Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety

Abdel-Galil El-Sayed AMR ${ }^{1, *}$, Naglaa Abdel-Samei ABDEL-HAFEZ ${ }^{1}$, Salwa Fahem MOHAMED ${ }^{1}$ and Mohamed Mostafa ABDALLA ${ }^{2}$
${ }^{1}$ Applied Organic Chemistry Department, National Research Centre, Dokki, Cairo-EGYPT
e-mail: aamr1963@yahoo.com
${ }^{2}$ Research Units, Hi-Care Pharmaceutical Co., Cairo-EGYPT

Received 19.11.2008

Abstract

We report herein the synthesis and antiarrhythmic activities of some newly synthesized heterocyclic theino[2,3-c] pyrimidine and theino[2,3-c] pyridine derivatives fused with thiophene moiety. Initially the acute toxicity of the compounds was assayed via the determination of their LD_{50}. The antiarrhythmic activities for the compounds were determined and all the tested compounds were found more potent than Procaine amide ${ }^{\circledR}$ and Lidocaine ${ }^{\circledR}$ as positive antiarrhythmic controls.

Key Words: Pyrimidine, pyrimidinethione, thiazolopyrimidine, antiarrhythmic activity.

Introduction

Our previous work reported that thiopyrimidines possess antimicrobial, ${ }^{1}$ anticonvulsant, ${ }^{2,3}$ antiarrhythmic, ${ }^{4}$ anti-inflammatory, ${ }^{5,6}$ and antitumor ${ }^{7-10}$ activities. In addition, we reported that certain of our newly prepared heterocyclic compounds exhibit antiparkinsonian, ${ }^{11}$ antitumor, ${ }^{12}$ antimicrobial ${ }^{13}$ and anti-inflammatory ${ }^{14}$ activities. On the other hand, many condensed heterocyclic systems, especially those linked to a pyrimidine ring, play an important role as potential medicinal agents and in cancer and virus research. ${ }^{15,16}$ Recent studies reported on the synthesis of some new thiazole candidates as antimicrobial and anticancer agents. ${ }^{17-20}$ In view of these reports and in continuation of our previous works in heterocyclic chemistry, we synthesized some new

[^0]Synthesis, reactions, and antiarrhythmic activities of..., A. G. E. S AMR, et al.,
thiopyrimidine and thiazolopyrimidines fused with thiophene ring for the evaluation of their antiarrhythmic activity compared to Procaine amide ${ }^{\circledR}$ and Lidocaine ${ }^{\circledR}$ as positive antiarrhythmic controls.

Experimental

Synthesis

Melting points were determined on an Electrothermal IA 9000 SERIES digital melting point apparatus (Electrothermal, Essex, UK) and are uncorrected. Elemental analyses were performed in the Microanalytical Unit, National Research Centre, Cairo, Egypt, and were found within $\pm 0.4 \%$ of the theoretical values. The IR spec$\operatorname{tra}(\mathrm{KBr})$ were recorded on a FT IR-8201 PC Spectrophotometer. The ${ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (67.5 MHz) spectra were measured with Jeol (Japan) in DMSO-d ${ }_{6}$ or CDCl_{3} as solvents. The chemical shifts were recorded (δ, ppm) relative to TMS. The mass spectra were run at 70 eV with a Finnigan SSQ 7000 spectrometer. All reactions were followed by TLC (silica gel, aluminum sheets $60 \mathrm{~F}_{254}$, Merck). All animals were obtained from the Animal House Colony, Research Institute of Ophthalmology, Giza, Egypt.

7-Alkyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-9-thia-1,3,7-triaza-fluoren-4-ones (3a,b)

A mixture of $\mathbf{2 a}, \mathbf{b}(10 \mathrm{mmol})$ and thiourea $(0.8 \mathrm{~g}, 10 \mathrm{mmol})$ was fused together in an oil bath at $180{ }^{\circ} \mathrm{C}$ for 3 h . The oily residue was solidified with ethanol, and the formed solid was collected by filtration, dried, and recrystallized from the appropriate solvent to give compounds $\mathbf{3 a}, \mathbf{b}$.

7-Ethyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-9-thia-1,3,7-triazafluoren-4-one (3a): Yield 65\%; mp 280-282 ${ }^{\circ} \mathrm{C}$ (dioxane). - IR [$\left.\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3340(\mathrm{NH}), 1665(\mathrm{C}=\mathrm{O}), 1260(\mathrm{C}=\mathrm{S}) .-{ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}$, $\left.\delta \mathrm{ppm}, \mathrm{DMSO}_{6}\right): 1.30\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.75$ and $2.85\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 9.50$ and $10.0\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 267\left[\mathrm{M}^{+}\right](32)$, corresponding to the molecular formula $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}_{2}$ and base peak at $252\left[\mathrm{M}^{+}{ }_{-} \mathrm{CH}_{3}\right]$ (100). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}_{2}$ (267.36): C, 49.42; H, 4.90; N, 15.72; S, 23.98. Found: C, 49.38; H, 4.86; N, 15.68; S, 23.94.

7-Propyl-2-thioxo-2,3, 5, 6, 7, 8-hexahydro-1H-9-thia-1,3,7-triazafluoren-4-one (3b): Yield 54\%; $\mathrm{mp} 270-272{ }^{\circ} \mathrm{C}$ (dioxane). - IR [$\left.\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3335(\mathrm{NH}), 1658(\mathrm{C}=\mathrm{O}), 1270(\mathrm{C}=\mathrm{S}) .{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}$, $\delta \mathrm{ppm}$, DMSO- ${ }_{6}$) : $1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.60$ and $2.80(2 \mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 10.50$ and $11.00\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$. - ${ }^{13} \mathrm{C}-\mathrm{NMR}(67.5 \mathrm{MHz}$, $\left.\delta \mathrm{ppm}, \mathrm{DMSO}_{6}\right): 11.2\left(\mathrm{CH}_{3}\right), 20.9,23.0,52.1,55.95$ and $58.05\left(\mathrm{C}_{5}\right), 160.12(\mathrm{C}=\mathrm{O}), 174.10(\mathrm{C}=\mathrm{S}), 115.85$, 126.05, 135.80 and 169.10 (thiophene carbons). $-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 281\left[\mathrm{M}^{+}\right]$(12), corresponding to the molecular formula $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}_{2}$ and base peak at $266\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right]$ (100). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}_{2}$ (281.39): C, 51.22; H, 5.37; N, 14.93; S, 22.79. Found: C, 51.18; H, 5.32; N, 14.88; S, 22.75.

7-Alkyl-2-methyl-5,6,7,8-tetrahydro-1H-9-thia-1,3,7-triazafluoren-4-ones (4a,b)

A stream of dry hydrogen chloride gas was passed through a solution of $\mathbf{2 a}, \mathbf{b}(1 \mathrm{mmol})$ and acetonitrile (10 $\mathrm{mL})$ in ethanol (100 mL) for 3 h with stirring at room temperature. The reaction mixture was poured onto ice water and basified with potassium bicarbonate. The solid formed was collected by filtration and recrystallized from the appropriate solvent to yield compounds $\mathbf{4 a}, \mathbf{b}$.

7-Ethyl-2-methyl-5, 6, 7, 8-tetrahydro-1H-9-thia-1,3,7-triazafluoren-4-one (4a): Yield 82\%; mp $250-252{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3380(\mathrm{NH}), 1645(\mathrm{C}=\mathrm{O}) ;-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}\right.$, DMSO- $\left.\mathrm{d}_{6}\right):$ $1.20\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.85$ and $2.92\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.70(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $11.50\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \delta \mathrm{ppm}\right.$, DMSO-d $\left.{ }_{6}\right): 13.30,25.00$ $\left(2 \mathrm{CH}_{3}\right), 22.75,48.55,52.10$ and $58.00\left(\mathrm{C}_{4}\right), 162.90(\mathrm{C}=\mathrm{O}), 163.77(\mathrm{C}=\mathrm{N}), 126.50,135.65,144.58$ and 169.05 (thiophene carbons); -MS m/z (\%): $249\left[\mathrm{M}^{+}\right]$(8), corresponding to the molecular formula $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ and base peak at $192\left[\mathrm{M}^{+}-\mathrm{NH}-\mathrm{CCH}_{3}-\mathrm{NH}\right]$ (100). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$ (249.33): C, 57.81; H, 6.06; N, 16.85; S, 12.86. Found: C, 57.76; H, 6.00; N, 16.80; S, 12.79.

7-Propyl-2-methyl-5, 6, 7,8-tetrahydro-1H-9-thia-1,3, 7-triazafluoren-4-one (4b): Yield 85\%; mp 249-250 ${ }^{\circ} \mathrm{C}$ (dioxane). - IR [$\left.\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]$: $3385(\mathrm{NH}), 1640(\mathrm{C}=\mathrm{O}) ;-{ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}, \delta \mathrm{ppm}$, $\left.\mathrm{CDCl}_{3}\right): 0.90\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70$ and $2.90(2 \mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 10.50\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 263\left[\mathrm{M}^{+}\right](4)$, corresponding to the molecular formula $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}$ and base peak at 234 [$\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}$] (100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}(263.35):$ C, $59.29 ; \mathrm{H}, 6.51 ; \mathrm{N}, 15.96 ; \mathrm{S}, 12.17$. Found: C, 59.24; H, 6.48; N, 15.90; S, 12.13 .

Ethyl 2-acetylamino-6-alkyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylates (5a,b)

A solution of $\mathbf{2 a} \mathbf{a} \mathbf{b}(10 \mathrm{mmol})$ in acetic anhydride (10 mL) was heated under reflux for 2 h . The solvent was evaporated under reduced pressure and the residue was extracted with ethyl acetate then solidified with diethyl ether. The obtained solid was filtered off and recrystallized from the appropriate solvent to give compounds 5a,b.

Ethyl 2-acetylamino-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (5a) ${ }^{21}$: Yield 48%; mp $110-112{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3304(\mathrm{NH}), 1725(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.10$ and $1.40\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.78-$ $2.96\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.50\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 11.50\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$. -MS m/z (\%): $296\left[\mathrm{M}^{+}\right]$(12), corresponding to the molecular formula $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ and base peak at 252 $\left[\mathrm{M}^{+}{ }_{-} \mathrm{COCH}_{3}\right]$ (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (296.38): C, $56.74 ; \mathrm{H}, 6.80 ; \mathrm{N}, 9.45 ; \mathrm{S}, 10.82$. Found: C, 56.70; H, 6.76; N, 9.41; S, 10.77.

Ethyl 2-acetylamino-6-propyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (5b): Yield 40%; mp $100-102{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3310(\mathrm{NH}), 1735(\mathrm{C}=\mathrm{O}), 1665(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.90$ and $1.10\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.30-1.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)$, $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.60,2.80\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.50\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 11.05(\mathrm{bs}, 1 \mathrm{H}$, NH , exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 11.42,13.74,22.52\left(3 \mathrm{CH}_{3}\right)$, 21.00, $23.08,52.98,56.00,58.44$ and $60.42\left(\mathrm{C}_{6}\right), 159.40,168.38(2 \mathrm{C}=\mathrm{O}), 98.85,123.00,128.45$ and 176.32 (thiophene carbons). -MS m/z (\%): $310\left[\mathrm{M}^{+}\right]$(8), corresponding to the molecular formula $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ and base peak at $281\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5}\right]$ (100). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ (310.41): C, 58.04; H, 7.14; N, 9.02; S, 10.33 . Found: C, 57.98 ; H, 7.10 ; N, 8.98; S, 10.28.

Ethyl 6-alkyl-2-(4,5,6,7-tetrachloro-1,3-dioxo-1,3,4,5-tetrahydroisoindol-2-yl)-4,5,6,7-tetrah-ydrothieno[2,3-c]pyridine-3-carboxylates (6a,b)

A mixture of $\mathbf{2 a} \mathbf{a} \mathbf{b}(1 \mathrm{mmol})$ and $3,4,5,6$-tetrachlorophthalic anhydride $(0.28 \mathrm{~g}, 1 \mathrm{mmol})$ in glacial acetic acid (10 mL) was refluxed for 3 h . The solvent was concentrated under reduced pressure and the solid formed

Synthesis, reactions, and antiarrhythmic activities of..., A. G. E. S AMR, et al.,
was collected by filtration, dried and recrystallized from the appropriate solvent to give the imide $\mathbf{6 a}, \mathbf{b}$.
Ethyl 6-ethyl-2-(4,5,6,7-tetrachloro-1,3-dioxo-1,3,4,5-tetrahydroisoindol-2-yl)-4,5,6,7-tetrah-ydrothieno[2,3-c]pyridine-3-carboxylate (6a): Yield 65\%; mp 210-212 ${ }^{\circ} \mathrm{C}$ (DMF). - IR [ν, cm^{-1}, KBr]: $1730(\mathrm{C}=\mathrm{O}), 1720\left(\mathrm{CO}\right.$, imide); $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.00$ and $1.30\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.60(\mathrm{q}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.70$ and $2.80\left(2 \mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 520\left[\mathrm{M}^{+}\right]$ (16), corresponding to the molecular formula $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ and base peak at 491 [M^{+}- Et$]$ (100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (522.23): C, 46.00; H, 3.09; Cl, 27.16; $\mathrm{N}, 5.36 ; \mathrm{S}, 6.14$. Found: C, 45.96; H, 3.00; Cl, 27.12; N, 5.32; S, 6.10.

Ethyl 6-propyl-2-(4,5,6,7-tetrachloro-1,3-dioxo-1,3,4,5-tetrahydroisoindol-2-yl)-4,5,6,7-tet-rahydrothieno[2,3-c]pyridine-3-carboxylate (6b): Yield 76\%; mp 220-222 ${ }^{\circ} \mathrm{C}$ (DMF). - IR [ν, cm^{-1}, $\mathrm{KBr}]: 1735(\mathrm{C}=\mathrm{O}), 1715\left(\mathrm{C}=\mathrm{O}\right.$, imide) $\cdot{ }^{-1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.90$ and $1.20\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, 1.28-1.32 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.60,2.80\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.50(\mathrm{q}, 2 \mathrm{H}$, CH_{2}). -MS m/z (\%): $534\left[\mathrm{M}^{+}\right]$(24), corresponding to the molecular formula $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ and base peak at $507\left[\mathrm{M}^{+}{ }_{-} \mathrm{C}_{2} \mathrm{H}_{5}\right]$ (100). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ (536.25): C, 47.04; $\mathrm{H}, 3.38 ; \mathrm{Cl}, 26.44 ; \mathrm{N}$, $5.22 ;$ S, 5.98 . Found: C, $46.99 ;$ H, $3.34 ; \mathrm{Cl}, 26.40 ;$ N, $5.18 ; \mathrm{S}, 5.92$.

Ethyl 6-alkyl-2-[6-(6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl)-1,3,5,7-tetra-oxo-3, 5,6,7-tetrahydro-1H-pyrrolo[3,4-f]isoindol-2-yl]-4,5,6,7-tetrahydrothieno[2,3-c]-pyridine-3-carboxylates (7a,b)

A mixture of $\mathbf{2 a}, \mathbf{b}(2 \mathrm{mmol})$ and $1,2,4,5$-benzenetetracarboxylic acid dianhydride ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$) in glacial acetic acid (10 mL) was heated under reflux for 3 h . The formed solid was filtered off, dried, and recrystallized from the appropriate solvent to yield bis-imides $\mathbf{7 a}, \mathbf{b}$.

Ethyl 6-ethyl-2-[6-(6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl)-1,3,5,7-tetra-oxo-3, 5, 6, 7-tetrahydro-1H-pyrrolo[3,4-f]isoindol-2-yl]-4,5,6,7-tetrahydrothieno[2,3-c]-pyridine-3-carboxylate (7a): Yield 65%; mp $245-247^{\circ} \mathrm{C}(\mathrm{AcOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3175(\mathrm{Ar}-\mathrm{H}), 1736(\mathrm{C}=\mathrm{O}), 1718(\mathrm{C}=\mathrm{O}$, imide). ${ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.00$ and $1.30\left(2 \mathrm{t}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 2.60\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}\right), 2.70$ and $2.80\left(2 \mathrm{t}, 8 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.30\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 8.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 690\left[\mathrm{M}^{+}\right]$ (18), corresponding to the molecular formula $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}$ and base peak at $632\left[\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{NC}_{2} \mathrm{H}_{5}\right](100)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}$ (690.78): C, 59.12; H, 4.96; N, 8.11; S, 9.28. Found: C, 59.07; H, 4.91; N, 8.06; S, 9.22.

Ethyl 6-propyl-2-[6-(6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl)-1,3,5,7-tetra-oxo-3, 5, 6, 7-tetrahydro-1H-pyrrolo[3,4-f]isoindol-2-yl]-4,5,6,7-tetrahydrothieno[2,3-c]-pyridine-3-carboxylate (7b): Yield 70%; mp 235-237 ${ }^{\circ} \mathrm{C}(\mathrm{AcOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3190(\mathrm{Ar}-\mathrm{H}), 1732(\mathrm{C}=\mathrm{O}), 1715(\mathrm{C}=\mathrm{O}$, imide). - ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.90$ and $1.10\left(2 \mathrm{t}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right), 1.30-1.50\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.40$ $\left(\mathrm{t}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{~N}\right), 2.60$ and $2.80\left(2 \mathrm{t}, 8 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 4.40\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 8.50(\mathrm{~s}, 2 \mathrm{H}$, Ar-H). -MS m/z (\%): $718\left[\mathrm{M}^{+}\right]$(35), corresponding to the molecular formula $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}$ and base peak at $660\left[\mathrm{M}^{+}-\mathrm{NC}_{3} \mathrm{H}_{7}\right]$ (100). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}$ (718.83): C, 60.15; H, 5.33; N, 7.74; S, 8.92. Found: C, 60.09; H, 5.28; N, 7.70; S, 8.88.

Ethyl 6-alkyl-2-(3-phenylureido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylates (8a,b)

A mixture of 2a,b (10 mmol) and phenylisocyanate ($1.3 \mathrm{~g}, 10 \mathrm{mmol}$) was heated on a steam bath at $80{ }^{\circ} \mathrm{C}$ for 1 h . The obtained residue was triturated and solidified with a small amount of ethanol, filtered off, dried, and recrystallized from the appropriate solvent to give semicarbazide derivatives $\mathbf{8 a}, \mathbf{b}$.

Ethyl 6-ethyl-2-(3-phenylureido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (8a): Yield 74%; mp 135-137 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. - IR [$\left.\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3310(\mathrm{NH}), 3150(\mathrm{Ar}-\mathrm{H}), 1710(\mathrm{C}=\mathrm{O}), 1680(\mathrm{C}=\mathrm{O})$. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.10$ and $1.30\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.50\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.60$ and $2.80(2 \mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.50-7.58(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 11.10$ and $11.30(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 373\left[\mathrm{M}^{+}\right](12)$, corresponding to the molecular formula $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ and base peak at $328\left[\mathrm{M}^{+}{ }_{-} \mathrm{OEt}\right]$ (100). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (373.46): C, 61.11; H, 6.21; N, 11.25; S, 8.58. Found: C, 60.98; H, 6.16; N, 11.19; S, 8.52.

Ethyl 6-propyl-2-(3-phenylureido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (8b): Yield 70%; mp $130-132{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3340(\mathrm{NH}), 3160(\mathrm{Ar}-\mathrm{H}), 1715(\mathrm{C}=\mathrm{O}), 1675(\mathrm{C}=\mathrm{O})$. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.90$ and $1.30\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.40-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.50(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.60$ and $2.80\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.40-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 10.70 and $10.90\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 387\left[\mathrm{M}^{+}\right](16)$, corresponding to the molecular formula $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ and base peak at 358 [M^{+}- Et] (100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (387.49): C, 61.99; H, 6.50; N, 10.84; S, 8.27. Found: C, 61.93; H, 6.46; N, 10.80; S, 8.24.

Ethyl 6-alkyl-2-(3-phenylthioureido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylates (9a,b)

A mixture of $\mathbf{2 a} \mathbf{a} \mathbf{b}(10 \mathrm{mmol})$ and phenylisothiocyanate $(1.3 \mathrm{~g}, 10 \mathrm{mmol})$ was heated on a steam bath $\left(90{ }^{\circ} \mathrm{C}\right)$ for 2 h in the presence of a few drops of triethylamine as a catalyst. The obtained residue was triturated with ethanol and the formed solid was filtered off, dried, and recrystallized from the appropriate solvent to yield thiosemicarbazide derivatives $\mathbf{9 a}, \mathbf{b}$.

Ethyl 6-ethyl-2-(3-phenylthioureido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (9a): Yield 70%; mp $160-162{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3320(\mathrm{NH}), 3165(\mathrm{Ar}-\mathrm{H}), 1715$ (C=O), $1270(\mathrm{C}=\mathrm{S}) .-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.20$ and $1.40\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.50\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70$ and $2.90\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.20\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.45-7.50(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 10.45$ and 11.50 $\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 13.05,13.86\left(2 \mathrm{CH}_{3}\right), 23.15$, $48.90,52.32,58.18$ and $60.25\left(\mathrm{C}_{5}\right), 159.16(\mathrm{C}=\mathrm{O}), 180.5(\mathrm{C}=\mathrm{S}), 124.24,126.15,128.78,136.35(\mathrm{Ph}-\mathrm{C}), 113.18$, 129.55, 135.0 and 164.66 (thiophene carbons). $-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 389\left[\mathrm{M}^{+}\right]$, corresponding to the molecular formula $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ and base peak at $344\left(\mathrm{M}^{+}{ }_{-} \mathrm{OEt}\right]$ (100). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ (389.53): C, 58.59 ; H, 5.95; N, 10.79; S, 16.46. Found: C, 58.54; H, 5.92; N, 10.74; S, 16.42.

Ethyl 6-propyl-2-(3-phenylthioureido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (9b): Yield 75%; mp $150-152{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3315$ (NH), 3175 (Ar-H), 1710 (C=O), $1260(\mathrm{C}=\mathrm{S}) .{ }^{-1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 0.90$ and $1.20\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.40-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.40\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.60$ and $2.80\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.10\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.40-7.48(\mathrm{~m}, 5 \mathrm{H}$, Ar-H), 10.68 and $12.10\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 403\left[\mathrm{M}^{+}\right](23)$, corresponding to the molecular formula $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ and base peak at 374 [M ${ }^{+}$- Et$]$ (100). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$

Synthesis, reactions, and antiarrhythmic activities of..., A. G. E. S AMR, et al.,
(403.55): C, 59.53; H, 6.24; N, 10.41; S, 15.89. Found: C, 59.48; H, 6.20; N, 10.38; S, 15.83.

7-Alkyl-3-phenyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-9-thia-1,3,7-triazafluoren-4-ones (10a,b)

A mixture of $\mathbf{9 a}, \mathbf{b}(10 \mathrm{mmol})$ and polyphosphoric acid $(10 \mathrm{~mL})$ in the presence of glacial acetic acid (2 mL) was heated on a steam bath at $100{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was poured onto ice water and the solid formed was collected, dried, and recrystallized from the appropriate solvent to yield thiopyrimidine derivatives 10a,b.

7-Ethyl-3-phenyl-2-thioxo-2,3,5, 6, 7,8-hexahydro-1H-9-thia-1,3,7-triazafluoren-4-one (10a): Yield 55%; mp $95-97{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. - IR [$\left.\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3318(\mathrm{NH}), 3165$ (Ar-H), 1648 ($\mathrm{C}=\mathrm{O}$), 1255 ($\mathrm{C}=\mathrm{S}$). $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.10\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60$ and $2.80\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.44-7.52(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.80\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}(67.5 \mathrm{MHz}$, $\left.\delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 13.0\left(\mathrm{CH}_{3}\right), 22.88,48.88,52.05$ and $58.10\left(\mathrm{C}_{4}\right), 160.35(\mathrm{C}=\mathrm{O}), 178.86(\mathrm{C}=\mathrm{S}), 121.16,124.14$, $129.05,132.15$ (Ph-C), 116.0, 126.16, 135.75 and 169.18 (thiophene carbons). -MS m/z (\%): $343\left[\mathrm{M}^{+}\right](18)$, corresponding to the molecular formula $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}$ and base peak at 314 [M ${ }^{+}$-Et] (100). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}$ (343.46): C, $59.45 ; \mathrm{H}, 4.99 ; \mathrm{N}, 12.23 ; \mathrm{S}, 18.67$. Found: C, $59.40 ; \mathrm{H}, 4.94 ; \mathrm{N}, 12.18 ; \mathrm{S}, 18.63$.

7-Propyl-3-phenyl-2-thioxo-2,3,5,6,7,8-hexahydro-1H-9-thia-1,3,7-triazafluoren-4-one (10b): Yield 72%; mp $105-107{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\operatorname{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3330(\mathrm{NH}), 3175(\mathrm{Ar}-\mathrm{H}), 1655(\mathrm{C}=\mathrm{O}), 1250(\mathrm{C}=\mathrm{S})$. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 1.10\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.50$ and $2.70\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.35\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.38-7.58(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 10.06(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$. - MS m/z (\%): $357\left[\mathrm{M}^{+}\right]$(15), corresponding to the molecular formula $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}_{2}$ and base peak at $328\left[\mathrm{M}^{+}\right.$-Et] (100). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}_{2}$ (357.48): C, $60.48 ; \mathrm{H}, 5.36 ; \mathrm{N}, 11.75 ; \mathrm{S}, 17.94$. Found: C, 60.42; H, 5.33; N, 11.71; S, 17.90.

Ethyl 2-(3-allylthioureido)-6-alkyl-4,5,6,7-tetrahydrotheino[2,3-c]pyridine-3-carboxylates (11a,b)

A mixture of $\mathbf{2 a}, \mathbf{b}(10 \mathrm{mmol})$ and allyl isothiocyanate $(10 \mathrm{mmol})$ was heated on a steam bath for 2 h at 90 ${ }^{\circ} \mathrm{C}$. The solid formed was triturated and solidified with a small amount of ethanol, filtered off, dried, and recrystallized from the appropriate solvent to give isothioureas 11a,b.

Ethyl 2-(3-allylthioureido)-6-ethyl-4,5,6,7-tetrahydrotheino[2,3-c]pyridine-3-carboxylate (11a): Yield 60%; mp $170-172{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3315(\mathrm{NH}), 1716(\mathrm{C}=\mathrm{O}), 1265(\mathrm{C}=\mathrm{S})$. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right): 1.00$ and $1.20\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $2.60\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.90-3.15(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.40\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.10-5.30\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.70-5.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 9.80$ and $10.50\left(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 353\left[\mathrm{M}^{+}\right](35)$, corresponding to the molecular formula $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ and base peak at 308 [$\left.\mathrm{M}^{+}{ }_{-} \mathrm{OEt}\right]$ (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ (353.49): C, 54.36; H, 6.56; N, 11.89; S, 18.14. Found: C, 54.30; H, 6.52; N, 11.85; S, 18.10.

Ethyl 2-(3-allylthioureido)-6-propyl-4,5,6,7-tetrahydrotheino[2,3-c]pyridine-3-carboxylate (11b): Yield 65% mp $160-162{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 3325(\mathrm{NH}), 1712(\mathrm{C}=\mathrm{O}), 1255(\mathrm{C}=\mathrm{S})$. $-{ }^{1} \mathrm{H}-\mathrm{NMR}\left(270 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{DMSO}_{6}\right): 1.00$ and $1.20\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.50-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 2.60-2.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.50\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 5.20-5.55\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 5.80-5.85$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 10.50\left(\mathrm{bs}, 2 \mathrm{H}, 2 \mathrm{NH}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .-{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 11.18$
and $14.08\left(2 \mathrm{CH}_{3}\right), 21.04,23.05,48.65,52.98,56.0,58.42$ and $60.28\left(\mathrm{C}_{7}\right), 115.86,134.42\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 159.80$ $(\mathrm{C}=\mathrm{O}), 181.3(\mathrm{C}=\mathrm{S}), 113.08,129.09,135.22$ and 164.08 (thiophene carbons). -MS m/z (\%): $367\left[\mathrm{M}^{+}\right](100)$, corresponding to the molecular formula $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ and also as base peak. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$ (367.52): C, 55.56 ; H, 6.86 ; N, 11.43; S, 7.45. Found: C, $55.50 ;$ H, 6.82 ; N, 11.38; S, 7.40.

7-Alkyl-2-methyl-5,6,7,8-tetrahydro-1,9-dithia-3a,7,10-triazacyclopenta[b]fluoren-4-ones (12a,b)

Dry hydrogen chloride acid gas was passed through a refluxing solution of thiourea derivatives 11a,b (10 mmol) in absolute ethanol $(10 \mathrm{~mL})$ for 3 h . The reaction mixture was concentrated under reduced pressure and the residue was basified with 5% sodium bicarbonate solution. The obtained precipitate was collected, dried, and recrystallized from the appropriate solvent to yield thiazolopyrimidines 12a,b.

7-Ethyl-2-methyl-5, 6, 7, 8-tetrahydro-1,9-dithia-3a, 7,10-triazacyclopenta[b]fluoren-4-one

(12a): Yield 58%; mp $145-147{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .-\mathrm{IR}\left[\nu, \mathrm{cm}^{-1}, \mathrm{KBr}\right]: 1670(\mathrm{C}=\mathrm{O}) .{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}, \delta$ ppm, $\left.\mathrm{CDCl}_{3}\right): 1.20\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.40\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.60$ and $2.80\left(2 \mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $3.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) .-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 305\left[\mathrm{M}^{+}\right](72)$, corresponding to the molecular formula $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}_{2}$ and base peak at $262\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}\right]$ (100). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}_{2}$ (305.44): C, 55.06 ; H, 4.95; N, 13.76; S, 20.99. Found: C, 54.98; H, 4.91; N, 13.70; S, 20.95.

7-Propyl-2-methyl-5, 6, 7,8-tetrahydro-1,9-dithia-3a,7,10-triazacyclopenta[b]fluoren-4-one

(12b): Yield 68%; mp $140-142{ }^{\circ} \mathrm{C}(\mathrm{EtOH})$. - IR [ν, cm^{-1}, KBr$]: 1660(\mathrm{C}=\mathrm{O}) .{ }^{-1} \mathrm{H}-\mathrm{NMR}(270 \mathrm{MHz}, \delta$ ppm, $\left.\mathrm{CDCl}_{3}\right): 0.95\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10-1.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.30\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65-2.80$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(67.5 \mathrm{MHz}, \delta \mathrm{ppm}, \mathrm{CDCl}_{3}\right): 11.22,23.3(2$ $\left.\mathrm{CH}_{3}\right), 21.14,23.10,56.02,52.15$ and $58.06\left(\mathrm{C}_{5}\right), 163.01(\mathrm{C}=\mathrm{N}), 165.20(\mathrm{C}=\mathrm{O}), 123.95,125.35(\mathrm{C}=\mathrm{C}), 126.24$, 136.0, 155.33 and 177.18 (thiophene carbons). $-\mathrm{MS} \mathrm{m} / \mathrm{z}(\%): 319\left[\mathrm{M}^{+}\right](100)$, corresponding to the molecular formula $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}$ (319.47): C, 56.40; H, 5.36; N, 13.15; S, 20.07. Found: C, 56.34; H, 5.32; N, 13.12; S, 19.96.

Pharmacological screening

Determination of acute toxicity $\left(\mathrm{LD}_{50}\right)$
The $L D_{50}$ was determined using rats (Table 1). The synthesized final compounds were injected in different increasing doses. The dose that killed 50% of the animals was calculated according to Austen et al. ${ }^{22}$

Antiarrhythmic activity ${ }^{23-28}$

Procedure

Male Ivanovas rats weighing $300-350 \mathrm{~g}$ were used. The animals were anesthetized by intraperitoneal injection of $1.25 \mathrm{~g} / \mathrm{kg}$ urethane; $5 \mathrm{mg} / \mathrm{kg}$ aconitine dissolved in $0.1 \mathrm{~N} \mathrm{HNO}_{3}$ was administered by continuous infusion into the saphenous vein by $0.1 \mathrm{~mL} / \mathrm{min}$ and the ECG in lead II was recorded every 30 s . The tested compound was injected at a screening dose of $3 \mathrm{mg} / \mathrm{kg} 5 \mathrm{~min}$ before the start of the aconitine infusion; 24 animals were used per compound.

Synthesis, reactions, and antiarrhythmic activities of..., A. G. E. S AMR, et al.,

Evaluation

The antiarrhythmic effect of a tested compound was measured by the amount of aconitine/ 100 g animal (duration of infusion) that induces

- Ventricular extra systoles.
- Ventricular tachycardia.
- Ventricular fibrillation.

Higher doses of aconitine in the treated group as compared to an untreated control group are an indication of antiarrhythmic activity. Statistical significance between the groups was assessed by Student's t-test.

Results and discussion

Chemistry

2-Amino-3-carbethoxy-5-alkyl-4,5,6,7-tetrahydrotheino[2,3-c] pyridines $\mathbf{2 a} \mathbf{a}, \mathbf{b}$ were prepared from N-alkylpiperidone $\mathbf{1 a} \mathbf{a} \mathbf{b}$, ethyl cyanoacetate, and sulfur powder in ethanol in the presence of diethyl amine as a catalyst according to a known method ${ }^{29}$ (Figure 1).

Figure 1. Synthesis of the starting compounds $\mathbf{2 a} \mathbf{a} \mathbf{b}$.

Compounds $\mathbf{2 a}, \mathbf{b}$ and thiourea were fused together without solvent at $180^{\circ} \mathrm{C}$ to yield the corresponding thiopyrimidine derivatives $\mathbf{3 a} \mathbf{a} \mathbf{b}$. Moreover, compounds $\mathbf{2 a} \mathbf{a} \mathbf{b}$ were reacted with acetonitrile in ethanol during bubbling dry hydrogen chloride gas with stirring at room temperature to afford the methyl pyrimidone derivatives $\mathbf{4 a}, \mathbf{b}$. Acetylation of $\mathbf{2 a}, \mathbf{b}$ with acetic anhydride yielded N-acetyl theino[2,3-c]pyridine derivatives $\mathbf{5 a}, \mathbf{b}$, while $\mathbf{2 a}, \mathbf{b}$ were condensed with $3,4,5,6$-tetrachlorophthalic anhydride or $1,2,4,5$-benzenetetra-carboxylic acid dianhydride in refluxing glacial acetic acid to afford the corresponding imides $\mathbf{6 a}, \mathbf{b}$ and bis-imides $\mathbf{7 a , b}$, respectively (Figure 2).

2a,b

a, $R=E t$
X = COOEt
b, $R=P r$

4a,b
$\stackrel{4}{4}$
6a,b

Figure 2. Synthetic route of compounds 3-7.
Heating of $\mathbf{2 a} \mathbf{a} \mathbf{b}$ with phenyl isocyanate on the steam bath at $80{ }^{\circ} \mathrm{C}$ afforded the corresponding semicarbazide derivatives $\mathbf{8 a}, \mathbf{b}$. Similarly, compounds $\mathbf{2 a} \mathbf{a} \mathbf{b}$ were reacted with phenyl isothiocyanate or allyl isothiocyanate at $90{ }^{\circ} \mathrm{C}$ in the presence of triethylamine as a catalyst to give thiosemicarbazides $\mathbf{9 a} \mathbf{a} \mathbf{b}$ and $\mathbf{1 1 a , b}$, which were cyclized with refluxing polyphosphoric acid (PPA) or by passing dry hydrogen chloride gas in refluxing ethanol to yield the corresponding thiopyrimidines 10a,b and thiazolopyrimidines $\mathbf{1 2 a}, \mathbf{b}$, respectively (Figure 3).

Pharmacological screening.

Initially the acute toxicity of the compounds was assayed by determining their $L D_{50}$. Interestingly, all the synthesized compounds were less toxic (Table 1).

Then the newly synthesized compounds were pharmacologically screened for their antiarrhythmic activities (Table 2).

Synthesis, reactions, and antiarrhythmic activities of..., A. G. E. S AMR, et al.,

Figure 3. Synthetic route of compounds 8-12.

Antiarrhythmic activities

Purpose and rational

The plant alkaloid aconitine persistently activates the sodium channel. Infusion of aconitine in the anesthetized rat causes ventricular arrhythmias. Drugs considered to have antiarrhythmic properties can be tested in aconitine-intoxicated rats.

All the tested compounds showed antiarrhythmic activities more than that of the reference standards Lidocaine and Procain amide and the activity in descending order was $\mathbf{1 2 b}, \mathbf{7 a}, \mathbf{8 b}, \mathbf{1 0 a}, \mathbf{6 a}, \mathbf{2 a}, \mathbf{1 0 b}, \mathbf{3 b}$, $\mathbf{6 b}, \mathbf{3 a}, 4 \mathrm{~b}, 8 \mathrm{a}, 7 \mathrm{~b}, 12 \mathrm{a},(4 \mathrm{a}, 9 \mathrm{~b}), 11 \mathrm{a}, 2 \mathrm{~b}$, and $\mathbf{9 a}$. Compounds $12 \mathrm{~b}, 7 \mathrm{a}$, and 8 b are the most potent derivatives.

Structure-activity relationship (SAR) for anti-arrhythmic activities

From the results shown in Table 2, we can deduce that the antiarrhythmic activity is due to the following:

- Theino[2,3-c] pyridine moiety is essential for potency

Synthesis, reactions, and antiarrhythmic activities of..., A. G. E. S AMR, et al.,

- Cyclic carbamates $\mathbf{1 0}$ and $\mathbf{1 2}$ are more active than acyclic ones $\mathbf{9}$ and $\mathbf{1 1}$.
- Bis-theino[2,3-c]pyridine 7a sharply increases the activities.
- N-phenyl moiety sharply increases the activity compared with allyl substituted and non-substituted ones.

Table 1. Acute toxicity (LD_{50}) of the synthesized compounds.

Compound	$\mathrm{LD}_{50}[\mathrm{mg} / \mathrm{kg}]$
2 a	313.33 ± 0.25
2 b	409.29 ± 0.33
3 a	338.87 ± 0.47
3 b	211.85 ± 0.39
4 a	487.49 ± 0.33
4 b	240.98 ± 0.49
6 a	196.56 ± 0.29
6 b	201.87 ± 0.39
7 a	256.52 ± 0.37
7 b	234.49 ± 0.32
8 a	328.67 ± 0.42
8 b	278.46 ± 0.37
9 a	417.37 ± 0.43
9 b	337.99 ± 0.31
10 a	234.76 ± 0.35
10 b	229.84 ± 0.26
11 a	409.31 ± 0.44
12 a	447.75 ± 0.22
12 b	231.41 ± 0.28

Table 2. Antiarrhythmic activities of the synthesized compounds.

Compound in $(5 \mathrm{mg} / \mathrm{kg})$	Percentage increase in LD_{100}
2 a	81
2 b	68
3 a	75
3 b	77
4 a	70
4 b	74
6 a	82
6 b	76
7 a	88
7 b	72
8 a	73
8 b	86
9 a	66
9 b	70
10 a	84
10 b	80
11 a	69
12 a	71
12 b	91
Procaine amide	65
Lidocaine	65

References

1. Amr, A. E. Ind. J. Heterocycl. 2000, 10, 49-58.
2. Amr, A. E.; Sayed, H. H.; Abdulla, M. M. Arch. Pharm. Chem. Life Sci. 2005, 338, 433-440.
3. Abd El-Latif, N. A.; Amr, A. E.; Ibrahim, A. A. Monatsh. Chem. 2007, 138, 559-567.
4. Shalaby, A. F. A.; Abdulla, M. M.; Amr, A. E.; Hussain, A. A. Monatsh. Chem. 2007, 138, 1019-1027.
5. Amr, A. E.; Abdulla, M. M. Ind. J. Heterocycl. 2002, 12, 129-134.

Synthesis, reactions, and antiarrhythmic activities of..., A. G. E. S AMR, et al.,
6. Ouf, N. H.; Amr, A. E. Monatsh. Chem. 2008, 139, 579-585.
7. Amr, A. E.; Mohamed, A. M.; Mohamed, S. F.; Abdel-Hafez, N. A.; Hammam, A. G. Bioorg. Med. Chem. 2006, 14, 5481-5488.
8. Hammam, A. G.; Fahmy, A. F. M.; Amr, A. E.; Mohamed, A. M. Ind. J. Chem. 2003, 42B, 1985-1993.
9. Hammam, A. G.; Sharaf, M. A.; Abdel-Hafez, N. A. Ind. J. Chem. 2001, 40B, 213-221.
10. Hammam, A. G.; Abdel-Hafez, N. A.; Midura, W. H.; Mikolajczyk, M. Z. Naturforsch. 2000, 55b, 417-424.
11. Amr, A. E.; Hegab, M. I.; Ibrahim, A. A.; Abdalah, M. M. Monatsch Chem. 2003, 134, 1395-1409.
12. Abo-Ghalia, M. H.; Amr, A. E. Amino Acids 2004, 26, 283-289.
13. Attia, A.; Abdel-Salam, O. I.; Amr, A. E.; Stibor, I.; Budesinsky, M. Egypt. J. Chem. 2000, 43, 187-201.
14. Amr, A. E.; Abdulla, M. M. Ind. J. Heterocycl. Chem. 2002, 12, 129-134.
15. Edward, C. T.; Bin, L. J. Org. Chem. 2003, 68, 9938-9947.
16. Broom, A. B.; Shim, J. L.; Anderson, G. L. J. Org. Chem. 1976, 41, 1095-1099.
17. Bonde, C. G.; Gaikwad, N. J. Bioorg. Med. Chem. 2004, 12, 2151-2161.
18. Kucukguzel, G.; Kocatepe, A.; DeClercq, E.; Sahin, F.; Gulluce, M. Eur. J. Med. Chem. 2006, 41, 353-359.
19. Vicini, P.; Geroniki, A.; Anastasia, K.; Incerti, M.; Zani, F. Bioorg. Med. Chem. 2006, 14, 3859-3864.
20. Zhou, X.; Shao. L.; Jin, Z.; Liu, J. B.; Dai, H.; Fang, J.X. Heteroatom. Chem. 2007, 18, 55-59.
21. Leonid, G. V.; Anna, V. L.; Tatiana, N. B.; Svetlana, A. K.; Roman, S. B.; Alexey, V. V. Tetrahedron, 2008, 64, 10443-10452.
22. Austen, K. F.; Brocklehurst, W. E. J. Exp. Med. 1961, 113, 521-539.
23. Walker, M. J. A.; Curtius, M. J.; Hearse, D. J.; Campbell, R. W. F.; Jams, M. J.; Yellon, D. M.; Coker, S. M.; Harness, J. B.; Harron, D. W. J.; Miggins, A. J.; Julian, D. G.; Lab, M. J.; Manning, A. S.; Northover, B. J.; Parratt, J. R.; Riemrsma, R. A.; Riva, A.; Russell, D. C.; Sheridan, D. J.; Winslow, E.; Woodward, B. Cardiovasc. Res. 1992, 22, 447-455.
24. Vaille, A.; Scottodi, T. A. M.; Maldonado, J.; Vanelle, P. Meth. Find. Exp. Clin. Pharmacol. 1992, 14, 183-187.
25. Bazzani, C.; Genedani, S.; Tugliavini, S.; Bertolini, A. J. Pharm. Pharmacol. 1989, 41, 651-653.
26. Huarong, L. U.; Declerck, F.; J. Cardiovasc Pharmacol. 1993, 22, 120-125.
27. Winslow, E. Br. J. Pharmac. 1980, 71, 615-622.
28. Winslow, E. J. Cardiovasc Pharmac. 1981, $k, 87-100$.
29. Fujita, M.; Seki, T.; Inada, H.; Ikeda, N. Bioorg. Med. Chem. Lett. 2002, 12, 1607-1613.

[^0]: *Corresponding author

