

The Effect of Electrocatalytic Activity and Crystal Structure of PbO₂ Surfaces on Polyphenylene Oxide (PPO) Production in Acetonitrile

Serdar ABACI^{*}, Attila YILDIZ

Hacettepe University, Faculty of Science, Department of Chemistry, 06532 Beytepe, Ankara-TURKEY e-mail: sabaci@hacettepe.edu.tr

Received 13.08.2007

The crystallographic nature of PbO₂ films was changed by optimizing the electrolysis conditions in an electrodeposition solution of PbO₂. These PbO₂ films were then used to prepare PPO films. It was determined that α and β modifications, and relative degrees of crystallinity had profound effects on the electrocatalytic performance of PbO₂ films in the production PPO films.

Key Words: α -PbO₂, β -PbO₂, phenol, electrocatalysis, PPO.

Introduction

PbO₂ has been extensively used as an electrocatalyst for the degradation of various organic species in aqueous solution, ¹⁻³ production of ozone, ⁴⁻⁵ anodic oxygen transfer reactions, ⁶⁻¹⁰ and polymerization. ^{11,12} PbO₂ is the cheapest metal-oxide electrode and provides a good alternative to more costly materials, such as platinized titanium or mixtures of precious metal oxides on titanium. It is chemically inert, stable, and highly conductive. PbO₂ comes in 2 crystallographic forms (α and β). α -PbO₂ has an orthorhombic structure, whereas β -PbO₂ has a tetragonal structure. α and β -PbO₂ can be distinguished from each other by means of X-ray diffraction patterns, which are used to estimate the proportions of the polymorphs in a mixture of the two. ¹³ The degree of crystallinity or the quantity of the amorphous form can be estimated by the half-width of the diffraction lines. The half-width decreases as the degree of crystallinity increases.¹⁴ The properties of α and β modifications of PbO₂ are different. β -PbO₂ has a porous structure, whereas α -PbO₂ has a compact structure. It is known

^{*}Corresponding author

that β -PbO₂ is more stable in acid solutions than α -PbO₂ and that β -PbO₂ has greater conductivity than α -PbO₂.^{15,16} The surface areas of both modifications are also different. BET surface area measurements indicate that β modification results in a larger surface area than α modification.¹⁷

It was proposed that the crystallographic nature of PbO₂ significantly influences its electrocatalytic activity. Ho et al.¹⁸ used impedance and potential relaxation methods to conduct a comparative analysis of adsorbed reaction intermediates—OH and O—on α and β allotropic forms of PbO₂. They concluded that the structure affected both the behavior of adsorbed species and electrocatalytic activity in O₂ evolution. The effects of surface structures were also evident in the work of Pavlov and Monahov,^{19,20} who proposed a mechanism of O₂ evolution on Pb/PbO₂ electrodes in sulfuric acid. Compton et al.²¹ conducted an AFM study of PbO₂ surfaces and correlated the observed morphology with electrochemical activity on glucose oxidation. Velichenko et al.²² changed the crystallinity of PbO₂ surfaces by changing the temperature of the electrolysis solution, and determined that increasing the temperature resulted in the formation of better crystalline PbO₂ films had better electrochemical activity.

We recently reported that the polymorphic composition and relative degree of crystallinity of PbO₂ films can be controlled by optimizing different electrochemical parameters, such as water concentration, acidity, Pb^{2+} concentration, and applied current density, during the electrodeposition of PbO₂ surfaces.²³

PPO is a widely studied polymer. It can be used in several areas, including sensors, corrosion protection, water pumps, automotive and electrical components, and foams in superior foam sandwich structures.^{24–26} The properties of PPOs depend largely on electropolymerization conditions, such as solvent, electrolyte, pH, monomer concentration, and metallic substrate.²⁷ In the present study PPO films were produced from a phenol solution by using PbO₂ surfaces. Efforts were directed at correlating the electrocatalytic activity of the PbO₂ surfaces with their crystallographic nature.

Experimental

Chemicals

Acetonitrile was purified as described elsewhere.^{28,29} Tetrabutylammonium perchlorate (TBAP) was prepared by reacting a concentrated perchloric acid solution (Analar) with a 40% aqueous solution of tetrabutylammonium hydroxide (Aldrich). Lead perchlorate (Pb[ClO₄]₂) was prepared by reacting concentrated perchloric acid with lead monoxide (Analar). Double distilled water was used for all experiments.

The Electrochemical Cell and Instrumentation

We used was a 3-electrode-type electrochemical cell, with separate compartments for the reference electrodes and the counter electrode (platinum spiral and lead). All electrochemical experiments were carried out under a nitrogen atmosphere. The electrochemical instrumentation consisted of a PAR model 173 potentiostat-galvanostat coupled to a PAR model 175 universal programmer and a PAR model 179 digital coulometer, as well as a PAR model 273 potentiostat-galvanostat.

Preparation of PbO₂ Films

PbO₂ films with different α and β modifications, and relative degrees of crystallinity were prepared according to a previously described procedure.²³ PbO₂ α and β modifications were distinguished from each other by means of X-ray diffraction patterns; these patterns were used to estimate the proportions of polymorphs in mixtures of the two. The relative degree of the films' crystallinity was calculated using the half-width values of the XRD lines; the half-width decreased as the relative degree of crystallinity increased.

The films were 40 μ m thick. The adherence of the PbO₂ layers to the Pt substrates was extraordinary; only chemical treatment was able to remove these layers. The surfaces were also smooth and homogeneous.

Analysis of Phenol and PPO

The GC-MS technique was used to monitor the consumption of phenol in the polymerization solution. The GC-MS instrument consisted of a Hewlett-Packard model 6890 gas chromatograph combined with a Hewlett-Packard model 5972 A MS detector.

The PPO samples for FT-IR analysis were prepared as follows: the PPO-deposited electrode (after electrolysis) was removed from the electrolysis solution and dipped into an acetonitrile solution several times to remove the supporting electrolyte residue. Then, the PPO-coated electrodes were mechanically peeled off and powdered PPO samples were pelleted under high pressure. FT-IR analysis was conducted with a Bruker-type Vector model spectrophotometer.

Elemental composition of the PPOs was determined using Carlo Erba EA1108 elemental analysis instruments. XRD analysis was conducted using a General Electric XRD instrument with Ni-filtered 40 kV Cu K α radiation

Results and Discussion

Oxidation of the phenol forms of the phenoxy radical $(C_6 H_5 O^{\bullet})$ occurred either by reaction with a hydroxyl radical (OH^{\bullet}) or by direct electron transfer.

 $C_6H_5OH+OH^{\bullet} \rightarrow C_6H_5O^{\bullet} +H_2O(1)$

 $C_6H_5OH \rightarrow C_6H_5O^{\bullet} + H^+ + 1e^-$ (2)

These phenoxy radicals may react with OH radicals and can form benzoquinone, and further reaction of OH radicals with benzoquinone leads to the formation of aliphatic products, such as maleic acid, fumaric acid, and CO_2 , in the presence of water. However, in the absence of water, these phenoxy radicals react with each other and PPO formation occur as follows:

 $C_6H_5O^{-}+C_6H_5O^{-} \rightarrow Dimer \text{ (then polymers) (3)}$

As can be deduced from the above mechanism, the acetonitrile to water ratio has a critical role in phenol decomposition. It was reported in one of our previous studies that phenol can be completely degraded into aliphatic products on PbO₂ surfaces in aqueous solutions.³ When a suitable quantity of acetonitrile is added to water, benzoquinone can be obtained.³⁰ A nonaqueous environment was chosen for polymerization and acetonitrile was used. To polymerize phenol, constant current electrolysis (10 mA/cm²) was applied via α -PbO₂ and β -PbO₂ electrodes from a solution containing 20 mM phenol and 100 mM TBAP in acetonitrile. The

solid products of electrolysis were analyzed by elemental analysis. The Table provides the elemental analysis results of each product, as well as the theoretical values for PPO. As can be seen, the C/H ratios of the products were very close to the ratio for PPO; however, C/O ratios were quite different. It is also clear that total percentage of C, H, and O did not equal 100% for the products of the α and β modifications. On the basis of these data, it can be concluded that anion insertion (CIO₄⁻) into the polymeric backbone occurred and that this insertion caused deviations from the expected values.

Table. Comparison of elemental analysis results of PPO films that were formed on α -PbO₂ and β -PbO₂ surfaces, with theoretical PPO values.

Element	$\alpha - PbO_2$	$\beta - PbO_2$	РО
	% by weight	% by weight	% by weight
С	51.1	46.6	77.4
Н	3.7	3.4	5.4
0	40.1	32.5	17.2
C/H	13.8	13.7	14.3
C/O	1.3	1.4	4.5

FT-IR analysis of the PPO deposits was conducted. The spectra of each product were the same, except the peak intensities, and were similar to the spectra previously reported for PPO.³¹ The spectrum for the product that formed on the β -PbO₂ surface from a solution containing 20 mM phenol and 100 mM TBAP is shown in Figure 1.

Figure 1. FT-IR results of PPO film that was formed on a β -PbO₂ surface.

Bands that appeared in the 700-850-cm⁻¹ region were aromatic out-of-plane C-H deformation vibrations. The band at 1530 cm⁻¹ corresponded to the aromatic C–C stretching vibration. The broad band at 900-1150 $\rm cm^{-1}$ might be related to the ether C-O symmetric and asymmetric stretching vibration (-C-O-C- ring). Peaks at 625 cm⁻¹ and 1100 cm⁻¹ also prove that insertion of the counter-anion (ClO₄⁻) into the polymeric backbone occurred. This counter-anion insertion was also verified using the TBAPF₆ electrolyte instead of the TBAP, by observing a peak around 830 cm⁻¹, which can be attributed to the PF₆⁻ anion.

Powder XRD analysis of the PPO deposits was also performed (Figure 2). XRD spectra were very different than the PbO_2 spectra reported by Abaci et al.,²³ which indicates that the quantity of PbO_2 in the PPO deposits was insignificant. High-intensity peaks could not be obtained because the PPO deposits were generally amorphous in character.

Figure 2. XRD results of PPO deposited from a solution containing 20 mM phenol and 100 mM TBAP in acetonitrile at 10 mA/cm^2 .

In order to investigate a possible correlation between the electrocatalytic activity of PbO₂ surfaces, and α and β modifications, electrolysis was carried out for 60 min under the same conditions mentioned above; however, in this case, PbO₂ surfaces with varying amounts of α and β modifications were used as working electrodes, and the consumption of phenol and the production of PPO were monitored. PbO₂ surfaces with varying amounts of α and β forms were prepared by changing the water concentration, current density, electrolyte, and acid concentration in the electrodeposition solution of PbO₂, as described in our previous report.²³ Electrolysis results indicate that the rate of phenol consumption and current efficiency for PPO production were different for each PbO₂ surface.

As can be seen from Figure 3, current efficiency increased as β modification increased in the PbO₂ composition; however, phenol remained in the solution after electrolysis increased in response to increased α modification of the PbO₂ surface. Both data can be used as an indication of lower electrocatalytic performance of the α surface. Improved electrocatalytic performance of the β surfaces can be attributed to the larger surface area of β modification, as compared to α modification, which has been experimentally proven.¹⁷ An increase in the active surface area will cause a concurrent increase in the formation of phenoxy radicals, which will increase the conversion to PPO. The difference in conductivity, which is approximately 100-fold greater for the β modification of PbO₂, could be another reason for the enhanced electrocatalytic activity of the β -PbO₂ films

The influence of the relative degrees of crystallinity of the PbO₂ surfaces on PPO production was also investigated. β -PbO₂ surfaces with different degrees of crystallinity were prepared according to a procedure previously given.²³ Electrolysis was carried out under the same conditions mentioned above, and the phenol remained in the solution and current efficiency was determined for each surface. The results are given in Figure 4. The Effect of Electrocatalytic Activity and Crystal..., S. ABACI, A. YILDIZ

Figure 3. The change in current efficiency for PPO production and concentration of phenol that remained in the solution after 60 min of electrolysis, with respect to the polymorphic composition of PbO_2 .

Figure 4. The change in current efficiency for PPO production and the concentration of phenol that remained in the solution after 60 min of electrolysis, with respect to the relative degree of crystallinity of PbO_2 .

As can be seen, the increase in relative degrees of crystallinity of PbO_2 surfaces resulted in higher current efficiency. The concentration of phenol in the solution after electrolysis was higher for PbO_2 films with lower relative degrees of crystallinity. The cause of this effect could have been the relative inactivity of amorphous forms during polymerization. When the degree of crystallinity of PbO_2 increased, PbO_2 grain size increased and more defined crystals were obtained; these films had much better electrocatalytic activity.

It should be noted that a transition from a β structure to a α structure may occur during electrolysis,³² which could lead to a decrease in electrocatalytic activity. To test the possible transition, PbO₂ films were subjected to XRD analysis after electrolysis, but significant differences were not detected in the crystal structure of the PbO₂ films, with respect to their structure before electrolysis.

Conclusion

It was determined that PPO can be produced on α -PbO₂ and β -PbO₂ surfaces. The formation of PPO films was verified by electrochemical and spectroscopic techniques. It was also determined that the electrocatalytic performance of PbO₂ films changed in response to varying amounts of α and β modification, and relative degrees of crystallinity.

References

- 1. Schumann, U.; Grundler, P. Wat. Res. 1998, 32, 2835-2839.
- 2. Iniesta, J.; Gonzalez-Garcia, J.; Exposito, E.; Montiel, V.; Aldaz, A. Wat. Res. 2001, 35, 3291-3296.
- 3. Abaci, S.; Tamer, U.; Pekmez, K.; Yildiz, A. Appl. Sur. Sci. 2005, 240, 112-114.
- 4. Da Silva, L. M.; De Faria, L. A.; Boodts, J. F. C. Electrochim. Acta 2003, 48, 699-703.
- Amadelli, R.; Armelao, L.; Velichenko, A. B.; Nikolenko, N. V.; Girenko, D. V.; Kovalyov, S. V.; Danilov F. I. Electrochim. Acta 1999, 45, 713-716.
- 6. Clarke, J. S.; Ehigamusoe, R. E.; Kuhn, A. T. J. Electroanal. Chem. 1976, 70, 333-337.
- 7. Abaci, S.; Tamer, U.; Pekmez, K.; Yildiz, A. J. Appl. Electrochem. 2002, 32, 193-196.
- 8. Kawagoe, K. T.; Johnson, D. C. J. Electrochem. Soc. 1994, 141, 3404-3408.
- Yeo, I. H.; Kim, S.; Jacobson, R.; Johnson, D. C. J. Electrochem. Soc. 1989, 136, 1395-1399. Velichenko, A. B.; Amadelli, R.; Zucchini, G. L.; Girenko, S. V.; Danilov, F. I. Electrochim. Acta 2000, 45, 4341-4345.
- 10. Hwang, B. J.; Lee, K. L. Thin Solid Films 1996, 279, 236-239.
- 11. Abaci, S.; Aslan (Udum), Y.; Yildiz, A. J. Mat. Sci 2005, 40, 1163-1167.
- 12. Munichandraiah, N. J. Appl. Electrochem. 1992, 22, 825-828.
- 13. Kordes, D. Chemie-Ing-Techn. 1966, 38, 638-640.
- 14. Ruetschi, P.; Sklarchuk, J.; Angstadt, R. T. Electrochim. Acta 1963, 8, 333-337.
- 15. Mindt, W. J. Electrochem. Soc. 1969, 116, 1076-1078.
- 16. Sexton, B.A.; Cotteril, G. F.; Fletcher, S.; Horne, M. D. J. Vac. Sci. Technol. A. 1990, 8, 544-548.

The Effect of Electrocatalytic Activity and Crystal..., S. ABACI, A. YILDIZ

- 17. Ho, J. C. K.; Tremiliosi, Filho, G.; Simpraga, R.; Conway, B. E. J. Electroanal. Chem. 1994, 366, 147-149.
- 18. Pavlov, D.; Monahov, B. J. Electrochem. Soc. 1996, 143, 3616-3618.
- 19. Pavlov, D.; Monahov, B. J. Electrochem. Soc. 1998, 145, 70-74.
- 20. Hyde, M.; Jacobs, R. M. J.; Compton R. G. J. Phys. Chem. B 2004, 108, 6381-6385.
- Velichenko, A. B.; Amadelli, R.; Benedetti, A.; Girenko, D. V.; Kovalyov, S. V.; Danilova, F. I. J. Electrochem. Soc. 2002, 149, C445-C449.
- 22. Abaci, S.; Pekmez, K.; Hokelek, T.; Yildiz, A. J. Pow. Sour. 2000, 88, 232-236.
- 23. Delamar, M.; Chehimi, M.; Dubois, J. J. Electroanal. Chem. 1984, 169, 145-149.
- 24. Malinauskas, A. Synth. Met. 1999, 107, 75-79.
- 25. Bartlett, P.; Tebbutt, P.; Tyrell C. Anal. Chem. 1992, 64, 138-141.
- 26. Garces, P.; Lapuente, R.; Andion, L.; Cases F.; Morallon, E.; Vazquez, J. Polymer Journal 2000, 32, 623-628.
- 27. Walter, M.; Ramaley, L. Anal. Chem. 1973, 45, 165-167.
- 28. Sertel, M.; Yildiz, A.; Baumgartel, H. Electrochim. Acta 1986, 31, 1625-1628.
- 29. Abaci, S.; Tamer, U.; Pekmez, K.; Yildiz A. Electrochim. Acta, 2005, 50, 3655-3659.
- 30. Lapuente, R.; Cases, F.; Garces, P.; Morallon, E.; Vazquez, J. L. J. Electroanal. Chem. 1998, 451, 163-167.
- 31. Bagshaw, N. E.; Clarke, R. L.; Halliwell, B. J. Appl. Electrochem. 1966, 16, 180-186.