}$, aromatic, 2 H), $7.32-7.24$ (m , aromatic, 3 H), 3.70-3.64 (m, $1 \mathrm{H}), 2.65-2.60(\mathrm{br} . \mathrm{s},-\mathrm{OH}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 143.87,128.94,128.28,126.98,74.59,53.42,34.85,33.74,26.39,25.43 . \operatorname{IR}\left(\mathrm{CCl}_{4}\right) \nu \mathrm{g} 382,3027,2929$, 2856, 1600, 1448, 1058, 962, 786, 736, $700 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}: \mathrm{C} 81.77, \mathrm{H} 9.15$. Found: C 81.65, H 9.23.

2-Phenylcyclohexanone 10: To a stirred solution of pyridiniumchloro-chromate (PCC) (9.5 g, 44 $\mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added the alcohol 9 (prepared above) ($7 \mathrm{~g}, 40 \mathrm{mmol}$) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was stirred for 3 h at room temperature and then filtered. The organic layer was washed with water $(100 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent gave 2-phenylcyclohexanone 10 (colourless crystals, mp $56-59{ }^{\circ} \mathrm{C}, 6.3 \mathrm{~g}, 90 \%$). ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.27-7.23$ (m, aromatic, $2 \mathrm{H})$, 7.18-7.15 (m, aromatic, 1 H), 7.07-7.05 (m, aromatic, 2 H), 3.54-3.50 (dd, $J=5.38,12.79 \mathrm{~Hz}, 1 \mathrm{H}$), 2.45-2.31 (m, 2H), 2.19-2.14 (m, 1H), 2.07-1.98 (m, 1H), 1.95-1.87 (m, 2H), 1.78-1.66 (m, 2H). ${ }^{13}$ C-NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 210.34,138.92,128.64,128.39,126.92,57.40,42.26,35.21,27.89,25.37$. IR (KBr) ν 3029, 2935, 2859, 1714, 1448, 1126, 1068, 786, $698 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}: \mathrm{C} 82.72, \mathrm{H} 8.10$. Found: C 82.67, H, 8.08.

Syn- and anti-2-phenylcyclohexan-1-one hydrazone 11: A solution of hydrazine hydrate $(8.5 \mathrm{~g}, 140 \mathrm{mmol})$ and triethylamine ($3.6 \mathrm{~g}, 35 \mathrm{mmol}$) was added to a vigorously stirred solution of 2phenylcyclohexanone (10) ($6 \mathrm{~g}, 35 \mathrm{mmol}$) at room temperature over 3 h . The reaction mixture was stirred at $90-95{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to room temperature and extracted with chloroform $(3 \times 50 \mathrm{~mL})$. The combined extract was dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the solvent was evaporated to yield an essentially pure mixture consisting of syn- and anti-hydrazone 11 (colourless liquid, $5.3 \mathrm{~g}, 81 \%$). ${ }^{1} \mathbf{H}$-NMR

Synthesis and Isolation of 1-Cyclohex-1,2-dien-1-ylbenzene..., M. CEYLAN, et al.,
($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$)g $\delta 7.41-7.21$ (m, aromatic, 10 H), 4.87-4.72 (br. $\mathrm{s},-\mathrm{NH}_{2}, 4 \mathrm{H}$), 3.74-3.68 (dd, $J=5.09,7$. $97 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.54(\mathrm{dd}, J=5.27,8.35 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.04(\mathrm{~m}, 4 \mathrm{H})$, 1.88-1.73 (m, 4H), 1.71-1.63 (m, 4H).g ${ }^{3} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{g} \delta 166.80,157.69,144.19,143.58,130.39$, $130.33,130.19,128.19,51.88,51.72,35.29,35.01,29.29,28.69,28.59,27.69,26.14,25.71$. IR $\left(\mathrm{CCl}_{4}\right) \nu 3365$, $3025,2935,2859,1600,1494,1448,1051,788,698 \mathrm{~cm}^{-1}$. Isomeric hydrazone $\mathbf{6}$ was used without further purification.

Treatment of syn- and anti-2-phenylcyclohexan-1-one hydrazone 11 with \mathbf{I}_{2}. A saturated solution of iodine ($15 \mathrm{~g}, 0.06 \mathrm{~mol}$) in dry THF was added rapidly to a stirring solution of isomeric $\mathbf{1 1}(5 \mathrm{~g}$, 27 mmol) in 25 mL of triethylamine under nitrogen atmosphere at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for an additional hour at room temperature. After diluting the reaction mixture with 150 mL of distilled water, it was extracted with hexane $(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{HCl}(3$ $\times 30 \mathrm{~mL}, 1 \mathrm{~N}$), saturated with NaHCO_{3} and NaCl solution, dried and evaporated to yield a mixture (5.5 $\mathrm{g})$ consisting of $\mathbf{1 2}, \mathbf{1 3}$, and $\mathbf{1 4}$. The residue was submitted to a silica gel column chromatography (70 g), eluting with hexane. The first fraction yielded pure phenylcyclohexane (14) (colourless liquid at r.t. (lit. ${ }^{16}$) but 14 is solid below $8{ }^{\circ} \mathrm{C}$ lit, $\left.{ }^{17} 0.5 \mathrm{~g}, 5 \%\right) .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.32-7.26(\mathrm{~m}$, aromatic, 2 H), 7.23-7.16 (m, 3H), 2.54-2.50 (m, 1H), 1.91-1.81 (m, 4H), 1.46-1.35 (m, 6H). ${ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta$ $148.35,128.52,127.07,126.02,44.84,34.71,27.17,26.42$. IR $\left(\mathrm{CCl}_{4}\right) \mathrm{g} 3027,2925,2852,1492,1452,784,698$ cm^{-1}. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16}$: C 89.84, H 10.06. Found: C 89.76, H, 10.10.

Second fraction yielded pure 1-(2-iodocyclohex-1-en-1-yl)benzene (12) (colourless crystals, mp 50-55 ${ }^{\circ} \mathrm{C}, 2.1 \mathrm{~g}$, and 27%). ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.31-7.27(\mathrm{~m}$, aromatic, 3 H), 7.10-7.08 (m, aromatic, $2 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \mathrm{g} \delta 146.91,144.27,127.87,127.21,127.10,98.71,41.57,34.07,25.57,22.96$. IR $\left(\mathrm{CCl}_{4}\right) \nu \mathrm{g} 029,2938$, $2865,1540,1448,1247,1124,1004,794,698,547 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{I}: \mathrm{C} 50.73, \mathrm{H}, 4.61$. Found: C 50.69, H 4.57 .

Later fractions were mixtures. The last fraction yielded pure 1-(2-iodocyclohex-2-en-1-yl)benzene (13) (colourless crystals, $\mathrm{mp} 67{ }^{\circ} \mathrm{C}, 2.7 \mathrm{~g}$, and 36%). ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.40-7.19$ (m, aromatic, $5 \mathrm{H})$, 6.70-6.65 (dt, olefinic, $J=1.47,4.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.70(\mathrm{~m}, 1 \mathrm{H})$, 1.68-1.58 (m, 2H). ${ }^{13} \mathbf{C}$-NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{g} \delta 146.16,142.23,131.32,130.33,128.60,103.33,54.67$, $35.69,31.36,19.83$. IR $\left(\mathrm{CCl}_{4}\right) \nu 3025,2933,1490,1450,983,754,700 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{I}$: C 50.73, H 4.61. Found: C 50.69, H 4.57 .

Reaction of 12 with $\mathrm{KO} t \mathrm{Bu}$ in benzene. A solution of $12(1 \mathrm{~g}, 3.5 \mathrm{mmol})$ in 5 mL of dry benzene and $0.45 \mathrm{~g}(4 \mathrm{mmol})$ of $\mathrm{KO} t \mathrm{Bu}$ was placed in a glass tube. After sealing the tube, it was heated to $180{ }^{\circ} \mathrm{C}$ over 16 h . Benzene was evaporated and the residue was submitted to silica gel (60 g) column chromatography, eluting with hexane. The first fraction was pure 1-cyclohex-1-en-1-ylbenzene (8) (40 mg, 8%).

The second fraction gave 1,8-diphenyl-2,3,4,4a,4b,5,6,7-octahydrobiphenylene (21) (colourless solids from hexane, mp $148-151^{\circ} \mathrm{C}, 80 \mathrm{mg}, 14 \%$). ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.38-7.13$ (m , aromatic, 10 H), $2.55-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.28(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{g} \delta 138.97,131.15,130.86,129.04,127.15,113.91,55.72,38.93,23.95$, 23.24. IR (KBr) ν g060, 3021, 2931, 2861, 1550, 1484, 1440, 1247, 1214, 1002, 817, $727 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (relative intensity): $312.2(\mathrm{M}+\mathrm{H}, 7), 235.2$ (13), 154.1 (100), 129 (44), 105 (35), 90.1 (29), 77.1 (31). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24}$: C 92.26, H 7.74. Found: C 92.22, H 7.73.

The third fraction yielded pure 1-(2-phenylcyclohex-1-en-1-yl)benzene (23) (colourless crystals from
methanol, mp 48-50 ${ }^{\circ} \mathrm{C}$, Lit. $.^{22} 47-48{ }^{\circ} \mathrm{C} 65 \mathrm{mg}, 8 \%$). ${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)g $\delta 7.39-7.22$ (m, aromatic, $10 \mathrm{H}), 2.47-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{g}^{3} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 144.10, 135.21, 129.28, 127.81, $125.89,38.37,32.15$. IR (KBr) $\nu \mathrm{g} 065,3019,2910,2840,1689,1485,1440,1248,1154,1025,905,690 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18}$: C 92.26, H 7.74. Found: C 92.25, H 7.75.

The fourth fraction gave 8a-phenyl-1,2,3,4,6,7,8,8a-octahydrotriphenylene (22) (colourless solids from hexane, mp $\left.143{ }^{\circ} \mathrm{C}, 210 \mathrm{mg}, 38 \%\right) .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.70-7.68(\mathrm{~m}$, aromatic, 1 H$)$, 7.29-7.06 (m, aromatic, 9H), 6.21-6.19 (t, $J=4.25 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 3 \mathrm{H})$, 2.16-2.12 (m, 1H); 1.83-1.73 (m, 2H), 1.66-1.55 (m, 2H); 1.52-1.32 (m, 2H). ${ }^{13}$ C-NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta$ $147.54,142.44,139.09,135.95,132.04,128.45,127.82,127.51,126.53,125.99,125.79,125.66,125.39,122.65$, $46.12,36.66,27.18,26.12,25.78,23.15,22.69,18.53$. IR (KBr) $\nu 3064,3018,2933,2867,1544,1484,1249$, 1213, 1002, 815, $725 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / z$ (relative intensity): $312.3(\mathrm{M}+\mathrm{H}, 65), 235.2$ (100), 178.1 (58), 165.1 (73), 149.0 (51), 91.0 (49), 77.1 (32). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24}$: C 92.26, H 7.74. Found: C 92.24, H 7.72.

The fifth fraction yielded 1-(2-tert-butoxycyclohexenyl)benzene (24) (colourless liquid, $75 \mathrm{mg}, 9 \%$). ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.35-7.33(\mathrm{~m}$, aromatic, 2 H$), 7.29-7.26(\mathrm{~m}$, aromatic, 2 H$), 7.18-7.14(\mathrm{~m}$, aromatic, 1 H), 2.40-2.36 (m, 2H), 2.24-2.20 (m, 2H); 1.77-1.67 (m, 4H), 1.06 (s, 9H).g ${ }^{13} \mathbf{C}-\mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \mathrm{g} \delta 147.35,142.36,129.21,127.71,125.88,124.28,77.67,31.77,30.51,29.76,23.78,23.48$. IR (liquid) $\nu 3054,3023,2973,2933,1646,1490,1440,1365,1153,1122,896,781,755,696 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}: \mathrm{C} 83.43$, H 9.63. Found: C 83.41, H 9.61. The sixth fraction was 2-phenylcyclo-hexanone (10) ($100 \mathrm{mg}, 16 \%$).

The above reaction was employed for $\mathbf{1 3}$ and the same products, $\mathbf{8}, \mathbf{1 0}$, and $\mathbf{2 1 - 2 4}$, were obtained in the yields of $6 \%, 12 \%, 12 \%, 39 \%, 10 \%$, and 15%, respectively.

Reaction of 12 with $\mathrm{KO} t \mathrm{Bu}$ in the presence of DBI. A solution of $\mathbf{1 2}(0.5 \mathrm{~g}, 1.76 \mathrm{mmol})$ in 6 mL of dry benzene, $0.2 \mathrm{~g}(1.78 \mathrm{mmol})$ of $\mathrm{KO} t \mathrm{Bu}$, and $0.5 \mathrm{~g}(1.8 \mathrm{mmol})$ of DBI was placed in a glass tube. After sealing the tube, it was heated to $180^{\circ} \mathrm{C}$ over 16 h . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over MgSO_{4}, and the solvent was removed in vacuum. The residue was submitted to $\mathrm{Al}_{2} \mathrm{O}_{3}$ (active basic, grade III, 30 g) column chromatography, eluting with hexane/benzene ($9: 1$). The first fraction was the excess of DBI. The second fraction yielded pure endo adduct (30) (colourless solid, mp $185{ }^{\circ} \mathrm{C}, 0.29 \mathrm{~g}$, $36 \%) .{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 8.03-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.12$ $(\mathrm{m}, 6 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 5 \mathrm{H}), 5.96-5.94(\mathrm{dd}, J=2.94,4.67 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.65(\mathrm{dt}, J=3.42,11.64 \mathrm{~Hz}, 1 \mathrm{H})$, 2.01-1.83 (m, 2H), 1.55-1.46 (m, 1H), 1.32-1.21 (m, 1H), 0.99-0.91 (dt, $J=4.16,11.98 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.26,147.79,145.36,142.36,138.05,135.34,129.81,128.92,128.83,128.64,128.04$, $127.57,127.15,126.92,125.85,125.68,125.51,123.58,122.16,117.63,93.84,89.12,56.79,32.17,24.25,18.91$. IR (KBr) ν 3060, 3025, 2927, 1600, 1544, 1492, 1452, 1155, 1305, 1000, 786, 754, $698 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / z$ (relative intensity): $427(\mathrm{M}+\mathrm{H}, 0.2), 409(0.25), 321(15), 215(22), 165(38), 115(23), 105$ (100), 77 (66).

The third fraction yielded pure exo adduct (31) (colourless solid, mp $230{ }^{\circ} \mathrm{C}, 0.70 \mathrm{mg}, 8 \%$). ${ }^{1} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 7.87-7.85$, (br d, $J=7.10 \mathrm{~Hz}, 2 \mathrm{H}$), $7.76-7.74$ (br d, $J=7.19 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61,7.57$ (br t, $J=7.48 \mathrm{~Hz}, 2 \mathrm{H}$), $7.52-7.47$ (br t, $J=7.88 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.84 \mathrm{~m}, 3 \mathrm{H})$, $5.79-5.77(\mathrm{dd}, J=2.57,6.96 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.312-1.17(\mathrm{~m}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$-NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)g $\delta 148.94,147.03,144.92,141.44,137.69,136.64,128.72,128.19,127.69$, $127.58,127.13,126.85,126.59,126.47,126.15,120.95,119.81,119.27,92.05,90.03,56.36,30.58,21.37,17.71$. IR (KBr) $\nu 3029,2938,1544,1494,1448,1303,998,786,744,700 \mathrm{~cm}^{-1} . \mathbf{M S} m / z$ (relative intensity): 427 $(\mathrm{M}+\mathrm{H}, 0.2), 409$ (0.25), 321 (15), 215 (22), 165 (38), 115 (23), 105 (100), 77 (66).

The above reaction was employed for $\mathbf{1 3}$ and the same products ($\mathbf{3 0}$ and $\mathbf{3 1)}$) were obtained in the

Synthesis and Isolation of 1-Cyclohex-1,2-dien-1-ylbenzene..., M. CEYLAN, et al.,
yields of 38% and 9%, respectively.
Reaction of 12 with KOtBu in the presence of furan. A solution of $\mathbf{1 2}(0.5 \mathrm{~g}, 1.76 \mathrm{mmol})$ in 6 mL of dry benzene, $0.2 \mathrm{~g}(1.78 \mathrm{mmol})$ of $\mathrm{KO} t \mathrm{Bu}$ and $0.24 \mathrm{~g}(3.5 \mathrm{mmol})$ of furan was placed in a glass tube. After sealing the tube, it was heated to $180{ }^{\circ} \mathrm{C}$ over 16 h . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and the solvent was removed in vacuum. The residue was submitted to $\mathrm{Al}_{2} \mathrm{O}_{3}$ (active basic, grade III, 40 g) column chromatography, eluting with hexane/benzene (9:1), to give the pure endo adduct (32) (colourless solid, mp 91-94 ${ }^{\circ} \mathrm{C}$, lit. $.^{21} 92-93{ }^{\circ} \mathrm{C}, 155 \mathrm{mg}, 45 \%$). ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3} \mathrm{pg} \delta \mathrm{gg} .28-7.06 \mathrm{gm}\right.$, aromatic, 5 H), 6.39-6.37 (dd, $J=1.73,5.62 \mathrm{~Hz}, 1 \mathrm{H}), 6.23-6.21(\mathrm{dd}, J=1.61,5.62 \mathrm{~Hz}, 1 \mathrm{H}), 5.78-5.58$ (dd, $J=2.73,4.56 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=1.25 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.09(\mathrm{dt}, J=3.42,11.67 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02-1.96(\mathrm{dd}, J=8.36,18.91 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.64$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(100 \mathrm{Mz}, \mathrm{CDCl}_{3}\right) \mathrm{g} \delta 145.92,141.57,137.50,131.12,128.28,126.20,121.06,88.26,80.19$, $51.13,34.94,24.36,19.09$. IR (KBr) $\nu 3060,2935,2859,1600,1492,1446,1261,1097,1014,896,794,767$ cm^{-1}. MS m / z (relative intensity): 224 (M+H, 33.4), 196 (25.5), 195 (100), 181 (18.4), 167 (32.3), 115 (18.7), 91 (25.3), 77 (11.7).

The above reaction was employed for 13 and the same product (32) was obtained in the yield of 53%.

Acknowledgements

The authors are indebted to the Scientific and Technological Research Council of Turkey (Grant TÜBİTAK-TBAG-2142 (102T045)) for financial support. Furthermore, we thank Dr. Cavit Kazaz and Dr. Hamdullah Kılıç (Atatürk University) for NMR and mass spectrum.

References

1. A.E. Favorski, Bull. Soc. Chem. Fr. 5, 1727 (1936).
2. A.E. Favorski, J. Gen. Chem. USSR (Engl. Transl.) 6, 720-726 (1936).
3. W.J. Ball and S.R. Landor, Proc. Chem. Soc. London 143-148 (1961).
4. G. Wittig and P. Fritze, Liebigs Ann. Chem. 711, 82-87 (1968).
5. W.R. Moore and W.R. Moser, J. Am. Chem. Soc. 92, 5469-5474 (1970).
6. M. Balci and W.M. Jones, J. Am. Chem. Soc. 102, 7607-7608 (1980).
7. Y. Sütbeyaz, M. Ceylan and H. Seçen, J. Chem. Research (S) 293 (1993).
8. M. Ceylan, S. Yalçın, H. Seçen, Y. Sütbeyaz and M. Balcı, J. Chem. Research (S) 21-23 (2003).
9. M. Ceylan and Y. Budak, J. Chem. Research (S) 368-369 (2001).
10. C.H. DePuy, G.F. Morris, J.S. Smith, and R.J. Smat, J. Am. Chem. Soc. 87, 2421-2428 (1965).
11. H.C. Brown, R. Liotta and L. Brener, J. Am. Chem. Soc. 99, 3427-3432 (1977).
12. H.C. Brown, J.V.N.V. Prasad, A.K. Gupta and R.K Baskhi, J. Org. Chem. 52, 310-311 (1987).
13. E.J. Corey and J.W. Suggs, Tetrahedron Lett. 16, 2647-2650 (1975).
14. D.H.R. Barton, R.E. O'Brien and S. Sternhell, J. Chem. Soc. 470-476 (1962).
15. A. Pross and S. Sternhell, Aust. J. Chem. 23, 989-1003 (1970).
16. G.A. Olah and G.K.S. Prakash, Synthesis 397-398 (1978).
17. Y.A.B. Kozlikovskij and V.A. Koshchij, Zh. Organ. Ximii 19, 952-954 (1983).
18. M. Ceylan, Y. Budak, M. Ulukaya, M.B. Gürdere and E. Fındık, Turk J. Chem. 30, 663-672 (2006).
19. R.O. Angus Jr., M.W. Schmidt and R.P. Johnson, J. Am. Chem. Soc. 107, 532-537 (1985).
20. S. Groetsch, J. Spuziak and M.Christl, Tetrahedron 56, 4163-4171 (2000).
21. L.M. Tolbert, L.Md. Islam, R.P. Johnson, P.M. Loiselli and W.C. Shakespeare, J. Am. Chem. Soc. 112, 6416-6417 (1990).
22. A.L. Baumstarka, E.J.H. Bechara and M.J. Semigran, Tetrahedron Lett. 3265-3266 (1976).

[^0]: * Corresponding author

