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1-Hexyl-3-methylimidazolium hexafluorophosphate was prepared in situ and used as extractant in dis-

persive liquid-liquid microextraction. Ultra-trace amounts of Pd(II) could be accurately determined by

electrothermal atomic absorption spectrometry (ETAAS) and spectrophotometry after extraction by the

formed micro-droplets of the ionic liquid phase. 1-(2-Pyridylazo)-2-naphthol was used to produce a hy-

drophobic palladium complex prior to extraction. The effects of concentrations of reagents, reaction and

extraction times, and the other parameters were investigated and optimized. Beer’s law was obeyed in the

ranges of 0.015-0.900 and 1.50-63.0 ng mL−1 Pd(II) by ETAAS and spectrophotometry, respectively. Under

the optimized conditions, the limit of detection (LOD) by ETAAS was 3 ng L−1 with an enrichment factor

of 460. The RSD percent was in the range of 1.3%-4.8% for various standard concentrations of Pd(II) in

the range of 0.050-40.0 ng mL−1 . Most ions did not interfere. The method was successfully applied to the

determination of Pd(II) in some water and alloy samples, jewels, and palladium catalysts.

Key Words: Palladium, dispersive liquid-liquid microextraction, 1-(2-pyridylazo)-2-naphthol, 1-hexyl-3-

methylimidazolium hexafluorophosphate

Introduction

Palladium (Pd) is a valuable metal and has an increasing importance in today’s industries.1 Pd is extensively
applied in the preparation of various important materials due to its catalytic properties, and also is used in
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micro-electronics, jewels, and dental alloys. Pd applications have caused pollution of the environment.2−4

Monitoring of Pd in industrial and environmental samples is of great importance in terms of human health and
environmental purposes.

A preconcentration step often increases the sensitivity and selectivity of the determination. Solid phase
extraction (SPE) and liquid-based extractions have found widespread applications in the preconcentration-
determination of Pd. SPE is flexible in choice of adsorbent but generally needs a back-extraction step. Therefore,
SPE produces organic wastes. SPE has been used for the preconcentration of Pd traces prior to determination.5

Different solid adsorbents such as activated carbon,6 polyurethane foam,7 amberlite XAD resins,8 and modified
silica gel9 have been used for the preconcentration-determination of Pd. Liquid-liquid extraction (LLE),10 cloud

point extraction,11 and dispersive liquid-liquid microextraction (DLLME)12 are some liquid-based methods that
have been used for the enrichment-determination of Pd.

In recent years, water insoluble ionic liquids (ILs) have been widely used for liquid-liquid microextrac-

tion. This new class of liquid extractants is tunable, non-volatile, and green.13 ILs as extractant are gen-
erally dispersed in aqueous samples but sometimes are used as a single drop.14,15 Various techniques have
been used to extract analytes into ILs. Microextraction by ILs is performed using their fine droplets, which are
formed often by dispersive solvents,16−19 cold-induced process,20 sonication,21,22 and in situ IL formation.23−26

DLLME is a simple, fast, and miniaturized extraction method that has been under development for trace
determinations. DLLME has been used by various ILs such as 1-hexyl-3-methylimidazolium hexafluorophos-
phate ([Hmim][PF6 ]),23,24 1-butyl-3-methylimidazoliumhexafluorophosphate ([Bmim][PF6 ]),14,16,20,22 1-octyl-

3-methylimidazoliumhexafluorophosphate ([Omim][PF6 ]),18 1-hexyl-3-methylimidazoliumbis (trifluoromethyl-

sulfonyl) imide,17 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide,19,21 tetradecyl(trihexyl)

phosphonium chloride,15,27 and 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide34,35 for trace
determination of different analytes.

Generally, an ion exchange process is used to prepare water immiscible 1-alkyl-3-methylimidazolium
hexafluorophosphates. The ion exchange process may be performed in situ, prior to DLLME. DLLME by in
situ prepared ILs has various advantages over the other IL-based DLLME methods.23−26

Pd(II) reacts with 1-(2-pyridylazo)-2-naphthol (PAN) and produces a water-insoluble complex (Pd-PAN).
In the present work, the in situ formed [Hmim][PF6 ] was applied for fast and efficient extraction-determination
of Pd-PAN. 1-Hexyl-3-methylimidazolium chloride ([Hmim][Cl]) and potassium hexafluorophosphate (KPF6)
as aqueous solutions were mixed to form fine droplets of [Hmim][PF6 ]. After extraction, the IL-rich phase was
used for ETAAS and spectrophotometric determination.

Experimental

Reagents

Nitric acid, ethanol, Pd-charcoal (ca. 5.0%), Pd-CaCO3 (ca. 10.0%), palladium(II) chloride, and PAN
were purchased from Merck (Germany). KPF6 was purchased from Ionic Liquid Technology (Germany) and

[Hmim][Cl] was prepared in our laboratory according to the method described by Liu et al.28
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The stock solution of PAN was prepared as 8.02 mmol L−1 in ethanol. The stock Pd(II) solution (1000

μg mL−1) was prepared by dissolving 0.1660 g of palladium(II) chloride in 10 mL of aqueous solution containing
2.0 mL of concentrated hydrochloric acid and diluting in a 100.0 mL volumetric flask. This Pd solution was
standardized by a known gravimetric standard method.29 KPF6 solution as 0.339 mol L−1 and [Hmim][Cl] as

0.339 mol L−1 were prepared in deionized water.

All of the aqueous working solutions were prepared by appropriate dilution of the stock solutions with
deionized water. The working solutions of PAN were prepared by diluting the stock solution of PAN with
ethanol.

Apparatus

Palladium atomic absorbances were measured by an Analytik Jena (Germany) continuum source atomic ab-
sorption spectrometer model contrAA 700. All UV-Vis spectra and absorbance measurements were performed
using a double beam spectrophotometer, Shimadzu model UV-1650 PC (Tokyo, Japan), equipped with a 20
μL quartz cell with 10.0 mm path length (Hellma, Germany). A pH meter model 744 Metrohm (Metrohm,
Switzerland) was used to measure and control the pH of the solutions. A centrifuge model CE. 144 (Shimi-
fan company, Iran) was used to settle the IL phases. IL phases were delivered to graphite furnace tube and
spectrophotometer cell by using a 25 μL syringe (Hamilton, Switzerland).

General procedure

To a 15 mL screw-cap conical-bottom plastic centrifuge tube were added 1.0 mL of 1.0 mol L−1 nitric acid, 6.8
mL of Pd(II) containing sample solution, and 0.2 mL of 1.00 mmol L−1 PAN (dissolved in ethanol). After 4

min standing, 1.0 mL of 0.339 mol L−1 [Hmim][Cl], and 1.0 mL of 0.339 mol L−1 KPF6 were added and the
solution was shaken. After 5 min, the mixture was centrifuged for 5 min.

For analysis by ETAAS, 15 μL of ethanol was transferred to a 25 μL syringe and thereafter 10 μL of
[Hmim][PF6 ] phase was sampled. The contents of the syringe were directly injected into a platform graphite
tube carefully. The thermal program in Table 1 was applied and absorbance was measured for quantification
(3 pixels in the center of the photodiode array detector of the ETAAS instrument were used to calculate the
absorbance).

For spectrophotometric determination of Pd, 20 μL of the settled [Hmim][PF6 ] phase was transferred to
a 20 μL cell together with 20 μL of ethanol. The absorption spectrum of the resulting solution was recorded
against the same manner prepared blank in the range of 520-720 nm. Absorbance at 664 nm and first derivative
of absorbance at 682 nm (Δλ = 2 nm) were also used as analytical signals.

Results and discussion

Early experiments showed atomic absorbances of Pd and molecular absorbances of Pd-PAN in [Hmim][PF6 ]
extract were proportional to the aqueous concentration of Pd(II). The author decided to optimize conditions
spectrophotometrically.
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Table 1. Electrothermal AAS operating conditions.

Parameters Argon purge disposition

Element Pd

Wavelength 244.791 nm

Sample volume 10 μL

Furnace type Platform

Modifier No modifier

Measurement mode Peak area

Drying 90 ◦C (ramp 6 ◦C/s, hold 20 s) Maximum

Drying 120 ◦C (ramp 10 ◦C/s, hold 10 s) Maximum

Pyrolysis 400 ◦C (ramp 50 ◦C/s, hold 20 s) Maximum
Pyrolysis 1000 ◦C (ramp 300 ◦C/s, hold 30 s) Maximum

Gas adaption 1000 ◦C (ramp 0 ◦C/s, hold 5 s) Stop

Atomization 2200 ◦C (ramp 1500 ◦C/s, hold 6 s) Stop

Cleaning 2450 ◦C (ramp 500 ◦C/s, hold 5 s) Maximum

Read Time 5 s Stop

Spectrophotometric and first-derivative spectrophotometric spectra

Figure 1 shows zero- and first-derivative spectrophotometric spectra of the IL-ethanol phases. The spectropho-
tometric spectra of the blank and Pd-PAN are highly distinguishable. The most suitable wavelengths are 664
and 682 nm for zero- and first-derivative spectrophotometric determination of Pd, respectively. The wave-
lengths were used throughout all of the spectrophotometric detections. The experiments were performed at
room temperature.

ETAAS determination condition

The high viscosity and organic nature of the used IL produced some drawbacks, especially in sample delivery
into the furnace tube and pyrolysis of the injected IL phase. The viscous IL phase may produce an uncertainty
in the volume of the injected IL phase. To overcome this difficulty, 15 μL of pure ethanol was sampled by
syringe just before sampling of 10 μL of IL phase. Injection of the syringe contents delivered the IL phase into
the furnace tube precisely and uniformly.

The initial ETAAS program proposed by the manufacturer was considered and some modifications were
performed. The drying and pyrolysis steps are important to avoid spattering the liquids and to ensure uniform
deposition of the solid contents of the samples in the graphite furnace tube. A complete pyrolysis and the
highest possible analyte response to background are desirable. The second step of the pyrolysis was tested in
the range of 800-1200 ◦C. The results of the experiments showed that low background absorbance and complete
pyrolysis were possible for temperatures higher than 800 ◦C, and a decrease in absorbance was observed for
pyrolysis temperatures higher than 1300 ◦C, which may be attributed to the loss of palladium during the
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pyrolysis step. A well shaped and sharp absorbance peak was observed at 2200 ◦C atomization temperature.
Lower temperature caused lower sensitivity because palladium was not completely evaporated.
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Figure 1. Absorbance spectra of: a) blank, b) Pd-PAN and c) first-derivative spectrum of Pd-PAN. Conditions: 10.0

mL Pd(II) 12.0 ng mL−1 aqueous solution containing nitric acid 0.10 mol L−1 , 20.0 μmol L−1 PAN, [Hmim][Cl] 33.9

mmol L−1 and KPF6 33.9 mmol L−1 for extraction; and then a mixture containing 20 μL of [Hmim][PF6 ] and 20 μL

of ethanol for recording the spectra.

Optimization of the affecting parameters

The triangular phase diagrams at ambient condition30 show phase diagrams of three 1-alkyl-3-methylimi-
dazolium hexafluorophosphates in ethanol-water mixtures, when the alkyl group is butyl, hexyl, or octyl.
[Bmim][PF6 ] is not dissolved in ethanol in all of the mole fractions, but ethanol dissolves [Hmim][PF6 ] and
[Omim][PF6 ] completely. Moreover, small amounts of water are dissolved in the ethanolic solutions of these
ILs but large amounts of water are dissolved in these IL-ethanol solutions containing large amounts of ethanol.
Composition of the aqueous solution in an IL-based extraction may change the mole fraction of water in the
IL-rich phase. This may change the amounts of ethanol required to produce a clear final solution, which is used
for spectrophotometric detection. Furthermore, [Bmim][PF6 ] dissolves in water higher than [Hmim][PF6 ] and

[Omim][PF6 ].31 Because of the high ethanol solubility and low water solubility of [Hmim][PF6 ], it was selected
as extractant IL. The spectrophotometric measurements of Pd were performed after dilution of the IL phase
with ethanol.

Optimization is always necessary for achieving the best sensitivity. A one-at-a-time optimization proce-
dure was evaluated for optimizing the affecting parameters.

The effects of [Hmim][Cl] and KPF6 amounts (as equi-molar) were investigated. The settled IL phases
(8-43 μL) were completely isolated and were dissolved in 70 μL of ethanol and absorption spectra were obtained.
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The obtained results showed that [Hmim][Cl] and KPF6 as 0.339 mol L−1 introduce the best sensitivity (the
settled IL phase was about 21 μL).

PAN is a general complexing agent but it has been used in various works for selective determination of
Pd.32−34 Various metal ions are present in environmental samples that may interfere in the determination of
Pd. Low pHs are preferred for selective determination of Pd. At low pHs, the ions cannot complex with PAN
and therefore do not interfere in the determination of Pd.33 The influence of pH on the sensitivity of the present
method was also studied. Nitric acid and acetate buffers were used to prepare pHs in the ranges of 1.4-3.3 and
3.6-4.2, respectively. The sensitivity of Pd determination was constant in the range of pH tested. For further
investigations pH equal to 1.4 (nitric acid 0.10 mol L−1) was selected.

To evaluate the effect of PAN concentration on the sensitivity of the introduced method, PAN concen-
trations up to 32.1 μmol L−1 were studied, and the procedure was followed. The obtained results in Figure 2
reveal that the sensitivity increased up to 12.0 μmol L−1 and then remained constant. Therefore, 20.0 μmol
L−1 PAN was used for the subsequent experiments.

The effect of Pd-PAN complexation time was studied in the range of 1-10 min at room temperature
according to the procedure (Figure 3). The results showed that the rate of Pd-PAN formation was relatively
fast and the reaction was completed after 4 min. Therefore, a reaction time of 4 min was selected for Pd-PAN
formation.
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Figure 2. Effect of PAN concentration on the sensitiv-

ity of the method. Conditions: 10.0 mL Pd(II) 20.0 ng

mL−1 aqueous solution containing nitric acid 0.10 mol

L−1 , [Hmim][Cl] 33.9 mmol L−1 and KPF6 33.9 mmol

L−1 for extraction; and then a mixture containing 20 μL

of [Hmim][PF6 ] and 20 μL of ethanol for recording the

spectra.

Figure 3. Effect of complexation time on the sensitivity.

Conditions: 10.0 mL Pd(II) 20.0 ng mL−1 aqueous solu-

tion containing nitric acid 0.10 mol L−1 , 20.0 μmol L−1

PAN, [Hmim][Cl] 33.9 mmol L−1 and KPF6 33.9 mmol

L−1 for extraction; and then a mixture containing 20 μL

of [Hmim][PF6 ] and 20 μL of ethanol for recording the

spectra.
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The dependence of the sensitivity of the method on the extraction time was also monitored in the range
of 1-10 min. The results are given in Figure 4. To achieve satisfactory extraction, extraction times longer than
4 min were sufficient. Therefore a 5 min extraction was selected for additional studies.
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Figure 4. Effect of extraction time on the sensitivity of the method. Conditions: 10.0 mL Pd(II) 20.0 ng mL−1

aqueous solution containing nitric acid 0.10 mol L−1 , 20.0 μmol L−1 PAN, [Hmim][Cl] 33.9 mmol L−1 and KPF6 33.9

mmol L−1 for extraction; and then a mixture containing 20 μL of [Hmim][PF6 ] and 20 μL of ethanol for recording the

spectra.

The solution was centrifuged for different durations to achieve the complete settlement of the IL phase.
The study showed that a 5 min centrifugation at 2000 rpm is sufficient to complete precipitation of the IL-rich
phase.

Effect of ionic strength

The effects of ionic strength are complex. Salting out or salting in effects may be observed. On the other hand,
high contents of salts in the aqueous phase increase the solubility of ILs.21,23 The range of ionic strength tested
is also important and may show different behaviors. Such behaviors are found extensively. The effect of ionic
strength on the sensitivity of the present method was studied by the addition of sodium nitrate in the range of
0.00-0.40 mol L−1 . The obtained results showed that the electrolyte concentration had no considerable effects
on the sensitivity of the method.

Calibration, precision, and accuracy

The characteristics of the obtained calibration plots are given in Table 2. One calibration equation by ETAAS
and 2 spectrophotometric calibration curves (by zero-derivative and first-derivative spectrophotometry) were
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derived. The obtained calibration curves enable determination of Pd in the ranges of 0.015-0.900 and 1.5-63.0
ng mL−1 .

Table 2. Calibrations for determination of Pd.

Correlation
Method Calibration equation Linear range coefficient LOD

(ng mL−1) (R2) (ng mL−1)

ET-AAS: Abs = 4.8 × 10−3 + 7.2 × 10−1 CPd 0.015-0.900 0.9979 0.003

Spectrophotometry:

Zero-derivative Abs = –0.007 + 1.35 × 10−2 CPd 1.5-46.0 0.9965 0.45

First-derivative dA/dλ = 8.1 × 10−5 - 5.89 × 10−4 CPd 1.5-63.0 0.9991 0.30

The enrichment factor was also calculated as the ratio of the slope of the ETAAS calibration curve for
Pd before and after the enrichment. The enrichment factor was found to be about 460.

The limit of detection (LOD) was also measured using 10 times blank analysis by ETAAS and zero- and
first-derivative spectrophotometry. LODs were calculated as 3 × Sb /m, where m and Sb are the slope of the
obtained calibration curve and standard deviation of blank, respectively.

Precision of the method was also examined (Table 3). Four standard solutions were prepared and analyzed
according to the procedure (n = 8), and then the analytical responses were changed to Pd concentrations by
the calibrations obtained.

Table 3. Precision of the method (n = 8).

Concentration of Pd
Method (ng mL−1) RSD (%)

Taken Found

ET-AAS: 0.80 0.78 ± 0.01 1.3

0.050 0.053 ± 0.002 3.8

Spectrophotometry:

Zero-derivative 6.0 6.2 ± 0.3 4.8

40.0 39 ± 1 2.6

First-derivative 6.0 5.9 ± 0.2 3.4

40.0 39.4 ± 0.9 2.3

± Amounts are standard deviation.

Effects of foreign ions

In order to evaluate the selectivity of the presented method, the effect of various species on the Pd determination
was investigated by adding known concentrations of each ion to a solution containing 10.0 ng mL−1 of Pd. The
tolerance limit was defined as the concentration of each ion where the ion caused an error in ±8% range. The
tolerance limits for the tested ions are given in Table 4. The results showed that most of the ions did not
interfere up to at least 500-fold. Au(III) and Fe(III) showed only mild interferences.

638



In situ formed 1-hexyl-3-methylimidazolium hexafluorophosphate for..., H. ESKANDARI

Table 4. Effects of the potentially interfering ions on the determination of Pd by zero-derivative spectrophotometry.

Coexisting ion
Tolerance limit

as mass ratio (ion to Pd)

Na(I), Co(II) 5000a

Ba(II), Al(III), Sr(II), Hg(II), Ni(II), Pb(II), Zn(II), Bi(III), Ca(II),
NH+

4 , Br−, ClO−
4 , HCO−

3 , NO−
3 , SO2−

4 , Cl−, SCN− > 500b

Ag(I), Cd(II), Mg(II), Mn(II), Mo(IV), CH3COO−, I− , F−,
CrO−

4 , ClO−
3 500

Cu(II), V(V), HPO2−
4 250

Fe(III), Au(III) 50

a 5000-fold of the ions were tested and no interferences were observed.

b 500-fold of the ions were tested and no interferences were observed.

Application of the method

Various samples were considered for analysis. Two jewels were analyzed according to the presented procedure.
In a beaker containing 0.2510 g of an 18-carat gold sample, 4.0 mL of concentrated hydrochloric acid and 4.0 mL
of concentrated nitric acid were added and the mixture was heated at 150 ◦C until the solution was evaporated
to dryness. Then 20 mL of deionized water was added and the mixture was filtered. Four milliliters of nitric
acid (1:6) was added to the yellow solid residue, followed by heating to dryness and 4 mL of deionized water was
added and the mixture was filtered. The procedure was repeated 4 times to produce a white residue. All filtrates
were heated to be evaporated to about 1.0 mL. Then the solution was transferred to a 500.0 mL volumetric
flask together with 25.0 mL of a standard 1000μg mL−1 Pd solution.35 Then the flask was adjusted by adding
deionized water. After 400-fold dilution, 2.0 mL of the solution was used for analysis.

Analysis of Pd-charcoal was performed as follows: 0.1020 g of Pd-charcoal catalyst was mixed with 50 mL
of 1.0 mol L−1 nitric acid in a beaker. The mixture was heated for about 2 h on a hot plate until dryness. The
residue was mixed with 50 mL of deionized water, and then filtered and washed with 5 mL of deionized water
3 times. The filtrate solution was transferred to a 250.0 mL volumetric flask.36 After appropriate dilution,
Pd content of the Pd-charcoal catalyst was analyzed by the presented procedure and nitroso-R method37 for
comparison. To 0.0712 g of the Pd-CaCO3 catalyst in a 100 mL beaker was added 3 mL of concentrated nitric
acid followed by heating on a hot plate to near dryness. The beaker was cooled and 1.3 mL of concentrated
nitric acid and 3.7 mL of concentrated hydrochloric acid were added. The beaker was covered by a watch glass
and was heated for 30 min. Then the watch glass was removed and the solution was heated to near dryness.
The beaker content was washed with 50.0 mL of nitric acid (1:100) and the solution was transferred to a 100.0
mL volumetric flask and its volume was adjusted using deionized water. After appropriate dilution, Pd content
in Pd-CaCO3 catalyst was determined by the proposed preconcentration-ETAAS determination method and a
flame AAS standard method.38

Two solutions were prepared according to the composition of 2 alloys. Pd concentrations in the 2
synthetic prepared solutions were 734 ng L−1 and 34.3 μg L−1 ; the solutions were analyzed according to the
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Table 5. Determination of Pd in some water, catalysts, synthetic jewels, and alloys.

Pd

Sample
Added

Spectrophotometry (n = 5) ETAAS (n = 4) Standard

Zero-derivative First-derivative Found Recovery (%) methoda

Jewelry 1 25.0 (mg) 23.9 ± 0.6 (mg) 24.4 ± 0.5 (mg)

Jewelry 2 25.0 (mg) 24.3 ± 0.6 (mg) 25.5 ± 0.6 (mg)

Pd-charcoal b 4.7 ± 0.2 (%) 4.8 ± 0.2 (%) 4.7 ± 0.1 (%)

Pd-CaCO3 9.8 ± 0.2 (%) 96.1 10.2 ± 0.3 (%)

Pd alloy c 69.1 ± 2.0 (%) 68.0 ± 1.7 (%) 66.3 ± 1.5 (%)

Palau d 81.3 ± 1.9 (%) 78.5 ± 2.3 (%) 81.6 ± 2.8 (%)

River water NDe ND 279 ± 11

(ng L−1)

200 (ng L−1) 466 ± 15 93.5

(ng L−1)

350 (ng L−1) 645 ± 17 104.6

(ng L−1)

10.0 (μg L−1) 9.8 ± 0.3 9.9 ± 0.3

(μg L−1) (μg L−1)

Mineral water ND ND 39 ± 2

(ng L−1)

70 (ng L−1) 112 ± 5 104.3

(ng L−1)

120 (ng L−1) 155 ± 5 96.7

(ng L−1)

20.0 (μg L−1) 20.5 ± 0.4 20.7 ± 0.6

(μg L−1) (μg L−1)

Lake water ND ND 130 ± 6

(ng L−1)

90 (ng L−1) 224 ± 9 104.4

(ng L−1)

150 (ng L−1) 273 ± 10 95.3

(ng L−1)

20.0 (μg L−1) 20.7 ± 0.5 19.5 ± 0.5

(μg L−1) (μg L−1)

Tap water ND ND 178 ± 10

(ng L−1)

120 (ng L−1) 303 ± 12 104.2

(ng L−1)

386 ± 16 94.5

(ng L−1)

10.0 (μg L−1) 10.2 ± 0.2 10.4 ± 0.3

(μg L−1) (μg L−1)

aThe standard method was a flame AAS method (n = 6).38

b Pd-charcoal catalyst was also analyzed by nitroso-R method as a comparative method (n = 5).37 The obtained Pd

amount was 4.8 ± 0.1 (%) by nitroso-R method.
c Ag (33.0%), Pd (67.0%).
d Au (20.0%), Pd (80.0%).
e ND means non-detectable.

± Amounts are standard deviation.
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recommended procedure by ETAAS and spectrophotometry, respectively.

Different water samples were also analyzed. Five milliliters of the water samples were analyzed, according
to the presented method. Pd standard solutions were also spiked. The results are shown in Table 5. The obtained
results clearly revealed the presence of Pd in the samples. Comparison of the spiked amounts of Pd and the
found amounts of Pd revealed the complete recoveries of the added Pd. The obtained results showed the success
of the presented method in the determination of Pd in these water matrices.

Comparison with the other methods

The method was compared with some other published Pd determination works. The comparison is given in
Table 6. The presented method showed some advantages in terms of selectivity,5,39 working range,12,5,33,39−41

and LOD.12,5,9,33,39−41

Table 6. Comparison of the presented method with the other Pd preconcentration-determination methods.

Preconcentration Detection Interferent Detection limit Linear range Ref.
method method ions (ng mL−1) (ng mL−1)
CPE Spectrophotometry Hg(II) 0.47 2-50 39

SPE FAAS Ag(I) 0.54 2-80 5

SPE Spectrophotometry No interferents 0.3 2-90 33

SPE FAAS No interferents 0.3 1-200 40

SPE FAAS No interferents 1.2 NA 9

SFODME FAAS No interferents 0.6 2-400 41

DLLME FAAS No interferents 90 100-2000 12

DLLME ETAAS and No interferents 0.003 and 0.3 0.015-0.900 This
spectrophotometry and 1.5-63.0 work

CPE: cloud point extraction; SPE: solid phase extraction; FAAS: flame atomic absorption spectrometry; SFODME:

solidified floating organic drop microextraction; DLLME: dispersive liquid-liquid microextraction.

a Non-available.

Conclusion

In this study, an IL microextraction-based method was developed for sub-nanomolar Pd determination. Two
Pd detection techniques were used and compared. PAN was used in a selective manner for microextraction-
determination of Pd without any masking agents. ETAAS and spectrophotometric detection showed wide
linear dynamic ranges and highly desirable LODs due to a high enrichment factor. Reasonable accuracies and
precisions were obtained for different samples. The DLLME procedure consumed low amounts of reagents and
eliminated the use of toxic solvents as extractant.
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