

Effect of various substituents on intramolecular 1,1-vinylboration, synthesis of 1-silacyclobutene derivatives

Ezzat KHAN^{1,2}, Bernd WRACKMEYER¹

¹Anorganische Chemie II, Universität Bayreuth, D-95440 Bayreuth-GERMANY

²Department of Chemistry, University of Malakand, Chakdara, Dir(Lower),

North-West Frontier Province (N-W.F.P.), PAKISTAN

e-mail: b.wrack@uni-bayreuth.de, ekhan@uom.edu.pk

Received 08.10.2009

The reaction of 1-boryl-1-alkenyl chlorosilane derivatives with alkynyllithium reagents [Li-C \equiv C-R³ (R³ = Ph, SiMe₃)] at low temperature (-78 °C) affords alkenyl(alkyn-1-yl)silanes. These compounds are precursors of 1-silacyclobutene derivatives, which are formed via intramolecular 1,1-vinylboration. This reaction works for various groups at silicon (R¹/R²: R¹ = H, Me, Ph; R² = Me, Ph) and at the C=C and C \equiv C units (R/R³: R = n Bu, Ph; R³ = n Bu, Ph, SiMe₃). The conversion into 1-silacyclobutene derivatives is incomplete only in the case of R³ = SiMe₃. The reactions were monitored by NMR spectroscopy in order to elucidate the reaction mechanism, and the proposed structures of all new compounds follow from consistent sets of NMR parameters (1 H-, 13 C-, 11 B-, 29 Si-NMR).

Key Words: Alkynylsilanes, triorganoboranes, hydroboration, organoboration, silacyclobutenes, NMR

Introduction

Reactions involving 1,2-hydroboration and 1,1-organoboration have been widely used in organic $^{1-4}$ as well as in organometallic synthesis. $^{5-7}$ Among organometallic compounds the alkynyl metal compounds of group 14 elements such as alkyn-1-ylsilanes have been used in hydroboration and organoboration reactions. Both of these intermolecular reactions require totally different reaction conditions. For instance, 1,2-hydroboration of alkyn-1-ylsilanes takes place under mild reaction conditions, $^{8-16}$ in contrast to 1,1-organoboration, which requires more harsh reaction conditions. Numerous novel organometallic compounds have been prepared taking advantage of 1,1-organoboration or 1,2-hydroboration. $^{17-29}$ In this context, the combination of 1,2-hydroboration and 1,1-

organoboration has led to a diverse field of heterocyclic chemistry comprising simple silicon heterocycles $^{30-33}$ as well as spirosilanes. 34,35 This combination is primarily based on the fact that 1,2-hydroboration allows one to introduce the boryl group into the molecule under mild reaction conditions. Then the activation energy for the 1,1-organoboration becomes lower, since this is now an intramolecular process. Therefore, these reactions take place more readily at comparatively low temperature and in a short time. We have reported 1-silacyclobutene derivatives \mathbf{A} - \mathbf{D}^{36-38} (Scheme 1). These derivatives have been studied in solution by NMR and the molecular structure for one example has been determined by X-ray diffraction. 36

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{4}
 R^{1}
 R^{2}
 R^{4}
 R^{4

Scheme 1. Examples of various substituted 1-silacyclobutene derivatives.

In continuation of our previous work, here we report the effect of \equiv C-R³ substituents on intramolecular 1,1-vinylboration for syntheses of 1-silacyclobutene derivatives. Various groups R³ = n Bu,Ph,SiMe₃ were considered for this study and their effect on the course of intramolecular reaction was explored. The intramolecular 1,1-vinylboration to afford 1-silacyclobutenes was hindered by R³ = SiMe₃. Alkenyl(alkyn-1-yl)silane derivatives instead of 1-silacyclobutenes were achieved in quantitative yield. In the case of R3= n Bu,Ph the reaction led to quantitative formation of 1-silacyclobutene derivatives.

Experimental section

All preparative work and handling of air sensitive chemicals were carried out by observing precautions to exclude oxygen and moisture. Dry solvents and oven-dried glassware were used throughout. Dialkyn-1-ylsilanes $1,2^{39-41}$ and alkenyl(chloro)silanes $3-5^{42,43}$ were prepared following the literature procedure. Trimethylsilylethyne, n-butyllithium in hexane (1.6 M), and 9-borabicyclo[3.3.1]nonane (9-BBN) were commercial products and were used without further purification. NMR spectra: Varian Inova 300 MHz and 400 MHz spectrometers (23 \pm 1 $^{\circ}$ C), both equipped with multinuclear units, using C_6D_6 solutions, if not mentioned (ca. 10%-15% v/v) in 5 mm tubes. Chemical shifts are given with respect to SiMe₄ [δ^1 H (C_6D_5 H) = 7.15, δ^{13} C (C_6D_6) = 128.0, δ^{29} Si = 0 for SiMe₄ with $\Xi(^{29}$ Si) = 19.867187 MHz], and δ^{11} B = 0 for BF₃-OEt₂ with $\Xi(^{11}$ B) = 32.083971 MHz. 29 Si-NMR spectra were recorded using the refocused INEPT pulse sequence with 1 H decoupling, $^{44-47}$ based on $^{3}J(^{29}$ Si-C=C- 1 H) = 25-30 Hz or $^{1}J(^{29}$ Si- 1 H) = 180-200 Hz (after optimization of the respective refocusing delays).

Reaction of Li-C≡C-R³ with alkenylchlorosilanes 3-5 to afford alkenyl(alkyn-1-yl)silanes 8-12.

A solution of the alkenylsilane, **3b** (1.8g, 5.22 mmol) in hexane (5 mL) was prepared and slowly added to an equimolar freshly prepared suspension of Li-C \equiv C-SiMe₃ at -78 °C in hexane (10 mL). The reaction mixture was allowed to warm to room temperature, and was kept stirring for 3 h. Then solid materials, mainly LiCl, were separated, and the solvent was removed in a vacuum. A colorless oily liquid was left, identified as a mixture of **6b** (borate) ($\approx 20\%$, NMR data) and **9b**. Other alkyn-1-ylsilanes (**8c**, **9c**, **10** - **12**) were obtained following the same procedure. All the alkenyl(alkyn-1-yl)silanes were obtained in reasonably pure form except that the compound **4c** afforded a mixture of **7c** (borate-like intermediate) and **11c**.

6b: ${}^{13}\text{C-NMR}$ (75.4 MHz): δ [$J({}^{29}\text{Si}, {}^{13}\text{C})$] = 1.0 (SiMe₃), 153.7 (=CH), 153.0 br (BC=), 79.3 [95.6] (Me₃ Si-C=), 106.8 br (=C-B), 135.8, 135.2, 130.0, 128.2 (Si-Ph), Bu and 9-BBN carbons were not assigned; ${}^{29}\text{Si-NMR}$ (59.6 MHz): δ = -19.9, -38.2; ${}^{11}\text{B-NMR}$ (96.2 MHz): δ = -16.3.

7c: 1 H-NMR (400 MHz): $\delta = 0.03$ (s, 9H, SiMe₃), 0.27 (s, 3H, SiMe), 1.07-1.98 (m, 14H, BBN), 6.93-7.63 (m, 10H, SiPh, Ph), 8.04 (s, 1H, =CH, $^{3}J(^{29}\text{Si},^{1}\text{H}) = 17.6 \text{ Hz});$ 13 C-NMR (100.5 MHz): $\delta [J(^{29}\text{Si},^{13}\text{C})] = 0.8 [57.3]$ (SiMe), -1.2 [54.9] (SiMe₃), 155.8 (=CH), 151.2 br (BC=), 34.7, 34.6, 31.9 br , 23.7 (9-BBN), 107.9 [91.5] (Me₃Si-C=), 106.2 br (=C-B), 138.2 [73.7, i] (SiPh), 140.5 [4.5, i] (Ph) other carbons were not assigned; 29 Si-NMR (59.6 MHz): $\delta = -17.6, -11.6;$ 11 B-NMR (96.2 MHz): $\delta = -16.8.$

9b: 1 H-NMR (300 MHz): $\delta = 0.3$ (s, 9H, SiMe₃), 0.8, 1.3-1.4, 2.2 (t, m, m, t, 9H, Bu), 1.3-2.2 (m, 14H, 9-BBN), 5.6 (s, 1H, $^{1}J(^{29}\text{Si},^{1}\text{H}) = 189.1$ Hz, Si-H), 6.5 (t, 1H, $^{3}J(^{1}\text{H},^{1}\text{H}) = 7.5$ Hz, =CH), 7.2-7.9 (m, 5H, Si-Ph).

9c: ¹H-NMR (300 MHz): $\delta = -0.1$ (s, 9H, SiMe₃), 1.2-2.0 (m, 14H, 9-BBN), 5.3 (s, 1H, ${}^{1}J({}^{29}\text{Si}, {}^{1}\text{H}) = 211.3 \text{ Hz}$, Si-H), 8.1 (s, 1H, ${}^{3}J({}^{29}\text{Si}, {}^{1}\text{H}) = 17.7 \text{ Hz}$, =CH), 6.8-7.6 (m, 10H, Si-Ph, Ph).

10b: ¹H-NMR (300 MHz): $\delta = 0.6$ (s, 3H, Si-Me), 0.8, 1.2-2.4 (t, m, m, 9-BBN, Bu), 7.0 (t, 1H, $^3J(^1\text{H},^1\text{H}) = 7.3 \text{ Hz}, =\text{CH}), 7.2-7.7$ (m, 10H, Ph, Si-Ph).

10c: 1 H-NMR (300 MHz): $\delta = 0.12$ (s, 3H, Si-Me), 1.0-1.5 (m, 14H, 9-BBN), 6.5-7.4 (m, 15H, Ph, Si-Ph), 7.8 (s, 1H, $^{3}J(^{29}\text{Si},^{1}\text{H}) = 17.9 \text{ Hz}, =\text{CH})$.

 ${\bf 11b}: {}^1{\rm H-NMR} \ (300 \ {\rm MHz}): \ \delta = -0.1 \ ({\rm s}, \, 9{\rm H}, \, {\rm SiMe_3}) \,, \, 0.5 \ ({\rm s}, \, 3{\rm H}, \, {\rm SiMe}), \, 0.6, \, 1.0, \, 1.2, \, 2.3 \ ({\rm t}, \, {\rm m}, \, {\rm m}, \, {\rm m}, \, {\rm gH}, \, {\rm Bu}), \, 1.2-1.8 \ ({\rm m}, \, 14{\rm H}, \, 9{\rm -BBN}), \, 6.9 \ ({\rm t}, \, 1{\rm H}, \, \, ^3J({}^1{\rm H}, \, \, ^1{\rm H}) = 7.3 \ {\rm Hz}, \, ={\rm CH}), \, 7.0, \, 7.5 \ ({\rm m}, \, {\rm m}, \, 5{\rm H}, \, {\rm SiPh}).$

11c: 1 H-NMR (300 MHz): $\delta = 0.03$ (s, 9H, SiMe₃), 0.3 (s, 3H, SiMe), 1.07-1.98 (m, 14H, 9-BBN), 6.9-7.6 (m, 10H, SiPh, Ph), 8.00 (s, 1H, $^{3}J(^{29}$ Si, 1 H) = 15.8 Hz, =CH).

12b: ${}^{1}\text{H-NMR}$ (300 MHz) = 0.2 (s, 9H, SiMe₃), 0.8, 0.9-1.3, 2.3 (t, m, m, 9H, Bu), 1.3-1.8 (m, 14H, 9–BBN), 7.2 (t, 1H, ${}^{3}J({}^{1}\text{H}, {}^{1}\text{H}) = 7.6 \text{ Hz}, = \text{CH})$, 7.3-7.6 (m, 10H, SiPh₂).

12c: 1 H-NMR (C $_{6}$ D $_{6}$) = 0.03 (s, 9H, SiMe $_{3}$), 1.3-2.6 (m, 14H, 9-BBN), 6.9-7.8 (m, 15H, SiPh $_{2}$, Ph), 8.3 (s, 1H, ^{3}J (29 Si, 1 H) = 22.3 Hz, =CH).

Conversion of alkenyl(alkyn-1-yl)silanes 8-11 into 1-silacyclobutene derivatives

Compound 8c was sealed as C_6D_6 solution in an NMR tube and was kept at 80-120 °C. The reaction was continuously monitored by NMR spectroscopy (mainly ²⁹Si- and ¹H-NMR). The intramolecular rearrangement

was complete in 21 h and 1-silacyclobutene **15c** was achieved in almost quantitative amount (ca. 90%). All other 1-silacyclobutene derivatives were obtained in the same way, except that the time taken by each reaction was slightly different (**16b**: 21 h, **16c** 48 h, **17c**: 12 h at 25 °C).

15c: ¹H-NMR (300 MHz): $\delta = 1.1$ -1.9 (m, 14H, 9-BBN), 4.8 (s, 1H, $^{1}J(^{29}\text{Si},^{1}\text{H}) = 196.9$ Hz, Si-H), 6.0 (s, 1H, $^{3}J(^{29}\text{Si},^{1}\text{H}) = 18.6$ Hz, =CH), 6.7-7.6 (m, 15H, Si-Ph, Ph, Ph).

16b: H-NMR data (300 MHz): $\delta = 0.4$ (s, 3H, SiMe), 0.9, 0.8-1.0, 1.7 (t, m, m, 9H, Bu), 1.0-1.7 (m, 14H, BBN), 5.8 (t, 1H, =CH, ${}^{3}J({}^{1}H, {}^{1}H) = 7.2$ Hz), 6.6-7.4 (m, 10H, Si-Ph, Ph).

16c: ¹H-NMR data (300 MHz): $\delta = 0.2$ (s, 3H, Si-Me), 0.9-1.7 (m, 14H, 9-BBN), 6.7-7.4 (m, 15H, Si-Ph, 2 × Ph), 7.9 (s, 1H, $^3J(^{29}\text{Si}, ^1\text{H}) = 15.7 \text{ Hz}, =\text{CH}).$

17c: ¹H-NMR (400 MHz): $\delta = 0.05$ (s, 9H, SiMe₃), 0.44 (s, 3H, Si-Me), 1.07-1.98 (m, 14H, BBN), other signals were not assigned.

Reaction of dialkyn-1-ylsilanes, 1a, c, and 2b with 9-BBN to afford alkenyl(alkyn-1-yl)silanes, 13a,c, 14c, and their conversion into 1-silacyclobutenes 18c and 19c

A solution of silane ${\bf 1a}$ (0.50 g, 3.67 mmol) in C₆D₆ (1.5 mL) was mixed with one equivalent of 9-BBN dimer (0.448 g, 3.67 mmol). The mixture was heated to 80 °C for 5 min to give ${\bf 13a}$. During this time 9-BBN was completely consumed (monitored by ¹¹B-NMR). The 1,2-hydroboration of ${\bf 1c}$ and ${\bf 2b}$ was carried out in the same way leading to alkenyl(alkyn-1-yl)silanes ${\bf 13c}$ (after 5 min at 80 °C) and ${\bf 14c}$ (after 10 min at 80 °C). The samples were further heated at the same temperature. In the case of ${\bf 13a}$, heating caused extensive decomposition and identification of products was not possible. Heating of the silanes ${\bf 13c}$ and ${\bf 14c}$ led to 1-silacyclobutene derivatives, ${\bf 18c}$ (1-2 h at 80 °C) and ${\bf 19c}$ (8 h at 120 °C), respectively.

 $\textbf{13a:} \ ^{1}\text{H-NMR (400 MHz):} \ \delta = 0.3 \ (\text{s}, 6\text{H}, \text{SiMe}_{2}) \,, 1.5, 1.6 \ (\text{s}, \text{s}, 3\text{H}, 3\text{H}, 2\text{Me}), 1.4-1.9 \ (\text{m}, 14\text{H}, 9\text{-BBN}), 6.9 \ (\text{q}, 1\text{H}, =\text{CH}).$

13c: ¹H-NMR (400 MHz): $\delta = 1.0$ -1.7 (m, 14H, 9-BBN), -0.05 (s, 6H, SiMe₂), 6.5-7.0 (m, 10H, Ph, Ph), 7.6 (s, 1H, =CH, ${}^3J({}^{29}\text{Si}, {}^1\text{H}) = 17.5 \text{ Hz}).$

14b: 1 H-NMR (400 MHz): $\delta = 2.2$, 1.2-1.1, 1.0, 0.59 (m, m, m, t, 9H, =C-Bu), 1.9, 1.2-1.1, 0.58 (m, m, t, 9H, \equiv C-Bu), 1.5-1.8 (m, 14H, 9-BBN), 7.1 (t, 1H, =CH, $^{3}J(^{1}$ H, 1 H) = 7.2 Hz), 7.0-7.1, 7.74, 7.72 (m, d, d, 10H, SiPh₂).

1-Silacyclobutene derivatives

18c: 1 H-NMR (400 MHz): $\delta = 0.7$ (s, 6H, SiMe₂), 1.3-2.0 (m, 14H, 9-BBN), 6.8-7.3 (m, 1H, 10H, =CH, Ph, Ph).

19b: ¹H-NMR (400 MHz): $\delta = 0.5$, 1.3-1.0, 2.0, 2.4 (t, m, m, m, 18H, Bu, Bu), 1.7-1.8 (m, 14H, 9-BBN), 5.9 (t, 1H, =CH), 6.9-7.7 (m, 10H, SiPh₂).

Results and discussion

The alkenylsilanes **3-5** bearing Si-Cl function are useful synthons for further transformations.^{36,48} They were prepared by the reaction of the respective alkyn-1-yl(chloro)silanes with 9-borabicyclo[3.3.1]nonane, adopting the literature procedure.^{42,43} Alkenylsilanes analogous to **3-5** have been studied in solution and solid state by

	δ^{13} C (BC=)	$\delta^{13}C~(=C)$	δ^{13} C (Si-C \equiv)	$\delta^{13}C~(\equiv C)$	$\delta^{29} \mathrm{Si}$	$\delta^{11} \mathrm{B}$
$\mathbf{9b}^b$	143.8^{br}	162.1	93.9	111.8	-17.5, -53.2	82.6
$\mathbf{9c}^c$	141.6^{br}	159.4	109.4 [83.8] [12.4]	118.7 [76.3] [12.7]	-18.7, -51.8	82.4
$10\mathbf{b}^d$	141.2^{br}	161.3	94.0 [87.8]	107.8 [16.9]	-32.6	81.6
$\mathbf{10c}^{e}$	147.8^{br}	155.7	93.7 [88.8]	108.4 [16.5]	-31.8	82.4
$\mathbf{11b}^f$	143.9^{br}	161.5	113.5 [81.1] [12.4]	116.1 [77.5] [12.0]	-19.4, -34.1	80.9
$\mathbf{11c}^g$	147.7^{br}	154.1	113.2 [81.9] [12.3]	116.9 [77.1] [12.4]	-19.2, -33.1	82.9
$\mathbf{12b}^h$	142.8^{br}	162.8	112.3 [84.3] [11.4]	118.0 [76.7] [12.3]	-18.6, -37.3	81.2
$\mathbf{12c}^{i}$	144.8^{br}	158.0	111.2 [86.1] [12.6]	118.1 [76.8] [12.8]	-18.9, -36.6	82.2
$\mathbf{13a}^{j}$	148.3^{br} [62.7]	152.3	84.8 [88.4]	103.6 [17.3]	-30.4	81.0
$\mathbf{13c}^k$	150.6^{br} [62.3]	153.3	95.6 [85.0]	106.9 [15.9]	-28.2	82.9
${\bf 14b}^l$	143.9^{br}	161.8	82.8 [95.7]	111.2 [17.2]	-36.8	83.5

Table 1. ¹¹B-, ¹³C-, and ²⁹Si-NMR data ^a of alkyn-1-ylsilanes 9-14.

 $^{d} \text{ other } ^{13} \text{ C-NMR data: } \delta \ [J(^{29} \text{Si}, ^{13} \text{C})] = 0.8 \ [58.6, \text{ Si-Me}], \ 34.7, \ 34.6, \ 31.8^{br}, \ 23.7 \ (9\text{-BBN}), \ 35.1, \ 27.2, \ 23.0, \ 14.4 \ (\text{Bu}), \ 140.5, \ 138.5 \ [74.0], \ 134.8, \ 132.2, \ 128.4, \ 128.1, \ 129.6, \ 123.7 \ (\text{Si-Ph}, \text{Ph}).$

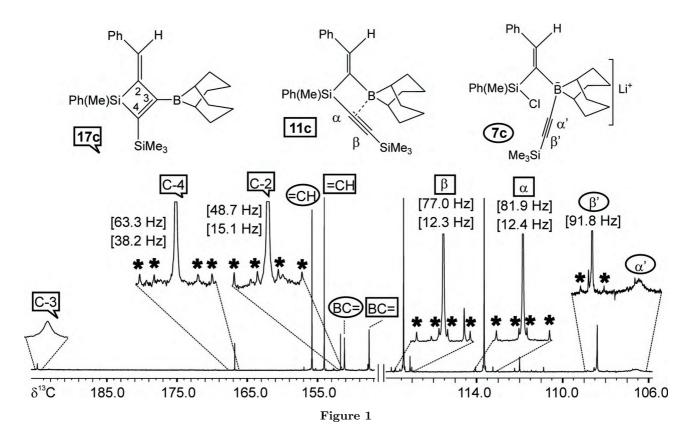
^e other ¹³ C-NMR data: δ [J(²⁹ Si, ¹³ C)] = 0.1 [58.3, Si-Me], 34.4, 34.4, 31.4 ^{br}, 23.6 (9-BBN), 138.2 [71.9], 134.6, 134.6, 132.3, 132.2, 129.6, 129.8, 123.2 (Si-Ph, Ph).

^f other ¹³ C-NMR data: δ [J(²⁹ Si, ¹³ C)] = -0.2 [56.3, SiMe₃], 1.0 [56.5, Si-Me], 34.4, 31.3 ^{br}, 23.7 (9-BBN), 35.6, 31.7, 22.9, 14.3 (Bu), 138.0 [72.8], 134.6, 129.6, 128.3 (i, o, m, p, Si-Ph).

 g other 13 C-NMR data: δ [J(29 Si, 13 C)] = -0.003 [55.6, SiMe $_3$], -0.2 [56.4, Si-Me], 34.5, 34.6, 31.7 br , 23.7 (9-BBN), 140.7 [64.9], 141.4 [4.2] other carbons are without assignment.

^h other ¹³ C-NMR data: δ [J(²⁹ Si, ¹³ C)] = -0.2 [56.4, SiMe₃], 34.3, 31.4 ^{br}, 23.6 (9-BBN), 36.0, 27.2, 22.8, 14.1 (Bu), 136.2 [72.6], 135.6, 129.8, 129.3 (i, o, m, p, SiPh₂).

ⁱ other ¹³ C-NMR data: $\delta [J(^{29}\text{Si},^{13}\text{C})] = -0.2 [56.4, \text{SiMe}_3], 34.5, 31.9^{br}, 23.6 (9-BBN), 136.3 [75.6], 135.6, 130.4, 128.2 (i, o, m, p, SiPh₂), 125.7, 135.4, 129.7, 139.5, ($ *i*, o, m, p, Ph).


 ${}^{j} \text{ other } {}^{13} \text{ C-NMR data: } \delta \ [J({}^{29} \text{Si}, {}^{13} \text{C})] = 1.8 \ [55.6, \text{ SiMe}_{2}], \ 4.8 \ [8.6, \text{ C2-CH3}), \ 4.7 \ (\text{CH3}). \ \text{ kother } {}^{13} \text{ C-NMR data: } \\ [J({}^{29} \text{Si}, {}^{13} \text{C})] = 1.9 \ [56.5, \text{SiMe}_{2}], \ 141.2, \ 132.1, \ 129.7, \ 129.2, \ 129.0, \ 128.6, \ 128.5, \ 123.9 \ (\text{Ph carbons without assignment}). \\ {}^{l} \text{ other } {}^{13} \text{ C-NMR data: } \delta \ [J({}^{29} \text{Si}, {}^{13} \text{C})] = 35.9, \ 33.8, \ 31.5, \ 22.9, \ 22.2, \ 20.1, \ 14.1, \ 13.7 \ (\text{Bu}), \ 137.1 \ [74.5, \ i], \ 135.6 \ (o), \ 129.6 \ (p), \ 128.2 \ (m) \ (\text{SiPh}_{2}).$

^a Measured in C₆D₆ at 23 °C, coupling constants $J(^{29}Si,^{13}C)$ [\pm 0.4 Hz] are given in square brackets, ^{br} denotes a broad ¹³C resonance signal as the result of partially relaxed scalar ¹¹B-¹³C spin-spin coupling. ⁵²

^b other ¹³ C-NMR data: $\delta = 0.5$ (SiMe₃), 137.8, 135.1, 129.2, 129.3 (Si-Ph), Bu carbons could not be assigned.

^c other ¹³ C-NMR data: δ [J(²⁹ Si, ¹³ C)] = -0.3 [55.9, SiMe₃], 34.5, 34.3, 31.2^{br}, 23.7 (9-BBN), 139.5, 134.2 [74.9], 135.3, 130.0, 128.4, 129.9, 129.2, 128.2 (Si-Ph, Ph).

NMR spectroscopy and X-ray diffraction, respectively. 42,43 These silanes bear 2 electrophilic centres, one at silicon and the other at boron, and treatment with alkynyllithium reagents at low temperature (-78 °C) should afford either the borate-like intermediates, **6**, **7** and/or the alkenyl(alkyn-1-yl)silanes, **8-12** (Figure 1). Borate-like intermediates were detected in 2 cases, **6** and **7**, and their relevant NMR data were collected (Experimental section). It turned out that the borate-like intermediates are slowly converted into alkenyl(alkyn-1-yl)silanes by elimination of LiCl. The progress of the reaction becomes evident by 11 B-NMR spectroscopy. The 11 B-NMR signal at $^{-16} \pm 1$ ppm (typical region for tetraorganoborates 49) decreases in intensity, whereas the signal at $^{+82} \pm 1$ ppm is increasing. The intermediates, **8-12**, were stable at room temperature and the relevant NMR data were collected (Table 1).

The alkenyl(alkyn-1-yl)silanes, **8-12**, obtained in Scheme 2 could be converted into useful products. They were heated at 80-100 °C for some time (0.5-48 h) and 1-silacyclobutene derivatives were achieved in reasonably pure form (> 90%) via intramolecular 1,1-vinylboration. The effect of $C \equiv C - R^3$ group ($R^3 = {}^n Bu$, Ph, SiMe₃) was studied on the course of intramolecular 1,1-vinylboration. In the case of $C \equiv C - {}^n Bu$ and $C \equiv C - {}^n Bu$ and $C \equiv C - {}^n Bu$ and the other hand, the $C \equiv C - {}^n Bu$ group did not allow the reaction to afford reasonable amounts (Figure 1, ca. 5%) of the desired 1-silacyclobutenes. It is known that alkenes bearing 2 silyl groups and 1 boryl group undergo 1,1-deorganoboration upon heating. This would account for the observation of only a small amount of 17c (Scheme 3). Further attempts to drive the equilibrium towards 17c finally lead to decomposition.

Scheme 2. Reactions of alkyn-1-yllithium reagents with alkenyl(chloro)silanes.

Scheme 3. Formation of 1-silacyclobutene derivatives.

The desired 1-silacyclobutene derivatives could also be obtained by the reaction of dialkyn-1-ylsilanes with one equivalent of 9-BBN (Scheme 4). Hydroboration of one alkyn-1-yl group affords selectively intermediates 13 and 14 (Figure 2, upper spectrum). On heating, these intermediates rearrange in the same way as observed for 8-12, and some 1-silacyclobutene derivatives were formed in almost quantitative yield (> 90%; see Figure 2). Surprisingly the C \equiv C-Me group did not favour the formation of 1-silacyclobutene and decomposition was observed at 80 °C immediately after formation of alkenyl(propyn-1-yl)silane 13a.

$$R^{1}_{2}Si \leftarrow R)_{2} \xrightarrow{\text{9-BBN}} R^{1}_{2}Si \xrightarrow{\text{B}} \underbrace{\begin{array}{c} 1,1\text{-vinylboration} \\ R \end{array}} R^{1}_{2}Si \xrightarrow{\text{B}} R^{1}_{2}Si \xrightarrow{\text{$$

Scheme 4. Reaction of dialkyn-1-ylsilanes with one equivalent of 9-BBN. 1,2-Hydroboration is followed by 1,1-vinylboration.

	δ^{13} C (HC=)	$\delta^{13}\mathrm{C}~\mathrm{(C-2)}$	$\delta^{13}{ m C} \ ({ m C-3})$	$\delta^{13} C (C-4)$	$\delta^{29} \mathrm{Si}$	$\delta^{11} \mathrm{B}$
$\mathbf{15c}^b$	140.0	147.6 [54.3]	180.4^{br}	162.5 [55.4]	-10.5	85.0
$16a^c$	140.1	147.0 [55.1]	177.9^{br}	159.8 [54.9]	3.2	87.2
$\mathbf{16c}^d$	140.8	148.8 [53.0]	178.7^{br}	163.3 [55.2]	7.9	86.0
$\mathbf{17c}^{e}$	139.8	151.7 [48.7] [15.1]	194.9^{br}	166.8 [38.2] [63.3]	-11.6, -12.9	88.2
$\mathbf{18c}^f$	132.4	150.2 [52.1]	175.9^{br}	164.6 [53.6]	11.5	87.4
$\mathbf{19b}^g$	135.6	146.0 [54.9]	178.6^{br}	166.9 [53.4]	-0.3	86.7

Table 2. ¹¹B-, ¹³C-, and ²⁹Si-NMR dataa of 1-silacyclobutene derivatives 15-19.

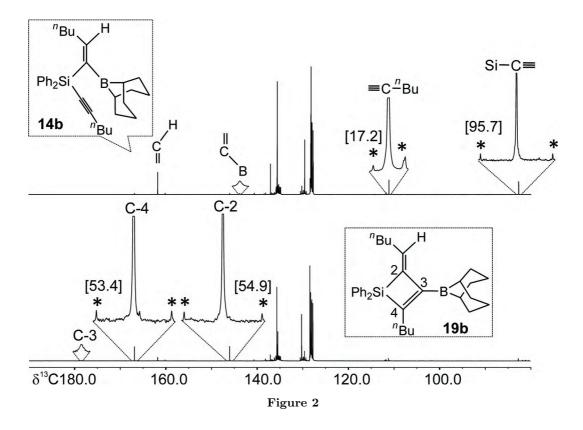
^f other ¹³ C-NMR data: δ [J(²⁹Si, ¹³C)] = -0.01 [46.3, SiMe2], 34.3, 32.1 ^{br}, 23.6 (9-BBN), 140.5 (i), 140.1 (i), 128.9, 128.6, 128.2, 127.4, 127.0, 126.6 (Ph).

 g other 13 C-NMR data: δ [J(29 Si, 13 C)] = 33.4, 31.9 br , 23.5 (9-BBN), 35.1, 34.4, 33.1, 32.6, 23.1, 22.7, 14.2, 14.0 (Bu), 135.5 [62.7], 135.7, 130.2, 128.4, (i, o, m, p, SiPh₂).

NMR spectroscopic studies

The 11 B-, 13 C-, and 29 Si-NMR data for alkenyl(alkyn-1-yl)silanes (**9-14**) and 1-silacyclobutene derivatives (**15-19**) are listed in Tables 1 and 2, respectively. The data for borate-like intermediates (**6** and **7**) and 1 H-NMR data for all the new compounds are collected in the Experimental section. The data sets compare well with the previously reported data $^{36-38}$ and are in full agreement with the proposed structures. All compounds, i.e. alkenyl(alkyn-1-yl)silanes, borate-like intermediates, and 1-silacyclobutene derivatives, could be identified from their characteristic NMR parameters (see Figures 1 and 2). The 11 B chemical shifts for alkenyl(alkyn-1-yl)silanes and 1-silacyclobutenes cover a narrow range (δ^{11} B = 82-89 ppm), typical of triorganoboranes without significant BC(pp) π interactions. 51 For all products the 13 C-NMR data are useful to corroborate the proposed structures. Many 13 C-NMR signals could be readily assigned by their 29 Si satellites [1 J(29 Si, 13 C) and 2 J(29 Si, 13 C)] or by the typical increase in the line widths owing to partially relaxed one-bond 13 C- 11 B spin-spin coupling. 52 The 29 Si-NMR spectra are helpful in monitoring of the reactions, and δ^{29} Si data are markedly different for starting silanes (**1**, **2**), alkenylsilanes (**3-5**), borates (**6**, **7**), alkenyl(alkyn-1-yl)silanes (**8-14**), and

 $[^]a$ Measured in C₆D₆ at 23 $^{\circ}$ C, coupling constants J(29 Si, 13 C) are given in square brackets [\pm 0.4 Hz], n.m. means not measured, superscript br denotes a broad 13 C resonance signal as the result of partially relaxed scalar 11 B- 13 C coupling. 52


^b other ¹³ C-NMR data: δ [J(²⁹Si, ¹³C)] = 34.4, 32.4 ^{br}, 23.5 (9-BBN), 134.2 [64.8], 135.9, 128.7, 130.6 (*i*, *o*, *m*, *p*, Si-Ph), 135.5, 132.6, 130.7, 128.8, 128.5, 128.4, 127.6, 127.2 (Ph).

^c other ¹³ C-NMR data: δ [J(²⁹Si, ¹³C)] = -3.1 [64.8, Si-Me], 34.2, 31.1 ^{br}, 23.6 (9-BBN), 35.0, 32.6, 22.7, 14.2 (Bu), 136.5 [62.8], 134.6, 128.5, 130.5 (*i*, *o*, *m*, *p*, Si-Ph), 132.5, 128.6, 128.3, 127.1 (*i*, *o*, *m*, *p*, Ph).

^d other ¹³ C-NMR data: δ [J(²⁹ Si, ¹³ C)] = -1.3 [52.3, Si-Me], 34.7, 32.4 ^{br}, 23.6 (9-BBN), 140.7 [65.1], 134.6, 128.3, 129.1 (*i*, o, m, p, Si-Ph), 132.5, 132.3, 128.8, 128.5, 128.2, 128.1, 127.1, 126.8 (Ph).

^e other ¹³ C-NMR data: δ [J(²⁹Si, ¹³C)] = -2.1 (SiMe3), 0.3 (Si-Me), 33.8, 33.7, 32.4 ^{br}, 23.5 (9-BBN), Ph and Si-Ph carbons are without assignment.

1-silacyclobutene derivatives (15-19). In the 1 H-NMR spectra a singlet for the olefinic proton of the C=CH(R) group is accompanied by 29 Si satellites [$^3J(^{29}\text{Si},^1\text{H})\approx 25\text{ Hz}$], which shows that 1,2-hydroboration has taken place. The value of $^3J(^{29}\text{Si},^1\text{H})$ coupling constants is helpful in identification of products (1-silacyclobutenes) and their precursors, the alkenyl(alkyn-1-yl)silanes.

Conclusions

We have shown that various 1-silacyclobutene derivatives are accessible via 1,2-hydroboration followed by 1,1-vinylboration. The synthetic approach is efficient and a variety of functionalities such as Si-organyl as well as Si-H can be included. The synthetic route is limited to $R^3 = SiMe_3$ which afforded alkenyl(alkyn-1-yl)silanes instead of 1-silacyclobutenes. The new compounds alkenyl(alkyn-1-yl)silanes bear numerous reactive sites such as C=C bond, C=C bond, the boryl group, and the Si-H function, which are expected to possess further utility and can be used for development of suitable chemistry.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft. E. K. is grateful to DAAD (Germany) and HEC (Pakistan) for a scholarship (code A/04/30788).

References

- 1. Brown, H. C. Organic Synthesis via Boranes, Wiley Interscience, New York, 1975.
- 2. Burke, L. P.; Negishi, E.; Brown, H. C. J. Am. Chem. Soc. 1973, 95, 3654-3562.
- 3. Mulzer, J.; Altenbach, H.-J.; Braun, M.; Krohn, K.; Reissig, H.-U. (Eds.) Organic Synthesis Highlights; Wiley Interscience, New York, 1991, pp. 33.
- 4. Hall, D. G. (Eds.), Boronic Acids, Preparation, Applications in Organic Synthesis and Medicine, Wiley Interscience, New York, 2005.
- 5. Wrackmeyer, B. Coord. Chem. Rev. 1995, 145, 125-156.
- 6. Wrackmeyer, B. Heteroatom Chem. 2006, 17, 188-206.
- 7. Wrackmeyer, B.; Tok, O. L. Comprehensive Heterocyclic Chemistry III; Eds.: Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K.; Elsevier, Oxford, 2008, pp. 1181-1223.
- 8. Soderquist, J. A.; Colberg, J. C.; DelValle, L. J. Am. Chem. Soc. 1989, 111, 4873-4878.
- 9. Soderquist, J. A.; Leon, G. Tetrahedron Lett. 1998, 39, 3989-3990.
- 10. Uchida, K.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1976, 41, 2941-2942.
- 11. Uchida, K.; Utimoto, K.; Nozaki, H. Tetrahedron 1977, 33, 2987-2992.
- 12. Rajogopalan, S.; Zweifel, G. Synthesis 1984, 113-115.
- 13. Miller, J. A.; Zweifel, G. Synthesis 1981, 288.
- 14. Miller, J. A.; Zweifel, G. J. Am. Chem. Soc. 1981, 103, 6217-6219.
- 15. Zweifel, G.; Backlund, S. J. J. Am. Chem. Soc. 1977, 99, 3184-3185.
- 16. Wrackmeyer, B.; Maisel, H. E.; Milius, W.; Bhatti, M. H.; Ali, S. J. Organomet. Chem. 2003, 669, 72-78.
- 17. Köster, R.; Seidel, G.; Süß, J.; Wrackmeyer, B. Chem. Ber. 1993, 126, 1107-1114.
- 18. Wrackmeyer, B.; Kehr, G.; Süß, J. Chem. Ber. 1993, 126, 2221-2226.
- 19. Wrackmeyer, B.; Maisel, H. E.; Süß, J.; Milius, W. Z. Naturforsch. 1996, 51b, 1320-1324.
- 20. Wrackmeyer, B.; Kehr, G.; Süß, J.; Molla, E. J. Organomrt. Chem. 1998, 562, 207-215.
- 21. Wrackmeyer, B.; Süß, J. Z. Naturforsch. 2002, 57b, 741-745.
- 22. Wrackmeyer, B.; Khan, E.; Kempe, R. Z. Anorg. Allg. Chem. 2007, 633, 453-457.
- 23. Köster, R.; Schüßler, W.; Boese, R.; Herberhold, M.; Gerstmann, S.; Wrackmeyer, B. Chem, Ber, 1996, 129, 503-507.
- 24. Wrackmeyer, B.; Tok, O. L.; Bubnov, Y. N. Angew Chem. Int. Ed. 1999, 38, 124-126.
- 25. Wrackmeyer, B.; Schanz, H.-J.; Hofmann, M.; Schleyer, P. v. R.; Boese, R. Eur. J. Inorg. Chem. 1999, 533-537.
- 26. Wrackmeyer, B.; Badshah, A.; Molla, E.; Motalib, A. J. Organomet. Chem. 1999, 584, 98-102.
- 27. Wrackmeyer, B.; Bhatti, M. H.; Ali, S.; Tok, O. L.; Bubnov, Y. N. J. Organomet. Chem. 2002, 657, 146-154.
- 28. Wrackmeyer, B.; Shahid, K.; Ali, S. Appl. Organomet. Chem. 2005, 19, 377-382.
- 29. Wrackmeyer, B.; Shahid, K.; Ali, S. Z. Naturforsch. 2005, 60b, 590-592.
- 30. Wrackmeyer, B.; Maisel, H. E.; Molla, E.; Motralib, A.; Badshah, A.; Bhatti, M. H. Appl. Organomet. Chem. 2003, 17, 465-472.

- 31. Wrackmeyer, B.; Tok, O. L.; Kempe, R. Inorg. Chem. Acta 2005, 358, 4183-4190.
- 32. Wrackmeyer, B.; Tok, O. L.; Milius, W.; Khan, A.; Badshah, A. Appl. Organomet. Chem. 2006, 20, 99-105.
- 33. Khan, E.; Kempe, R; Wrackmeyer, B. Appl. Organomet. Chem. 2009, 23, 124-131.
- 34. Wrackmeyer, B.; Khan, E.; Kempe, R. Appl. Organomet. Chem. 2008, 22, 383-388.
- 35. Khan, E.; Wrackmeyer, B.; Kempe, R. Eur. J, Inorg. Chem. 2008, 5367-5372.
- 36. Wrackmeyer, B.; Khan, E.; Kempe, R. Appl. Organomet. Chem. 2007, 21, 39-45.
- 37. Khan, E.; Bayer, S.; Wrackmeyer, B. Z. Naturforsch. 2009, 64b, 47-57.
- 38. Wrackmeyer, B.; Khan, E.; Bayer, S.; Shahid, K. Z. Naturforsch. 2007, 62b, 1174-1182.
- 39. Davidsohn, W. E.; Henry, M. C. Chem. Rev. 1967, 67, 73-106.
- 40. Brandsma, L. Preparative Acetylenic Chemistry (2nd ed.); Elsevier, Amsterdam, 1988.
- 41. Brandsma, L. Synthesis of Acetylenes, Allenes, Cumulenes-Methods and Techniques; Elsevier, Amsterdam, 2004.
- 42. Wrackmeyer, B.; Khan, E.; Kempe, R. Z. Naturforsch. 2007, 62b, 75-81.
- 43. Wrackmeyer, B.; Khan, E.; Milius, W. Z. Naturforsch. 2008, 63b, 1267-1275.
- 44. Morris, G. A.; Freeman, R. J. Am. Chem. Soc. 1979, 101, 760-762.
- 45. Morris, G. A. J. Am. Chem. Soc. 1980, 102, 428-429.
- 46. Morris, G. A. J. Magn. Reson. 1980, 41, 185-188.
- 47. Burum, D. P.; Ernst, R. R. J. Magn. Reson. 1980, 39, 163-168.
- 48. Khan, E.; Kempe, R.; Wrackmeyer, B. Appl. Organomet. Chem. 2009, 23, 204-211.
- 49. Wrackmeyer, B.; Khan, E.; Kempe, R. Z. Naturforsch. 2008, 63b, 275-279.
- 50. Hagelee, L. A.; Köster, R. Synth. React. Inorg. Metal-Org. Chem. 1977, 7, 53-67.
- 51. Nöth, H.; Wrackmeyer, B. Nuclear Magnetic Resonance Spectroscopy of Boron Compounds in NMR Basic Principles and Progress, Vol. 14; Eds.: Diehl, M. H.; Fluck, E.; Kosfeld, R; Springer, Berlin, 1978.
- 52. Wrackmeyer, B. Progr. NMR Spectrosc. $\mathbf{1979}$, 12, 227-259.