

Photochemical bromination of substituted indan-1-one derivatives: synthesis of new polybromoindan-1-one derivatives

Nermin Şimşek KUŞ

Department of Chemistry, Mersin University, 33343 Mersin-TURKEY e-mail: simner@mersin.edu.tr

Received 31.10.2008

The photobromination of substituted indan derivatives was studied. Four products, 2,3-dibromo-inden-1-one (5), *trans*-2,3-dibromoindan-1-one (6), 2,2-dibromoindan-1,3-dione (7) and 2,2-dibromoindan-1-one (8), were obtained by the bromination of indan-1-one (4). The bromination of 2-methyl indanone (9) and 3methyl-indanone (13) gave the corresponding monobromo, dibromo, and tribromo compounds in high yield. 4-Nitro indan (16) was tribrominated under same condition reaction. The structures of these products were determined from ¹H-NMR, ¹³C-NMR, MS, and IR data.

Key Words: Indan-1-one, 2-methyl-1-indanone, 3-methly-1-indanone, 4-nitro indan.

Introduction

The bromination of hydrocarbons is an important process because it yields useful intermediates for the synthesis of a variety of bromoorganic compounds.¹⁻¹⁰ These compounds have numerous industrial application as pesticides, plastics, fire retardants, and pharmaceutical chemicals.¹¹

An indenone motif can be found in some natural products and also in synthetically obtained compounds.^{12–15} Several procedures for the synthesis of indenones have been reported in the literature.^{16–24} Photochemical bromination of indan **1** gave the bromo indenone,³ which can serve as the key compound for the construction of a benzo [c] fluorenone skeleton (Scheme 1).¹⁶

Photochemical bromination of substituted indan-1-one..., N. Ş. KUŞ

In this paper, we describe a method for the synthesis of brominated indenone derivatives, which can serve as the key compounds for the preparation of other substituted indenone derivatives. The work presented is a continuation of the current interest in the photochemical bromination reaction of indane derivatives.¹⁶

Experimental

All chemical reagents were commercially available. The substrates were purified (distilled or crystallized) before application in the reaction. ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker 400-100 MHz spectrometer. Infrared spectra were obtained as films on NaCl plates for liquid and KBr pellets for solids on a Win First®Satellite Model infrared recording spectrophotometer. All column chromatography was performed on silica gel (60-mesh, Merck).

General procedure for photobromination

All bromination reactions were carried out in a cylindrical vessel with 2 necks attached to a Dimroth cooler and dropping funnel. In the photobromination reactions, a 150 W projector lamp provided the internal irradiation.

Photobromination of 1-indanone (4)

A solution of bromine (14.8 mmol, 2.36 g) in CCl₄ (10 mL) was added dropwise over 30 min to a stirred solution of indan-1-one (4) (500 mg, 3.7 mmol) in CCl₄ (60) in a photochemical reaction apparatus with irradiation by 150 W projector lamp. After completion of the reaction (60 min), the excess of bromine and the solvent were removed at reduced pressure at 35 °C. The dark residue was crystallized from chloroform to give 2,2-dibromo-1-indanone (8). After filtration of 8, the organic solvent was evaporated and oily residue was chromatographed on silica gel (130 g), eluting with hexane/chloroform (1/4). The first fraction consisted of a mixture of 5 and 6. This mixture was submitted to fractional crystallization from chloroform to give 5 and 6. From the second fraction, dibromo indandione 7 was isolated.

2,3-dibromoinden-1-one (5) 16 : 400 mg 39%, red crystals, mp 125 °C (Lit. 123 °C)

trans-2,3-dibromoindan-1-one (6) 26,27 : 100 mg, 10%, red viscous liquid,

2,2-dibromoindan-1,3-dione (7)²⁸: 200 mg, 18%, colorless crystals, mp 183-185 °C (Lit. 181-182 °C)

2,2-dibromoindan-1-one (8): 150 mg, 15%, colorless crystals, mp 140-142 °C, (Found: C, 37.25, H, 2.08, C₉H₆Br₂O requires C: 37.28, H: 2.09 MS m/z (M⁺), 292, 290, 288 (M⁺, -Br), 211, 208 (M⁺, -Br), 131, 130, 129, (M⁺, -C=O), 103, 102, 101, IR (KBr, cm⁻¹) 1716 (-C=O).

Photobromination of 2, 3-dibromo-inden-1-one (5)

Fifty milligrams (0.18 mmol) of **6** was dissolved in 15 mL of carbon tetrachloride. The reaction was carried out as described above. The solvent was evaporated and residue crystallized from chloroform to give 50 mg (95%) of dibromo indandione **7**.

Photobromination of 2-methyl indanone (9)

A solution of bromine (13 mmol, 2.13 g) in CCl₄ (10 mL) was added dropwise over 30 min to a stirred solution of 2-methyl indanone (**9**) (500 mg, 3.4 mmol) in CCl₄ (60) in a photochemical reaction apparatus with irradiation by 150 W projector lamp. After completion of the reaction (60 min), the excess of bromine and the solvent were removed at reduced pressure at 35 °C. The oily residue was chromatographed on silica gel (130 g), eluting with hexane/chloroform (1/4), and the fractions were crystallized from chloroform.

2,3,3-tribromo-2-methyl-indan-1-one (10) 700 mg, 53%, yellow crystals, mp 115-117 °C, (Found: C 31.34, H 1.95, C₁₀ H₇ Br₃ O requires C 31.37, H 1.84%), MS m/z 305, 303, 301 (M⁺, -Br), 224, 222, 221 (M⁺, -Br), 144, 143, 142 (M⁺, -Br), 116, 115, 114 (M⁺, -C=O) IR (KBr, cm⁻¹) 1723 (-C=O).

2,3-dibromo-2-methyl-indan-1-one (11) 155 mg, 20%, pale yellow crystals, mp 110-111 °C, (Found: C 39.49, H 2.63, C₁₀ H₈ Br₂ O requires C 39.51, H 2.65%), MS m/z 225, 223, 221 (M⁺, -Br), 145, 143, 142 (M⁺, -Br), 116, 115, 114 (M⁺, -CO), IR (KBr, cm⁻¹) 1806 (-C=O)

2-Bromo-2-methyl-indan-1,3-dione (12) 56 mg, 20%, pale yellow crystals, mp 210 °C, (Found: C 50.25, H 2.90% requires C 50.24, H 2.95%), MS m/z 176 (M⁺, -CO, -CH₃), 133 (M⁺, -CO), IR (KBr, cm⁻¹) 1709 (-C=O).

Photobromination of 3-methyl indanone (13)

To 500 mg (3.4 mmol) of 3-methyl indanone (13) was added dropwise over 30 min 2.31 g (13 mmol) of bromine while the reaction flask was irradiates with a 150 W projector lamp. After completion of the reaction (130 min), the excess of bromine and the solvent were removed at reduced pressure at 35 °C. The organic solvent was evaporated and the oily residue was chromatographed on silica gel (130 g), eluting with hexane/chloroform (1/4), and the products were crystallized from chloroform. 2,2,3-tribromo-2,3-dihydro-3-methylinden-1-one (14) 395 mg, 30% colorless crystals, mp 150-152 °C, (Found: C 31.39, H 1.85, C₁₀H₇Br₃O₂, requires C 31.37, H 1.84%), MS m/z 292, 290, 288 (M⁺, -Br), 211, 209, 207 (M⁺, -Br), 131,130 (M⁺, -Br), 103, 102, 101 (M⁺, -CO) IR (KBr, cm⁻¹) 1765 (-C=O)

2-bromo-3-(bromomethyl) 1H-inden-1-one (15) 813 mg, 62% orange crystals, mp 156-158 °C, (Found: C C₁₀H₆Br₂O requires C 39.77, H 2.00%), MS m/z 303, 301, 299 (M⁺, -Br), 223, 222, 221, 220 (M⁺, -CO), 194,193 (M⁺, -Br), IR (KBr, cm⁻¹) 1717 (-C=O)

Photobromination of 4-nitro indane (16)

A solution of bromine (12.3 mmol, 1.96 g) in CCl_4 (10 mL) was added dropwise over 30 min to a stirred solution of 4-nitroindane (16) (500 mg, 3.06 mmol) in CCl_4 (60) in a photochemical reaction apparatus with irradiation by 150 W projector lamp. After completion of the reaction (60 min), the excess of bromine and the

Photochemical bromination of substituted indan-1-one..., N. Ş. KUŞ

solvent were removed at reduced pressure at 35 $^{\circ}$ C. The dark residue was crystallized from chloroform to give 1,1,3-tribromo-4-nitro indane (17).

1,1,3-tribromo-4-nitro-indan (17) 1.1 g, 90% colorless crystals, mp 208-210 °C, (Found: C 27.95, H 1.15 $C_{10}H_7BrO_2$ requires C 27.03, H 1.51, MS m/z, 401 (M⁺, -NO₂), 355,353, 351 (M⁺, -2 Br), 195, 193 (M⁺, -Br), IR (KBr, cm⁻¹) 1529 (-NO₂).

Results and discussion

We focused on the bromination of 1-indanone (4), 2-methyl-1-indanone (9), 3-methyl-1-indanone (13), and 4-nitro indan (16). Benzylic bromination requires either a high temperature⁵ or irradiation with uv light,¹⁶ and often gives mixtures of products. In the bromination reactions, bromine (4 equiv.) was added to a solution of 4, 9, 13, 16, or 18, in CCl₄ with internal irradiation (150 W projector lamp) at room temperature.

The ¹H-NMR studies revealed that the reaction mixture was very complex and consisted of 4 products formed after 60 min of irradiation in the photobromination of 1-indanone (4) (Scheme 2). The reaction mixture was crystallized from chloroform and dibromo indanone 8 was isolated in a yield of 15%. The methylene protons (H₃) and C₃-carbon in ¹H-NMR and APT spectra confirm the structure of dibromo indanone 8. The rest was subjected to repeated column chromatography and 3 additional products, dibromo indenone 5¹⁶, transdibromid 6,^{26,27} and dibromo indandione 7²⁸ were isolated, in yields of 39%, 10%, and 18%, respectively. The structures were established easily from ¹H-NMR and ¹³C-NMR spectra. The main isolated product, 2,3-dibromo indenone 5¹⁶, was already characterized.¹⁶ Four aromatic protons in the ¹H-NMR spectrum and 9 signals in the ¹³C-NMR spectrum of dibromo indenone 5 were in complete agreement with the proposed structure. The ¹H-NMR spectrum of trans-dibromide 6,^{26,27} which shows absorption at 4.27 (d, H₂, J_{2,3}= 2.2 Hz) and 5.99 (d, H₃), is in good agreement with the literature. The ¹H-NMR and ¹³C-NMR spectra of dibromo indandion 7 were highly symmetrical owing to the symmetry in the molecule.

We assume that this dibromo indandion 7^{28} is formed after further bromination of initially formed dibromo indenone 5. In order to verify this finding, dibromo indenone 5 was submitted to further photobromination, which resulted exclusively in the formation of dibromo indandione 7 in 95% yield (Scheme 3). We assume that dibromo indandion 7 gave a hydrolysis reaction with the silica gel used in column chromatography.

Scheme 3

After the successful synthesis and isolation of polybrominated indan-1-one and inden-1-one derivatives, we were interested in the photobromination of 2-methyl indanone (9) (Scheme 4). Bromination of 2-methyl indanone with 4 equiv. of bromine afforded 3 products, which were characterized as tribromo indanone 10, dibromo indanone 11, and monobromo indandione 12 in yields of 53%, 20%, and 20%, respectively, and which were easily separated by column chromatography.

Four aromatic signals and 1 methyl signal at 2.33 ppm were observed in the ¹H-NMR spectrum of tribromo indanone **10**. The proton signals adjacent to the bromine appear as a singlet at 5.95 ppm and methyl protons appear as a singlet at 2.10 ppm in the ¹H-NMR spectrum of dibromo indanone **11**. The 10 signals in the ¹³C-NMR spectrum are also in agreement with the proposed structure. The ¹H-NMR spectrum of monobromo indandione **12** shows 1 aliphatic signal as a singlet at 1.25 ppm.

The addition of bromine to 3-methyl indanone (13) in carbon tetrachloride was found to give 2 products, 2,2,3-tribromo-2,3-dihydro-3-methylinden-1-one (14) and 2-bromo-3-bromomethyl-1H-inden-1-one (15) (Scheme 5). The reaction was carried out under nitrogen atmosphere and it was seen that dibromo indanone yielded only 1 product, dibromo indenone 15. These results indicate that the air oxygen inserts into the carboncarbon bond in the dibromo indanone 14. The ¹H-NMR spectrum of 14 shows 1 aliphatic signal as a singlet at 4.27 ppm. Four aromatic signals and 1 methylene signal at 4.39 ppm were observed in the ¹H-NMR spectrum of dibromo indenone 15. Elemental analysis and ¹³C-DEPT spectrum of dibromo indenone 15 are in agreement with the proposed structure.

In addition, we were interested in the photobromination of 2,3-dihydro-4-nitro-1H-indene (16) (Scheme 6). Addition of bromine to 2,3-dihydro-4-nitro-1H-indene (16) gave only 1 product, which was characterized as 1,1,3-tribromo-2,3-dihydro-4-nitro-1H-indene (17) with 90% yield. ¹H-NMR absorptions observed at 8.2-7.6 ppm (3 aromatic signals), 6.1 ppm (dd, H₃, $J_{3,2a}$ =5.5, $J_{3,2b}$ =2.6 Hz), 3.81 ppm (d, H_{2a}), and 3.79 ppm (d, H_{2b}), as well as the 9 signals in the ¹³C-NMR spectrum, are also in agreement with the proposed structure (Table).

Photochemical bromination of substituted indan-1-one..., $N.\ \ensuremath{\mathcal{S}}.\ \ensuremath{\mathit{KUS}}$

Compound		¹ H-N	MR Reso	Coupling	¹³ C ND (D		
	H_1	H ₂	H ₃	Subs.	Aromatic	Constant J (Hz)	C-NMR
O Br	-	-	-	-	AB	J _{aro.} =7.3	186.8, 146.6,
					d, 7.08, t, 7.23		142,8, 134.6,
					t, 7.33, d, 7.37		130.1, 129.3,
Br							123.2, 122.6,
5							121.3
Br H ₂ Br H ₃	-	d	d	-	AB	J _{aro.} =7.7	186.5, 142.7,
		4.27	5.99		d, 7.81, t, 7.74,	J _{2,3} =2.2	137.3, 131.1,
					d, 7.72, t, 7.52		129.3, 127.3,
							126.3, 58.1,
							52.6
Br	-	-	-	-	AA'BB'		87.4, 138.1,
					8.1-8.01		135.9, 125.9,
							51.5
7					AD	1 77	102.2 147.2
0			S 4 28		AB	$J_{\rm aro.} = 7.7$	192.5, 147.5,
Br			4.28		d, 7.95, t, 7.72		137.1, 137.1,
H ₃ Br					t, 7.49, d, 7.4		129.2, 126.8,
8							126.2, 57.1,
					4.0		52.6
<i>p</i>	-	-	-	s	AB	$J_{aro.} = 1.1$	191.5, 155.1,
CH3				2.33	d, 7.88, t, 7.77,		130.2, 131.3,
Br					d, /./5, t, /.54		129.8, 125.8,
10							125.3, 72.5,
					4.D	1 77	64.6, 24.2
Br H ₃	-	-	S	s 5 of	AB	$J_{aro.} = 1.1$	196.4, 150.1,
			2.01	5.95	d, 7.81, t, 7.70,		130.5, 131.8,
					d, 7.62, t, 7.51		130.7, 127.5,
							125.8, 61.5,
							55.2, 26.1
CH ₃ Br	-	-	-	S	AA BB		199.9, 139.8,
				1.55	8.05-7.91		136.9, 124.5,
12							29.9, 22.3
		_		\$	AB	I -77	102 0 147 3
Br Br 14	_			4 27	d 7 91 t 7 71	<i>aro.</i> — / . /	137 2 129 2
				-T.2/	t 748 d 740		129.2, 129.2,
					ı, /. 4 0, u, /.40		129.2, 120.0,
							526 526
							52.0, 52.0

Table. NMR spectral data of some substituted indan derivatives

Compound		¹ H-N	MR Reso	Coupling	¹³ C NMD		
	H_1	H ₂	H ₃	Subs.	Aromatic	Constant J (Hz)	C-INIVIK
CH _{gBr} 15	-	-	-	s	AB	J _{aro.} =7.7	189.2, 153.9,
				4.39	d, 7,51, t, 7.44,		142.6, 134.7,
					d and t, 7.27		129.6, 129.4,
							124.1, 121.1,
							120.3, 21.8
Br H _{2b} NO ₂₁₇ H _{2a}	-	d, d	d (H _{3a})	-	d, 8.24, d, 8.09	$J_{3,2a} = 5.5,$	150.4, 143.7,
		3.81,	6.10		t, 7.71	$J_{3,2b}=2.6,$	134.3, 132.2,
		3.79	d(H _{3b})			J _{5,6} =J _{6,7} =8.1	132.1, 126.9,
			6.08				60.2, 53.4,
							43.8

Table. Continued.

Scheme 5

Acknowledgement

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Project No: 106T659 and Mersin University Scientific Research Department (BAP-FEF.KB(NSK 2004-2)). I am indebted to C. Kazaz for the NMR spectrum, H. Kılıç for the GC-MS experiment results, and A. Daştan for his help during this work.

Photochemical bromination of substituted indan-1-one..., N. Ş. KUŞ

References

- 1. Paquette, L. A.; Burke, L. D. J. Org. Chem. 1987, 52, 2674-2679.
- 2. Altundas, R.; Balci, M. Tetrahedron 1993, 49, 6521-6526.
- 3. Adam, W; Balci, M.; Cakmak, O.; Peters, K; Saha-Möller, C. R. Schulz, M. Tetrahedron 1994, 50, 9009-9094.
- 4. Altundas, R.; Balci, M. Aust. J. Chem. 1997, 50, 787-793.
- 5. Altundas, R.; Dastan, A; Unaldi N. S.; Guven, K.; Uzun, O.; Balci, M. Eur. J. Org. Chem. 2002, 526-533.
- 6. Hileman, B. Chem. Eng. News 1993, 19, 11-13.
- 7. Barkhash, V. A. Topp. Cur. Chem. 1984, 115-117, 1-265.
- 8. Dastan, A.; Uzundumlu, E.; Balci, M.; Fabris, F.; De Lucchi, O. Eur. J. Org. Chem. 2004, 183-192.
- 9. Dastan, A.; Fabris, F.; De Lucchi, O.; Guney, M.; Balci, M. Helv. Chim. Acta 2003, 86, 3411-3416.
- 10. De Lucchi, O.; Dastan, A.; Altundas, A.; Fabris, F.; Balci, M. Helv. Chim. Acta 2004, 87, 2364-2367.
- Little J. R.; Nudenberg, W.; Rim, Y. S. Fire Retardants for Polymer. Ger. Offen., 210 pp. CODEN: GWXXBX DE 2151072 19720420 CAN 77: 49488 1972.
- 12. Vasilyev, A. V.; Walspurger, S.; Pale, P.; Sommer, J. Tetrahedron Lett. 2004, 45, 3379-3381.
- 13. Ernst-Russell, M. A.; Chai, C. L. L.; Wardlaw, J. H.; Elix, J. A. J. Nat. Prod. 2000, 63, 129-134.
- 14. Arnone, A.; Camarda, M. L.; Nazhini, G. Gazz. Ital. 1975, 105, 1093.
- 15. Zimmerman, H. E. J. Am. Chem. Soc. 1956, 78, 1168-1173.
- 16. Tutar, A.; Cakmak, O.; Balci, M. Tetrahedron 2001, 57, 9759-9763.
- 17. Gevorgyan, V.; Quan, L. G.; Yamamato, Y.; Tetrahedron Lett. 1999, 40, 4089-4092.
- 18. Johnson, W. S.; Shellberg, W. E. J. Am. Chem. Soc. 1945, 67, 1745-1754.
- 19. House, H. O.; Hudson, C. B. J. Org. Chem. 1970, 35, 647-651.
- 20. House, H. O.; Larson, J. K. J. Org. Chem. 1968, 33, 448-451.
- 21. Sam, J.; Plampin, J. N. J. Am. Chem. Soc. 1960, 82, 5205-5209.
- 22. Johnson, W. S.; Shellberg, W. E. J. Am. Chem. Soc. 1945, 67, 1853-1854.
- 23. Tutar A.; Çakmak, O.; Balci, M. J. Chem. Res. 2006, 507-511.
- 24. Tutar A.; Çakmak, O.; Balci, M. Syn. Commun. 2008, 38, 1333-1345
- 25. Zengin, M.; Dastan, A.; Balci, M. Synthetic Comm. 2001, 31, 1993-1997.
- 26. Hansen, P. E.; Undheim, K. Chem. Scr. 1973, 3, 113.
- 27. Heasley, G. E.; Bower, T. R.; Dougharty, K. W.; Easdon, J. C. J. Org. Chem. 1980, 45, 5150-5155.
- 28. Nematollahi, D.; Akaberi, N. Molecules 2001, 6, 639-646.