Four-component synthesis of 1,3,4-oxadiazole derivatives from N-isocyaniminotriphenylphosphorane, aromatic carboxylic acids, aromatic bis-aldehydes, and secondary amines

Ali RAMAZANI ${ }^{1, *}$, Zahra KARIMI ${ }^{1}$, Ali SOULDOZI ${ }^{2}$, Yavar AHMADI ${ }^{3}$
${ }^{1}$ Chemistry Department, Zanjan University, PO Box 45195-313, Zanjan-IRAN
${ }^{2}$ Chemistry Department, Urmia Branch, Islamic Azad University, PO Box 969, Urmia-IRAN
${ }^{3}$ Young Researchers Club, Zanjan Branch, Islamic Azad University, Zanjan-IRAN
e-mail: aliramazani@gmail.com

Received: 07.07.2011

Abstract

The 1:1 iminium intermediate generated by the addition of a secondary amine to aromatic bis-aldehydes (isophthalaldehyde and terphthalaldehyde) is trapped by the N-isocyaniminotriphenylphosphorane in the presence of a aromatic carboxylic acid derivative, which leads to the formation of corresponding iminophosphorane intermediate. Then disubstituted 1,3,4-oxadiazole derivatives are formed via intramolecular azaWittig reaction of the iminophosphorane intermediates. The reactions were completed in neutral conditions at room temperature and the corresponding disubstituted $1,3,4$-oxadiazole derivatives were produced in excellent yields.

Key Words: N-isocyaniminotriphenylphosphorane, aromatic carboxylic acid, aromatic bis-aldehydes, 1,3,4-oxadiazole, aza-Wittig reaction, secondary amine

Introduction

In recent years, multicomponent reactions (MCRs) have become important tools in modern preparative synthetic chemistry because these reactions increase efficiency by combining several operational steps without any isolation of intermediates or changes in the conditions. ${ }^{1-6}$ This principle, therefore, is highly efficient in terms of time as well as resources. ${ }^{7}$ Among the known multicomponent reactions to date, the most valuable reactions are those

[^0]based on isocyanides. Isocyanide-based multicomponent reactions (abbreviated to IMCRs by Ugi and Dömling), by virtue of their synthetic potential, their inherent atom efficiency, convergent nature, ease of implementation, and the generation of molecular diversity, have attracted much attention because of the advantages that they offer to the field of combinatorial chemistry. ${ }^{8}$

Iminophosphoranes are a class of special type of zwitterions, which bear a strongly nucleophilic electron rich nitrogen. The electron distribution around the $\mathrm{P}^{+}-\mathrm{N}^{-}$bond and its consequent chemical implications have been probed and assessed through theoretical, spectroscopic, and crystallographic investigations. ${ }^{9}$ The proton affinity of these iminophosphoranes can be used as a molecular guide to assess their utility as synthetic reagents and their function as ligands in coordination and organometallic chemistry. ${ }^{9-17}$

The intramolecular version of the $a z a$-Wittig-type reaction has attracted considerable attention recently because of its high potential for the synthesis of a wide variety of nitrogen heterocycles, which can be attributed, in good measure, to the rapid progress in the preparation of functionalized iminophosphoranes. The nucleophilicity at the nitrogen is a factor of essential mechanistic importance in the use of these iminophosphoranes as aza-Wittig reagents. Iminophosphoranes are important reagents in synthetic organic chemistry, especially in the synthesis of naturally occurring products, compounds with biological and pharmacological activity. ${ }^{9-20}$ There are several reports for the use of (N-isocyanimino) triphenylphosphorane 4 in the preparation of metal complexes. ${ }^{16-21}$ However, the role of N-isocyaniminotriphenylphosphorane 4 in organic chemistry remains almost unexplored. ${ }^{16-21}$ The N-isocyaniminotriphenylphosphorane $\mathbf{4}$ is expected to have unique synthetic potential because it provides a reaction system in which the iminophosphorane group can react with a reagent having a carbonyl functionality. ${ }^{20,21}$ In recent years, we have established a one-pot method for the synthesis of organophosphorus compounds. ${ }^{18-26}$ As part of our ongoing program to develop efficient and robust methods for the preparation of heterocyclic compounds, ${ }^{27-41}$ we wish to report the synthesis of a new class of disubstituted 1,3,4-oxadiazole derivatives $\mathbf{5}$ by a novel 4 -component condensation of aromatic carboxylic acids $\mathbf{1}$, bis-aldehydes (isophthalaldehyde and terphthalaldehyde) 2, a secondary amine 3, and N-isocyaniminotriphenylphosphorane 4 in excellent yields under neutral conditions (Scheme 1).

Scheme 1. Four-component synthesis of sterically congested $1,3,4$-oxadiazole derivatives 5 (see Table).
1,3,4-Oxadiazoles have attracted interest in medicinal chemistry as surrogates of carboxylic acids, esters, and carboxamides. ${ }^{32-34}$ They are an important class of heterocyclic compounds that have a wide range of pharmaceutical and biological activities including antimicrobial, anti-fungal, anti-inflammatory, antihypertensive,
analgesic, antibacterial, hypoglycemic, antimalarial, antitubercular and antidepressant. ${ }^{32-34}$ Several methods have been reported in the literature for the synthesis of $1,3,4$-oxadiazoles. These protocols are multi-step in nature. ${ }^{35-37}$ The most general method involves the cyclization of diacylhydrazides with a variety of reagents, such as thionyl chloride, phosphorous oxychloride, or sulfuric acid, usually under harsh reaction conditions. ${ }^{38}$ A reliable and simple method has been reported by the Ramazani research group for the one-pot synthesis of 1,3,4-oxadiazole derivatives from carboxylic acids and N-isocyaniminotriphenylphosphorane $4^{24,31}$

Experimental

The starting materials and solvents were obtained from Merck (Germany) and Fluka (Switzerland) and were used without further purification. The methods used to follow the reactions were TLC and NMR. TLC and NMR indicated that there was no side product. Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. IR spectra were measured on a Jasco 6300 FTIR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13}$ CNMR spectra were measured (CDCl_{3} solution) with a BRUKER DRX-250 AVANCE spectrometer at 250.0 and 62.5 MHz , respectively. Elemental analyses were performed using a Heraeus CHN-O-Rapid analyzer. Mass spectra were recorded on a FINNIGAN-MATT 8430 mass spectrometer operating at an ionization potential of 70 eV . Flash chromatography columns were prepared from Merck silica gel powder.

General procedure for the preparation of compounds 5

To a stirred solution of N-isocyaniminotriphenylphosphorane $4(1 \mathrm{mmol})$, aromatic bis-aldehyde 2 (1 mmol), and secondary amine $\mathbf{3}(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise a solution of aromatic carboxylic acids $\mathbf{1}(1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature over 15 min . The mixture was stirred for 5 h . The solvent was removed under reduced pressure and the viscous residue was purified by flash column chromatography (silica gel powder; petroleum ether-ethyl acetate (3:1)). The solvent was removed under reduced pressure and the products were obtained. The characterization data of the compounds are given below:

4-[[5-(4-Bromophenyl)-1,3,4-oxadiazol-2-yl](dibenzylamino)methyl]benzaldehyde (5a)

Yellow oil, (Yield 90\%). IR (neat): $\nu_{\max }=2980,1704,1607,1482$ and $799 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 3.66$ and $3.89\left(\mathrm{AB}\right.$ quartet, $4 \mathrm{H}, J=13.75 \mathrm{~Hz}, 2 \mathrm{CH}_{2}$ of dibenzyl group), 5.50 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ aliphatic), 7.28-7.92 (m, 18H, H-arom), 10.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 54.8\left(2 \mathrm{CH}_{2}\right.$ of benzyl group), 59.5 (CH , aliphatic), $127.5,128.4,128.5,128.8,129.1,129.9$ and $132.5(18 \mathrm{CH}$ of arom), 122.5 , 126.7, 136.2, 138.2 and 143.3 (6 C of arom), 164.1 and 164.6 ($2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.6 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (538.4): C 66.92, H 4.49, N 7.80; Found: C 66.86, H 4.42, N 7.88. MS, $m / z(\%): 538\left(\mathrm{M}^{+}, 3\right), 342(6), 314(53), 222(4), 196$ (100), 132 (6), 91 (93) and 65 (9).

4-\{[Benzyl(ethyl)amino][(5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]methyl $\}$ benzaldehyde (5b)

Yellow oil, (Yield 84%). IR (neat) $\nu_{\max }=3035,2975,1704,1610,1499,1211$ and $827 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.14\left(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Et$), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.50-2.58$ and $2.70-2.81$ $\left(2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Et$), 3.58$ and $3.90\left(\mathrm{AB}\right.$ quartet, $2 \mathrm{H}, J=13.75 \mathrm{~Hz}, \mathrm{CH}_{2}$ of benzyl group), $5.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$
aliphatic), $7.22-7.92$ (m, 13H, H-arom), 10.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 12.7 and $21.6\left(2 \mathrm{CH}_{3}\right), 44.6\left(\mathrm{CH}_{2}\right.$, Ethyl), $54.5\left(\mathrm{CH}_{2}\right.$ of benzyl group), $60.2(\mathrm{CH}$, aliphatic), 126.9, 127.2, 128.4, 128.6, $128.8,129.7$ and $129.8(13 \mathrm{CH}$ of arom), 120.8, 130.1, 136.1, 138.7 and 142.5 (5 C of arom), 163.9 and 165.5 ($2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.6 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$ (411.5): C 75.89, H 6.12, N 10.21; Found: C 75.83, H 6.34, N $10.26 . \mathrm{MS}, m / z(\%): 412\left(\mathrm{M}^{+}, 29\right), 278(56), 252(68), 235(6), 159(12), 134$ (100), 119 (34), 77 (13), 65 (11) and 43 (5).

4-\{[Benzyl(ethyl)amino][(5-(4-bromophenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5c)

Yellow oil, (Yield 85\%). IR (neat) $\nu_{\max }=3066,2979,1705,1606,1482$ and $740 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.14\left(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right.$ of Et), 2.50-2.58 and 2.72-2.77 ($2 \mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}$ of Et), 3.59 and 3.89 (AB quartet, $2 \mathrm{H}, J=13.75 \mathrm{~Hz}, \mathrm{CH}_{2}$ of benzyl group), 5.48 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ aliphatic), 7.21-7.89 (m, $13 \mathrm{H}, \mathrm{H}$-arom), $10.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 12.7\left(\mathrm{CH}_{3}\right) ; 44.7\left(\mathrm{CH}_{2}\right.$, Ethyl), $54.6\left(\mathrm{CH}_{2}\right.$ of benzyl group), $60.3(\mathrm{CH}$, aliphatic), 127.9, 128.3, 128.4, 128.6, 128.8, 129.9 and $132.4(13 \mathrm{CH}$ of arom), 122.53, 127.2, 136.1, 138.6 and 143.9 (5 C of arom), 162.8 and $164.5(2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.6 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (476.4): C 63.03 , H 4.65, N 8.82; Found: C $63.10, \mathrm{H} 4.60, \mathrm{~N}$ 8.77. MS, $m / z(\%): 475\left(\mathrm{M}^{+}, 15\right), 463(34), 448(18), 436(59), 430(26), 278(79), 235(6), 160(6), 134$ (100), 119 (18), 91 (41), 65 (6) and 43 (2).

4-\{[Benzyl(methyl)amino][(5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5d)

Yellow oil, (Yield 88%). IR (neat) $\nu_{\max }=2993,1704,1613,1499,1213$ and $828 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.30$ and $2.43\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of benzyl group), $5.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ aliphatic), 7.29-7.94 (m, 13H, H-arom), 10.02 (s, $1 \mathrm{H}, \mathrm{CHO}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 21.6$ and 39.1 $\left(2 \mathrm{CH}_{3}\right), 58.9\left(\mathrm{CH}_{2}\right.$ of benzyl group), $63.7(\mathrm{CH}$, aliphatic), 126.9, 127.4, 128.4, 128.8, 129.1, 129.8 and 130.0 $(13 \mathrm{CH}$ of arom), $120.8,130.1,136.1,138.6$ and 142.5 (5 C of arom), 163.6 and $166.5(2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.6 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$ (397.5): C 75.54, H 5.83, N 10.57; Found: C 75.49, H 5.88, N 10.64 .

3-\{[Benzyl(methyl)amino][(5-(4-bromophenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5e)

Yellow oil, (Yield 83%). IR (neat) $\nu_{\max }=3088,2969,1703,1604,1482$ and $741 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.61$ and $3.68\left(\mathrm{AB}\right.$ quartet, $2 \mathrm{H},{ }^{2} J_{H H}=13.5 \mathrm{~Hz}, \mathrm{CH}_{2}$ of benzyl group), $5.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ aliphatic), $7.27-8.04(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-\mathrm{arom}), 10.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 39.1\left(\mathrm{CH}_{3}\right), 58.8\left(\mathrm{CH}_{2}\right.$ of benzyl group), $63.6(\mathrm{CH}$, aliphatic), 128.5, 128.7, 128.7, 129.5, 129.7, 130.7 and $132.3(13 \mathrm{CH}$ of arom), 119.5, 127.5, 129.6, 134.3 and 136.8 (5 C of arom), 162.8 and $165.0(2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.8 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2}$ (462.3): C 62.35, H 4.36, N 9.09; Found: C 62.41, H 4.31, N 9.15.

4-\{(Dibenzylamino)[5-(4-ethylphenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5f)

Yellow oil, (Yield 86%). IR (neat) $\nu_{\max }=3067,2939,1705,1613,1501$ and $753 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.29\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Et$), 2.74\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Et$), 3.61$ and $3.89(\mathrm{AB}$ quartet, $4 \mathrm{H}, J=13.75 \mathrm{~Hz}, 2 \mathrm{CH}_{2}$ of Benzyl groups), 5.48 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ aliphatic), $7.28-7.98$ ($\mathrm{m}, 18 \mathrm{H}, \mathrm{H}-\mathrm{arom}$), $10.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 17.0\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{2}\right.$, Ethyl), $54.6\left(2 \mathrm{CH}_{2}\right.$ of Benzyl groups), 59.8 (CH, aliphatic), 127.1, 127.4, 128.5, 128.6, 128.8, 129.1 and 129.8 (18 CH , arom), 126.82 , 134.7, 136.1, 138.3 and 141.9 (3 C , arom), 163.4 and 167.1 ($2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.9 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$ (487.6): C 78.82, H 5.99, N 8.62; Found: C 78.88, H 5.93, N 8.57.

3-\{[Benzyl(methyl)amino][(5-(3,5-dimethylphenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5g)

Yellow oil, (Yield 84\%). IR (neat) $\nu_{\max }=2947,1707,1612,1554,1456$ and $743 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.30$ and $2.39\left(2 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 3.60$ and $3.68\left(\mathrm{AB}\right.$ quartet, $2 \mathrm{H}, J=13 \mathrm{~Hz}, \mathrm{CH}_{2}$ of benzyl group), $5.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\right.$ aliphatic), $7.17-8.08\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}\right.$-arom), $10.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 21.2$ and $39.0\left(3 \mathrm{CH}_{3}\right), 58.8\left(\mathrm{CH}_{2}\right.$ of benzyl group), $63.5(\mathrm{CH}$, aliphatic), 124.7, 128.4, 128.8, $129.5,129.8,130.79$ and 132.3 (12 CH of arom), $123.3,127.4,133.7,136.8$ and 138.8 (5 C of arom), 161.9 and 165.7 ($2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.9 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ (411.5): C 75.89, H 6.12, N 10.21; Found: C 75.81, H 6.19, N 10.25.

4-\{[Benzyl(methyl)amino][(5-(2,5-dimethylphenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5h)

Yellow oil, (Yield 82%). IR (neat) $\nu_{\max }=2943,1706,1614$ and $834 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $2.29,2.38$ and $2.66\left(3 \mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of benzyl group), 5.31 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ aliphatic), 7.11-7.92 (m, $12 \mathrm{H}, \mathrm{H}$-arom), $10.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 21.4,22.0$ and 39.2 $\left(3 \mathrm{CH}_{3}\right), 58.9\left(\mathrm{CH}_{2}\right.$ of benzyl group), $63.7(\mathrm{CH}$, aliphatic), 119.9, 126.9, 127.4, 128.4, 128.7, 129.0, 130.0 and $132.5(12 \mathrm{CH}$ of arom $), 124.4,127.6,132.5,136.2,138.7$ and $142.0(6 \mathrm{C}$ of arom), 163.5 and $164.68(2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.7 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$ (411.5): C 75.89, H 6.12, N 10.21; Found: C 75.83 , H 6.18, N 10.16.

3-\{[Benzyl(ethyl)amino][(5-(3,4-dimethylphenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5i)

Yellow oil, (Yield 86%). IR (neat) $\nu_{\max }=2977,1702,1606,1495,1143$ and $740 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Et$), 2.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.55$ and $2.76\left(2 \mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Et$), 3.58$ and 3.90 (AB quartet, $2 \mathrm{H}, J=13.75 \mathrm{~Hz}, \mathrm{CH}_{2}$ of Benzyl groups), 5.49 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ aliphatic), 7.28-8.01 (m, $12 \mathrm{H}, \mathrm{H}$-arom), 10.0 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 12.7,19.7$ and $19.9\left(3 \mathrm{CH}_{3}\right), 44.5$ $\left(\mathrm{CH}_{2}\right.$, Ethyl), $54.5\left(\mathrm{CH}_{2}\right.$ of Benzyl groups), $59.9(\mathrm{CH}) ; 134.2,136.6,137.6,137.6,138.1$ and 141.2 (6 C , arom), 121.1, 124.52, 127.2, 127.9, 128.4, 128.6, 129.1, 129.2, 129.6 and $130.2(12 \mathrm{CH}$, arom $), 164.8$ and $165.6(2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.9 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ (425.5): C 76.21, H 6.40, N 9.87; Found: C 76.28 , H 6.35 , N 9.82 .

4-\{[Benzyl(ethyl)amino][(5-(4-ethylphenyl)-1,3,4-oxadiazol-2-yl]methyl\}benzaldehyde (5j)

Yellow oil, (Yield 83%). IR (neat) $\nu_{\max }=2971,1704,1612,1501,1212$ and $844 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.11$ and $1.27\left(2 \mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ of Et$), 2.52$ and $2.69\left(2 \mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Et), 3.57 and 3.91 (AB quartet, $4 \mathrm{H}, J=13.75 \mathrm{~Hz}, 2 \mathrm{CH}_{2}$ of Benzyl groups), 5.49 (s, $1 \mathrm{H}, \mathrm{CH}$ aliphatic), $7.29-$ $8.01(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-\mathrm{arom}), 10.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 12.6$ and $15.2\left(2 \mathrm{CH}_{3}\right)$, 28.9 and $44.6\left(2 \mathrm{CH}_{2}\right.$, Ethyl), $54.5\left(\mathrm{CH}_{2}\right.$ of Benzyl groups), 60.1 (CH, aliphatic), 121.2, 127.7, 136.1, 140.0 and 148.81 (5 C , arom), $127.0,128.4,128.6,128.8,129.4,129.9$ and 130.1 (13 CH , arom), 163.4 and $165.2(2 \mathrm{C}=\mathrm{N}$ of oxadiazole); 191.4 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ (425.5): C 76.21, H 6.40, N 9.87; Found: C 76.26 , H 6.37, N 9.91 .

3-\{[Dibenzylamino][(5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]methyl $\}$ benzaldehyde (5k)

Yellow oil, (Yield 85\%). IR (neat) $\nu_{\max }=3068,2951,1707,1619,1498$ and $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.61$ and $3.89\left(\mathrm{AB}\right.$ quartet, $4 \mathrm{H}, J=13.5 \mathrm{~Hz}, 2 \mathrm{CH}_{2}$ of dibenzyl group), 5.48 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ aliphatic), $7.34-8.01$ ($\mathrm{m}, 18 \mathrm{H}, \mathrm{H}$-arom), $10.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): $21.6\left(\mathrm{CH}_{3}\right), 54.6\left(2 \mathrm{CH}_{2}\right.$ of benzyl group), $59.0(\mathrm{CH}$, aliphatic), 126.9, 127.4, 128.5, 128.8, 128.9, 129.3, $129.4,129.7$ and 129.8 (18 CH of arom), $121.5,134.4,136.5,138.3,142.9(6 \mathrm{C}$ of arom), 163.6 and $165.6(2 \mathrm{C}=\mathrm{N}$ of oxadiazole), 191.9 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$ (473.6): C 78.62, H 5.75, N 8.87; Found: C 78.57, H 5.79, N 8.83.

3 - $\{[$ benzyl(isopropyl)amino $][(5-(3,4$-dimethylphenyl)-1,3,4-oxadiazol-2-yl]methyl $\}$ benzaldehyde (51)

Yellow oil, (Yield 87%). IR (neat) $\nu_{\max }=2976,1703,1611,1485$ and $768 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 0.95\left(\mathrm{~d}, 3 \mathrm{H}, J=6.25 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{amin}\right), 1.17\left(\mathrm{~d}, 3 \mathrm{H}, J=6.25 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{amin}\right), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$, $3.15-3.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\right.$ amin), 3.82 and 3.91 (AB quartet, $2 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{CH}_{2}$ of dibenzyl group), $5.51(\mathrm{~s}, 1 \mathrm{H}$, CH aliphatic), $7.05-8.03(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H}-\mathrm{arom}), 9.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 18.8$, 19.2, 19.7 and $19.9\left(4 \mathrm{CH}_{3}\right), 53.4\left(\mathrm{CH}_{2}\right.$ of benzyl group), 50.0 and $58.7(\mathrm{CH}$, aliphatic), 124.4, 126.8, 127.8, $128.1,128.3,129.2,129.6,129.9,130.1$ and $131.0(12 \mathrm{CH}$ of arom), $134.2,134.6,136.6,136.98,137.42$ and 141.0 (6 C of arom), 161.2 and $163.4\left(2 \mathrm{C}=\mathrm{N}\right.$ of oxadiazole), 191.0 ($\mathrm{C}=\mathrm{O}$ of aldehyde). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$ (439.5): C 76.51, H 6.65, N 9.56 ; Found: C 76.55, H 6.59 , N 9.61.

Results and discussion

The $1: 1$ imine intermediate generated by the addition of secondary amine $\mathbf{3}$ with bis-aldehydes (isophthalaldehyde and terphthalaldehyde) $\mathbf{2}$ is trapped by the N-isocyaniminotriphenylphosphorane in the presence of aromatic carboxylic acid derivatives $\mathbf{1}$, which leads to the formation of $1,3,4$-oxadiazole derivative 5 and triphenylphosphine oxide 6 (Scheme 1 and Table). The reaction proceeds smoothly and cleanly under mild conditions and no side reactions were observed.

Four-component synthesis of 1,3,4-oxadiazole derivatives from..., A. RAMAZANI, et al.

Table. Synthesis of disubstituted 1,3,4-oxadiazole derivatives 5 (See Scheme 1).

5	Ar	R	Bis-aldehyde	Product	Yield $(\%)^{\mathrm{a}}$
a	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$			90
b	4-MeC66 H_{4}	$\mathrm{CH}_{3} \mathrm{CH}_{2}$			84
c	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$			85
d	4-MeC66 H_{4}	CH_{3}			88
e	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	CH_{3}			83
f	4-EtC6 H_{4}	$\mathrm{C}_{6} \mathrm{H}_{5}$			86
g	$3,5-\mathrm{diMeC}_{6} \mathrm{H}_{4}$	CH_{3}			84

Four-component synthesis of 1,3,4-oxadiazole derivatives from..., A. RAMAZANI, et al.

Table. Continued.

5	Ar	R	Bis-aldehyde	Product	Yield $(\%)^{\mathrm{a}}$
h	2,4-diMeC6 ${ }_{6} \mathrm{H}_{4}$	CH_{3}			82
i	3,4-diMeC6 ${ }_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}$			86
j	4-EtC6 H_{4}	$\mathrm{CH}_{3} \mathrm{CH}_{2}$			83
k	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$			85
1	3,4-diMeC6 ${ }_{6} \mathrm{H}_{4}$	$\left(\mathrm{CH}_{3}\right) \mathrm{CH}$			87

${ }^{\text {a }}$ Yield of isolated 5.

The suggested mechanism for this reaction is provided in Scheme 2. It is conceivable that the initial event is the condensation of the bis-aldehyde $\mathbf{2}$, secondary amine $\mathbf{3}$, and aromatic carboxylic acid $\mathbf{1}$ entities to an intermediate iminium ion 7. Nucleophilic addition of the N-isocyaniminotriphenylphosphorane 4 to the intermediate iminium ion $\mathbf{7}$ leads to nitrilium intermediate $\mathbf{8}$. This intermediate may be attacked by the conjugate base of the acid $\mathbf{1}$ to form 1:1:1:1 adduct $\mathbf{9}$. This adduct may undergo an intramolecular aza-Wittig reaction of an iminophosphorane moiety with the ester carbonyl group to afford the isolated 2,5-disubstituted 1,3,4-oxadiazole $\mathbf{5}$ by removal of triphenylphosphine oxide $\mathbf{6}$ from intermediate $\mathbf{1 0}$.

The structures of the products 5 a-l were deduced from their IR, ${ }^{1} \mathrm{HNMR}$, and ${ }^{13} \mathrm{CNMR}$ spectra. For example the IR spectrum of 5 a showed strong absorptions at $2980(\mathrm{CH}), 1704(\mathrm{C}=\mathrm{O}$, aldehyde) $1482(\mathrm{C}=\mathrm{C}$, aromatic) and 799 (aromatic) cm^{-1}. The ${ }^{1} \mathrm{HNMR}$ spectrum of $\mathbf{5 a}$ consisted of an AB-quartet for $2 \mathrm{CH}_{2}$ of the benzyl group ($\delta=3.66$ and $3.89 \mathrm{ppm}, \mathrm{J}=13.75 \mathrm{~Hz}$), a singlet for the CH aliphatic $(\delta=5.50 \mathrm{ppm})$, a

Four-component synthesis of 1,3,4-oxadiazole derivatives from..., A. RAMAZANI, et al.

Scheme 2. Proposed mechanism for the formation of sterically congested 1,3,4-oxadiazole derivatives 5a-l.
multiplet for $\mathrm{H}-\mathrm{Ar}(7.28-7.92 \mathrm{ppm})$, and a singlet for CH of the aldehyde group ($\delta=10.11 \mathrm{ppm}$). The ${ }^{1} \mathrm{H}$ decoupled ${ }^{13}$ CNMR spectrum of $\mathbf{5 a}$ showed 17 distinct resonances $\left[\delta=54.8\left(2 \mathrm{CH}_{2}\right.\right.$, benzyl group); $595(1 \mathrm{CH}$, aliphatic); 122.5, 126.7, 136.2, 138.2 and 143.3 (6 C , arom.); 127.5, 128.4, 128.5, 128.8, 129.1, 129.9 and 132.5 (18 CH , arom.); 1641 and 1646 (2 C , oxadiazole); 191.6 ($1 \mathrm{C}=\mathrm{O}$, aldehyde)] that are in agreement with the formula and structure of $\mathbf{5 a}$. Partial assignment of these resonances is given in the spectral analysis section (see Experimental section). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra of compounds $\mathbf{5 b l}$ were similar to those of $\mathbf{5 a}$, except for the aromatic or heteroaromatic moieties, which exhibited characteristic signals with appropriate chemical shifts.

Four-component synthesis of 1,3,4-oxadiazole derivatives from..., A. RAMAZANI, et al.

Conclusions

In summary, the previously developed method was extended to bis-aldehyde for the preparation of sterically congested 2,5-disubstituted 1,3,4-oxadiazole derivatives $\mathbf{5}$ from aromatic carboxylic acids $\mathbf{1}$, bis-aldehyde $\mathbf{2}$, secondary amine $\mathbf{3}$, and N-isocyaniminotriphenylphosphorane $\mathbf{4}$ in excellent yields under neutral conditions. Its ease of work-up and reaction conditions make it a useful addition to modern synthetic methodologies. We think that the reported method offers a mild, simple, and efficient route for the preparation of sterically congested 1,3,4-oxadiazole derivatives, by a sequence of multicomponent reactions and an intramolecular azaWittig closure. Due to the easy availability of the synthetic approach and the neutral ring closure conditions, this new synthetic approach discussed here has potential in the synthesis of various 2,5 -disubstituted $1,3,4$ oxadiazoles, which are of considerable interest as potential biologically active compounds or pharmaceuticals. Other aspects of this process are under investigation.

References

1. Kolodiazhnyi, O. I. Phosphorus Ylides: Chemistry and Application in Organic Synthesis Wiley, New York 1999
2. a) Ramazani, A.; Kazemizadeh, A. R.; Ahmadi, E.; Noshiranzadeh N.; Souldozi, A. Curr. Org. Chem. 200812 59-82; b) Ramazani, A.; Souldozi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 2663-2666; c) Ramazani, A.; Ahmadi, E. Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 2659-2661; d) Ramazani, A.; Souldozi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2004, 179, 529-534; e) Ramazani, A.; Bodaghi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2004, 179, 1615- 1620; f) Ramazani, A.; Kazemizadeh, A. R.; Ahmadi, E. Phosphorus, Sulfur, Silicon Relat.Elem. 2005, 180, 1781-1784; g) Ramazani, A.; Azizian, A.; Bandpey, M.; Noshiranzadeh, N. Phosphorus, Sulfur, Silicon Relat. Elem. 2006, 181, 2731-2734; h) Ramazani, A.; Ahmadi, E. Phosphorus, Sulfur, Silicon Relat. Elem. 2006, 181, 2725- 2729.
3. a) Ramazani, A.; Kazemizadeh, A. R.; Ahmadi, E.; Slepokura, K.; Lis, T. Z. Naturforsch. 2006 61b, 1128-1133; b) Ramazani, A.; Noshiranzadeh, N.; Ghamkhari, A.; lepokura, K.; Lis, T. Helv. Chim. Acta 2008, 91, 2252-2261.
4. Corbridge, D. E. C. Phosphorus: an Outline of Its Chemistry, Biochemistry, and Uses 5th ed.; Elsevier, Amsterdam 1995
5. Molina, P.; Vilaplana, M. J. Synthesis 1994, 1197-1218
6. Palacios, F.; Aparicio, D.; Rubiales, G.; Alonso, C.; de los Santos, J. M. Curr. Org. Chem. 2009 13, 810-828
7. Palacios, F.; Aparicio, D.; Rubiales, G.; Alonso, C.; de los Santos, J. M. Curr. Org. Chem. 2006, 10, 2371-2392
8. Hajós, G.; Nagy, I. Curr. Org. Chem. 2008, 12, 39-58
9. Palacios, F.; Alonso, C.; Aparicio, D.; Rubiales, G.; de los Santos, J. M. Tetrahedron 2007, 63, 523-575
10. Cossio, F. P.; Alonso, C.; Lecea, B.; Ayerbe, M.; Rubiales, G.; Palacios, F. J. Org. Chem. 2006, 71, 2839-2847
11. Palacios, F.; Herrán, E.; Alonso, C.; Rubiales, G.; Lecea, B.; Ayerbe, M.; Cossío, F. P. J. Org. Chem. 2006, 71, 6020-6030
12. Stolzenberg, H.; Weinberger, B.; Fehlhammer, W. P.; Pühlhofer, F. G.; Weiss, R. Eur. J. Inorg. Chem. 2005, 21, 4263-4271.
13. Chiu, T. W.; Liu, Y. H.; Chi, K. M.; Wen, Y. S.; Lu, K. L. Inorg Chem 2005, 44, 6425-6430.

Four-component synthesis of 1,3,4-oxadiazole derivatives from..., A. RAMAZANI, et al.
14. Ramazani, A.; Souldozi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 1325-1328.
15. Ramazani, A.; Souldozi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 1329-1332.
16. Ramazani, A.; Bodaghi, A. Tetrahedron Lett. 2000, 41, 567-568
17. Pakravan, P.; Ramazani, A.; Noshiranzadeh, N.; Sedrpoushan, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2007, 182, 545-549
18. Ramazani, A.; Rahimifard, M.; Souldozi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2007, 182, 1-5.
19. Ramazani, A.; Rahimifard, M.; Noshiranzadeh, N.; Souldozi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2007, 182, 413-417
20. Ramazani, A.; Ahmadi, E.; Kazemizadeh, A. R.; Dolatyari, L.; Noshiranzadeh, N.; Eskandari, I.; Souldozi, A. Phosphorus, Sulphur, Silicon Relat. Elem 2005, 180, 2419-2422
21. Ramazani, A.; Mohammadi-Vala, M. A. Phosphorus, Sulfur, Silicon Relat. Elem. 2001, 176, 223-229
22. Ramazani, A.; Amini, I.; Massoudi, A. Phosphorus, Sulphur, Silicon Relat. Elem 2006, 181, 2225-2229
23. a) Souldozi, A.; Ramazani, A.; Bouslimani, N.; Welter, R. Tetrahedron Lett. 2007 48, 2617-2620; b) Ramazani, A.; Rouhani, M.; Rezaei, A.; Shajari, N.; Souldozi, A. Helv. Chim. Acta 2011, 94, 282-288; c) Ramazani, A.; Shajari, N.; Mahyari, A.; Ahmadi, Y. Mol. Divers. 2011, 15, 521-527; d) Nasrabadi, F. Z.; Ramazani, A.; Ahmadi, Y. Mol. Divers. 2011, 15, 791-798; e) Shajari, N.; Ramazani, A.; Ahmadi, Y. Bull. Chem. Soc. Ethiop. 2011, 25, 1-6; f) Ramazani, A.; Nasrabadi, F. Z.; Karimi, Z.; Rouhani, M. Bull. Korean Chem. Soc. 2011, 32, 2700-2704; g) Ramazani, A.; Farshadi, A.; Mahyari, A.; lepokura, K.; Lis, T.; Rouhani, M.; J. Chem. Crystallogr. 2011, 41, 13761385
24. a) Souldozi, A.; Ramazani, A. Tetrahedron Lett. 2007, 48, 1549-1551; b) Ramazani, A.; Nasrabadi, F. Z.; Mashhadi Malekzadeh, A.; Ahmadi, Y. Monatsh. Chem. 2011, 142, 625-630
25. a) Souldozi, A.; Ramazani, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2009 184, 3191-3198; b) Ramazani, A.; Ahmadi, Y.; Rouhani, M.; Shajari, N.; Souldozi, A. Heteroatom Chem. 2010, 21, 368-372
26. a) Souldozi, A.; Ramazani, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2009 184, 2344-2350; b) Ramazani, A.; Ahmadi, Y.; Tarasi, R. Heteroatom Chem. 2011, 22 79-84.
27. Souldozi, A.; Ramazani, A. Arkivoc 2008, xvi, 235-242.
28. Ramazani, A.; Salmanpour, S.; Souldozi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2010, 185, 97-102
29. Souldozi, A.; lepokura, K.; Lis, T.; Ramazani, A. Z. Naturforsch. 2007, 62b, 835-840.
30. Ramazani, A.; Morsali, A.; Ganjeie, B.; Kazemizadeh, A. R.; Ahmadi, E.; Kempe, R.; Hertle, I. Z. Naturforsch. 2005, 60b, 569-571.
31. Ramazani, A.; Rezaei, A. Org. Lett. 2010, 12 2852-2855.
32. Holla, B. S.; Gonsalves, R.; Shenoy, S. Eur. J. Med. Chem. 2000, 35, 267-271.
33. Chen, Q.; Zhu, X. -H.; Jiang, L. -L.; Liu, Z. -M.; Yang, G. -F. Eur. J. Med. Chem. 2008, 43, 595-603
34. Amir, M.; Shikha, K. Eur. J. Med. Chem. 2004, 39, 535-545
35. Baxendale, I. R.; Ley, S. V.; Martinelli, M. Tetrahedron 2005, 61, 5323-5349
36. 36 Coppo, F. T.; Evans, K. A.; Graybill, T. L.; Burton, G. Tetrahedron Lett. 2004, 45, 3257-3260
37. Brain, C. T.; Paul, J. M.; Loong, Y.; Oakley, P. J. Tetrahedron Lett. 1999, 40, 32753278.
38. Wang, Y.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 105-108
39. Ramazani, A.; Nasrabadi, F. Z.; Ahmadi, Y. Helv. Chim. Acta 2011, 94, 1024-1029.
40. Ramazani, A.; Ahmadi, Y.; Nasrabadi, F. Z. Z. Naturforsch 2011, 66b, 184190
41. Ramazani, A.; Ahmadi, Y.; Mahyari, A. Synthetic Commun. 2011, 41, 2273- 2282.

[^0]: * Corresponding author

