

# Chemical and biotransformation of Gelomulide F: a rare diterpene lactone

Humaira Yasmeen GONDAL<sup>1,2,\*</sup> and Muhammad Iqbal CHOUDHARY<sup>2</sup>

<sup>1</sup>Department of Chemistry, University of Sargodha, Sargodha-40100, PAKISTAN e-mail: hygondal@yahoo.com

<sup>2</sup>H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, PAKISTAN

Received: 22.01.2012

Chemical and biotransformations of a rare diterpene lactone, Gelomulide F (1), from the cytotoxic extract of leaves of *Suregada multiflora* were studied. Fermentation of compound 1 with *Sachromyces cerevisiae* transformed it to Gelomulide D (2) and E (3), whereas its treatment with 2N KOH yielded Gelomulide D (2). In addition, a novel compound (4) was obtained by its diastereo and chemoselective reduction with NaBH<sub>4</sub>. All of these compounds were characterized on the basis of extensive <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, 2D NMR, and mass spectral analyses.

**Key Words:** Diterpene lactone, Gelomulide, *Suregada multiflora*, *Sachromyces cerevisiae*, diastereo and chemoselective reduction

# Introduction

A series of rare diterpene lactones were isolated from the leaves of *Suregada multiflora*.<sup>1</sup> In continuation of our previous work to accomplish structural modifications in this rare class of diterpene lactones,<sup>2</sup> the present investigation was carried out on Gelomulide F (1). Both chemical and biotransformation methods were employed and structurally interesting analogs (2-4) were obtained.

# Experimental

Column chromatography (CC): Merck silica gel 60 (70-230 mesh) TLC: Merck silica gel GF 254 (0.25 mm); detection by vanillin reagent. All reagents used were of analytical grades. Supermarket baker's yeast NATU

 $<sup>^{*}</sup>$ Corresponding author

(China) was used. M. pts.: a micromelting point apparatus (Yanaco MP-S3).  $[\alpha]_D$ : JASCO DIP-360 digital polarimeter. UV spectra: a Hitachi U 3200 spectrophotometer;  $\lambda_{\text{max}}$  (log  $\varepsilon$ ) in nm. IR spectra: JASCO A-302 IR spectrophotometer; in CHCl<sub>3</sub> on KBr disks; in cm<sup>-1</sup>. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra: on Bruker Avance: at 400/100 MHz; resp.,  $\delta$  in ppm referenced with respect to the residual solvent signal of CDCl<sub>3</sub>, coupling constants J in Hz. Mass spectra: a double-focusing mass spectrometer (Varian MAT 311 A); high-resolution electron impact mass spectra (HR/EI-MS) with a Jeol HX 110 mass spectrometer; in m/z (rel. %).

### Microbial transformation of Gelomulide F (1) by Saccharomyces cerevisiae

Saccharomyces cerevisiae (baker's yeast, 40 g) was added in portions to a stirred solution of sugar (100 g) in water (300 mL) in a conical flask at 35 °C. Gelomulide F (200 mg in 2 mL of DMF) was added after 4 h. The reaction was monitored by TLC. After 4 days, the incubation mixture was filtered and extracted with chloroform. The combined extracts were dried over anhydrous  $Na_2SO_4$ , and the solvent was evaporated to give 321 mg of brown residue. The crude residue was chromatographed on a silica gel column and eluted with EtOAc/hexane to obtain the transformed metabolites **2** (38%) and **3** (22%).

#### $\beta$ -Elimination of Gelomulide F (1) by KOH

Compound 1 (10 mg, 0.25 mmol) in THF (2 mL) was put in a 25-mL round-bottomed flask and 2 mL of 2 N KOH was added. The solution was stirred at room temperature. After 2 h, the reaction mixture was neutralized with aq. HCl and extracted with  $CH_2 Cl_2$ . The organic layer was washed with ammonium chloride, dried over magnesium sulfate, and evaporated under vacuum. The residue was recrystallized by acetone-hexane to obtain compound 2 (85%).

#### 2-Ene-8 $\beta$ ,14 $\beta$ -epoxy-1-oxo-13,15-abiatene-16,12-olide (2)

Appearance: Colorless prism;  $R_f$ : 0.34 (20% acetone-hexane); mp: 229 °C;  $[\alpha]_D$ : +85° (CHCl<sub>3</sub>; c 0.003); UV: (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 223 nm (5.6).); IR:  $\nu_{max}$ : 2954, 1746, 1665, 1438, 1363, 1249, 1090 cm<sup>-1</sup>; EI-MS: m/z (rel. int. %.): 328 (M<sup>+</sup>, 52), 310 (16), 295 (12), 267 (32), 232 (27), 214 (27) 186 (33), 160 (20), 150 (89), 137 (70), 96 (49), 53 (100).; HREI-MS: 328.1648 (for C<sub>20</sub>H<sub>24</sub>O<sub>4</sub>, 328.1674); <sup>1</sup>H- and <sup>13</sup>C-NMR: Table.

#### $6\beta$ -Acetoxy-2-ene-1-oxo- $8\beta$ , $14\beta$ -epoxy-13, 15-abiatene-16, 12-olide (3)

Appearance: Colorless needles; R<sub>f</sub>: 0.27 (20% acetone-hexane); mp: 267 °C;  $[\alpha]_D$ : -13.3° (CHCl<sub>3</sub>; c 0.003); UV: (MeOH)  $\lambda_{\text{max}}$  (log  $\varepsilon$ ) 227 nm (6.3); IR:  $\nu_{\text{max}}$  cm<sup>-1</sup>: 2960, 1758, 1730, 1240, 1668, 1460, 1378 and 1025; EI-MS: m/z (rel. int.%): 386 (M<sup>+</sup>, 17), 326 (54), 308 (43), 293 (18), 283 (9), 265 (37), 230 (8), 212 (10), 163 (17), 137 (100), 105 (37); HREI-MS: m/z = 386.1542 (for C<sub>25</sub>H<sub>22</sub>O<sub>4</sub>, 386.1518); <sup>1</sup>H- and <sup>13</sup>C-NMR: Table.

### Reduction of Gelomulide F (1) by $NaBH_4$

Compound 1 (20 mg, 0.5 mmol) was treated with  $NaBH_4$  (3 mg, 0.8 mmol) in MeOH under stirring at room temperature for 1 h. The reaction was quenched by addition of aq. HCl. The reaction mixture was extracted

with diethylether, and the organic layer was washed with  $NH_4$  Cl solution, dried over MgSO<sub>4</sub>, and concentrated over a rotary evaporator. The white solid obtained showed only one product (4) on TLC.

|                             | 1                                                              |             | 2                                   |             | 3                            |             | 4                            |             |
|-----------------------------|----------------------------------------------------------------|-------------|-------------------------------------|-------------|------------------------------|-------------|------------------------------|-------------|
|                             | $\delta(\mathrm{H})$                                           | $\delta(C)$ | $\delta(\mathrm{H})$                | $\delta(C)$ | $\delta(\mathrm{H})$         | $\delta(C)$ | $\delta(\mathrm{H})$         | $\delta(C)$ |
| 1                           |                                                                | 210.2       |                                     | 204.5       |                              | 202.6       | 3.64 <i>t</i> (2.6)          | 72.0        |
| 2                           | 2.38 <i>dd</i><br>(13.5, 3.4)<br>3.17 <i>dd</i><br>(13.5, 3.6) | 39.5        | 5.8 <i>d</i> (10)                   | 124.1       | 5.82 d (10)                  | 122.6       | 1.92-2.2 m                   | 30.3        |
| 3                           | 5.02 <i>t</i> (3.5)                                            | 80.6        | 6.4 <i>d</i> (10)                   | 155.0       | 6.31 <i>d</i> (10)           | 156.5       | 4.94 <i>t</i> (2.8)          | 78.5        |
| 6                           |                                                                | 20.1        |                                     | 21.0        | 5.13 <i>ddd</i><br>(11,4.9)  | 70.1        |                              |             |
| 9                           | 2.68 d (7.3)                                                   | 40.8        | 2.9 d (7.2)                         | 39.8        | 2.66 d (7.1)                 | 38.9        | 2.60 d (7.6)                 | 41.6        |
| 12                          | 4.84 <i>ddd</i><br>(13, 5.4, 2)                                | 75.7        | 4.83 <i>ddd</i><br>(12.1, 5.4, 2.1) | 74.8        | 4.79 m<br>( $w_{1/2} = 19$ ) | 76.1        | 4.56 m<br>( $w_{1/2} = 16$ ) | 73.2        |
| 13                          | -                                                              | 154.6       | -                                   | 156.4       | -                            | 153.1       | 2.90 m                       | 37.2        |
| 14                          | 3.8 <i>s</i>                                                   | 56.0        | 3.7 s                               | 56.4        | 3.8 s                        | 55.6        | 3.00 s                       | 59.0        |
| 15                          | -                                                              | 128.1       | -                                   | 128.7       | -                            | 129.4       | 2.90 m                       | 37.2        |
| 16                          | -                                                              | 173.8       | -                                   | 171.2       | -                            | 173.2       | -                            |             |
| 17                          | 1.94 <i>d</i> (1.8)                                            | 8.7         | 1.95 d (2.0)                        | 9.0         | 1.96 d (1.7)                 | 8.81        | 1.40 <i>d</i> (6.6)          | 11.5        |
| 18                          | 0.96 s                                                         | 27.7        | 1.10 <i>s</i>                       | 31.3        | 1.16 s                       | 33.7        | 0.91( <i>s</i> )             | 28.1        |
| 19                          | 1.20 s                                                         | 22.1        | 1.11 s                              | 22.7        | 1.30 s                       | 22.5        | 0.94 (s)                     | 22.3        |
| 20                          | 1.30 s                                                         | 16.8        | 1.31 s                              | 18.8        | 1.37 s                       | 19.2        | 0.83( <i>s</i> )             | 20.6        |
| OCO <u>CH</u> 3             | 2.03 s                                                         | 20.9        |                                     |             | 2.05 s                       | 21.4        | 2.1 s                        | 21.6        |
| O <u>CO</u> CH <sub>3</sub> | _                                                              | 170.0       | -                                   |             | -                            | 170.1       | -                            | 169.9       |

**Table.** <sup>1</sup>H- and <sup>13</sup>C-NMR data of compounds **1-4** in CDCl<sub>3</sub>;  $\delta$  in ppm (J in Hz).

### $3\beta$ -acetoxy- $1\beta$ -hydroxy- $8\beta$ , $14\beta$ -epoxy-abiatane-16, 12-olide (4)

Appearance: White powder; Yield: (73%); mp: 264 °C;  $[\alpha]_D$ : -18.3° (CHCl<sub>3</sub>; c 0.003); UV: (MeOH)  $\lambda_{\text{max}}$  (log  $\varepsilon$ ) 220 nm (6.1); IR:  $\nu_{\text{max}}$  cm<sup>-1</sup>: 3464, 2927, 1752, 1449, and 1028; EI-MS: m/z (rel. int. %): 392 (13), 336 (2), 319 (6), 285 (19), 241 (70), 135 (20), 55 (100); FAB-MS (+ve): 393; <sup>1</sup>H- and <sup>13</sup>C-NMR: Table.

## **Results and discussion**

Saccharomyces cerevisiae (baker's yeast) was selected due to its well known ability to reduce carbonyl groups. However, interestingly, Gelomulide F (1) was transformed into compound 2 via  $\beta$ -elimination and 3 through subsequent acetylation at C-6 (Figure 1). Comparison of all the physical and spectral data identified the transformed product as Gelomulide D (2) and E (3), which have already been isolated from the same plant.<sup>1</sup> Treatment of substrate 1 with ethanolic KOH also afforded Gelomulide D (2) through  $\beta$ -elimination of the Chemical and biotransformation of Gelomulide F: a rare..., H. Y. GONDAL, M. I. CHOUDHARY

3-OAc group. Hence, based on these transformations, it can be proposed that Gelomulide D (2) and E (3) are biogenetically derived from Gelomulide F (1), which is a major constituent of the leaf extract of S. multiflora.<sup>1</sup>



Figure 1. Compounds 1-4.

Moreover, a very interesting compound (4) was obtained by chemo- and diastereoselective reduction of Gelomulide F (1) with NaBH<sub>4</sub> at room temperature (Figure 1). The EIMS spectrum of compound 4 exhibited the M<sup>+</sup> at m/z 392 and FAB-MS (+ve) at m/z 393. In the IR spectrum, the presence of –OH (3578 cm<sup>-1</sup>) and the absence of ketonic absorption indicated that the keto group at C-1 of Gelomulide F (1) was reduced be to a hydroxyl group. The <sup>1</sup>H-NMR spectrum of compound 4 (Table) showed an extra methine signal at  $\delta$  3.64 attributed to H-1. The <sup>13</sup>C-NMR spectrum further confirmed this modification as a new methine carbon that appeared at  $\delta$  72.0 instead of carbonyl carbon resonating at  $\delta$  210.2 in Gelomulide F (1). The stereochemistry of the hydroxyl group at C-1 was deduced to be  $\beta$ -oriented based on the NOE interactions between H-1 ( $\delta_H$  3.64) and  $\alpha$ -oriented Me-20 ( $\delta_H$  0.83) in the NOESY experiment (Figure 2). It is well documented that prediction of the predominant product of a metal hydride reduction depends on the space requirement.<sup>3</sup> We envisioned, as the axial approach of the hydride is strongly inhibited by an axial 3-OAc group in Gelomulide F (1), that the hydride approaches from the less hindered equatorial side (Figure 3), and as a result the predominant product is kinetically controlled axial alcohol in compound **4**.

Another interesting selectivity was introduced by NaBH<sub>4</sub> as the result of conjugate reduction of the lactone ring. The singlet of C-14 proton, geminal to the epoxy group, was shifted upfield at  $\delta$  3.00, while Me-17 appeared at  $\delta$  1.4 (d, J = 6.6 Hz), suggesting that the double bond in the lactone ring was also reduced. NOE interactions between H-12 and H-15 indicated that Me-17 is  $\beta$ -oriented. A 2-proton multiplet at  $\delta$  2.90 was attributed to H-13 and H-15, which also showed HMBC interaction with C-14 and C-16 (Figure 2). All this spectral evidence supported the structure of the reduced product (4) as  $3\beta$ -acetoxy- $1\beta$ -hydroxy- $8\beta$ ,  $14\beta$ -epoxy-abiatane-16, 12-olide. The product is plausibly formed by initial conjugate addition of hydride anion to  $\beta$ -carbon (C-13), followed by ketonization of the less stable enol product (Figure 3). Selective conjugate reduction of  $\alpha$ ,  $\beta$ -unsaturated carbonyl compounds is already reported, usually requiring efficient catalysts like rhodium amido complexes, indium(III) chloride, or Rh(PPh)<sub>3</sub>Cl.<sup>4-6</sup>  $\alpha$ ,  $\beta$ -Unsaturated esters can reduced to saturated analogs by NaBH<sub>4</sub> only if an additional electron withdrawing group is present at the  $\alpha$ -position or under drastic conditions,  $7^{-12}$  whereas reduction of  $\alpha$ ,  $\beta$ -unsaturated lactones is rarely reported.<sup>13</sup> The current

report is, therefore, a significant addition for the purpose of achieving conjugate addition of  $\alpha$ , $\beta$ -unsaturated lactone in very mild conditions.





Figure 2. Key NOE and HMBC interactions in compound 4.

Figure 3. Plausible selectivity in reduction of compounds 1 to 4.

### Acknowledgment

The authors are grateful to the HEC (Higher Education Commission Pakistan) for providing a research grant under the NURP program.

#### References

- Choudhary, M. I.; Gondal, H. Y.; Abbaskhan, A.; Ara, I.; Parvez, M.; Nahar, N.; Rahman, A. Tetrahedron 2004, 60, 7933-7944.
- 2. Choudhary, M. I.; Gondal, H. Y.; Abbaskhan, A.; Rahman, A. Chemistry & Biodiversity 2005, 2, 10, 1401-1408.
- 3. Dauben, W. C.; Fonken, G. J.; Noyce, D. S. J. Am. Chem. Soc. 1956, 78, 2579-2582.
- 4. Gung, B. W. Tetrahedron 1996, 52, 5263-5301.
- 5. Li, X.; Li, L.; Tang, Y.; Zhong, L.; Cun, L.; Zhu, J.; Liao, J.; Deng, J. J. Org. Chem. 2010, 75, 2981-2988.
- 6. Brindaban, C. R.; Samanta, S. J. Org. Chem. 2003, 68, 7130-7132.
- 7. Evans D. A.; Gregory, C. F. J. Org. Chem. 1990, 55, 5678-5680.
- 8. Schauble, J. H.; Walter, G. J.; Moxin, J. G. J. Org. Chem. 1974, 39, 755-760.
- 9. Moai, H. L.; Carrie, R.; Bargain, M. C. R. Acad. Sci., 1960, 251, 2541.
- 10. Meschino, J. A.; Bond, C. H. J. Org. Chem. 1963, 28, 3129-3134.
- 11. Marshall, J. A.; Carroll, R. D. J. Org. Chem. 1965, 30, 2748-2754.
- 12. Berlinguet, L. Can. J. Chem. 1955, 33, 1119.
- 13. Lopez, J. C.; Gomez, A. M.; Valverde, S. Synlett 1991, 825-6.