Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/
tübitak

Turk J Chem
(2013) 37: $1-35$
(c) TÜBİTAK
doi:10.3906/kim-1204-50

Advances in the chemistry of pyrazolopyrazoles

Rizk Elsyad KHIDRE, ${ }^{1,2}$ Hanan Ahmed MOHAMED, ${ }^{3,4}$ Bakr Fathy ABDEL-WAHAB ${ }^{3,4, *}$
${ }^{1}$ Chemical Industries Division, National Research Center, Dokki, 12622 Giza, Egypt
${ }^{2}$ Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
${ }^{3}$ Applied Organic Chemistry Department, National Research Center, Dokki 12622 Giza, Egypt
${ }^{4}$ Preparatory Year, Shaqra University, Al Dawadmi, Saudi Arabia

Received: 18.04.2012 \bullet Accepted: 30.11.2012 \quad Published Online: 24.01.2013 $\quad \bullet \quad$ Printed: 25.02 .2013

Abstract

Published data on the methods of preparation of pyrazolopyrazoles are summarized and described systematically. The title compounds are subdivided according to the position of fusion between the 2 pyrazole rings.

Key words: Pyrazoles, pyrazolo[1,2- a]pyrazoles, pyrazolo[3,4- c] pyrazoles, pyrazolo[4,3- c] pyrazoles

1. Introduction

Recently, much attention has been paid to the synthesis of fused pyrazolopyrazole compounds since they have various applications. These include, for example, Lilly's bicyclic pyrazolidinone LY 186826, exhibiting antibiotic activity greater than that of several penicillins and cephalosporins, ${ }^{1,2}$ and herbicides ${ }^{3}$ and potent drugs for treatment of cognitive dysfunctions such as Alzheimer disease. ${ }^{4}$

LY 186826

Herbicides

anti-Alzheimer

Additionally, pyrazolo[1,5-b]pyrazoles is used as hair dye ${ }^{5,6}$ and 2,3-diamino-6,7-dihydro- $1 H, 5 H$-pyra-zolo[1,2-a] pyrazole-1-one or its salts are used as a hair dye with red nuances and/or intense copper tone. ${ }^{7}$ The 3 -oxo- $3 H$-pyrazolo[1,2-a]pyrazol-4-ium-1-olates are nitrification inhibitors for use with fertilizers. ${ }^{8}$

In addition, pyrazolo[3,4-c]pyrazoles are useful for the treatment of esophageal and gastrointestinal mucosa injury ${ }^{9}$ and brain injury, ${ }^{10}$ and also as immunostimulatory, ${ }^{11}$ antianginal, ${ }^{12}$ and antitumor ${ }^{13}$ agents. A review covering the literature data on the synthesis of compounds with 2 or more pyrazole rings linked to each other published before 1995 appeared in $1995 .{ }^{14}$ In view of the above facts and in connection to our previous review articles about biologically active heterocyclic systems, ${ }^{15-29}$ we decided to prepare this review to present to readers a survey of the literature of pyrazolopyrazoles. Some of the commercial applications of pyrazolopyrazole derivatives are also mentioned.

[^0]
$R=H$ or a coupling releasing group; $R_{1}, R_{2}, R_{3}=H$ or a substituent

Hair dye

$\mathrm{R}_{1}, \mathrm{R}_{3}=\mathrm{H}$ or a C_{1-4} alkyl;
$\mathrm{R}_{2}=\mathrm{H}$, halo or C_{1-4}-alkyl;
$\mathrm{R}_{1} \mathrm{CCR}_{2}=5$ - or 6-membered cycloalkyl;
$\mathrm{R}_{4}=$ carboxyalkyl or (un)substituted Ph
Nitrification inhibitors for use with fertilizers

2. Pyrazolo[1,2-a]pyrazoles

There are a number of practically important routes to the synthesis of pyrazolo[1,2-a]pyrazoles, e.g., (i) 1,3dipolar cycloaddition of various acetylenes to azomethinimines, (ii) cycloaddition of azines to dipolarophiles, and (iii) reaction of pyrazoles with ketene, 1,3-dicarbonyl, or dinitrile compounds.

2.1. 1,3-Dipolar cycloaddition

Dimethylpyrazolidinone $\mathbf{1}$ was condensed with aromatic aldehydes to give [(Z)-arylmethylene]dimethylpyrazolidinone azomethine imines 2. 1,3-Dipolar cycloaddition of $\mathbf{2}$ with methyl propiolate gave a mixture of the regioisomeric pyrazolo[1,2-a]pyrazoles $\mathbf{3}$ and $\mathbf{4},{ }^{30}$ whereas 1,3-dipolar cycloaddition of the azomethine imines to dimethyl acetylenedicarboxylate (DMAD) afforded the corresponding pyrazolo[1,2- a] pyrazoles 5 . ${ }^{31,32}$

$$
\begin{aligned}
& \mathrm{Ar}=2-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}, \\
& 2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, 2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, 2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}, 2,4,6-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}, 2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}
\end{aligned}
$$

Cycloaddition of the ylide $\mathbf{6}$ with diallyl acetylenedicarboxylate gave the bicyclic pyrazolidinone $\mathbf{7} .{ }^{33}$

rel-(2 $R, 3 R$)- N-Benzoylamino- 6,7 -bis(methoxycarbonyl)-2,3-dihydro-1-oxo- $1 H, 5 H$-pyrazolo [1,2- a]
pyrazoles 10 were achieved by cycloaddition of DMAD to (1Z)-rel- $(4 R, 5 R)$-1-aryl-methylidene-4-benzoylamino-5-phenyl-3-pyrazolidinone-1-azomethine imines $8 .{ }^{34,35}$ Additionally, 3-pyrazolidinone azomethine imines 8 underwent 1,3-dipolar cycloaddition with olefinic dipolarophiles 9 and afforded stereoisomeric tetrahydro- $1 \mathrm{H}, 5 \mathrm{H}$ -pyrazolo[1,2-a]pyrazoles 11. ${ }^{36}$

10: $\mathrm{Ar}=\mathrm{Ph}, 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
11: $\mathrm{Ar}=\mathrm{Ph}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 3,4,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$, mesityl, $2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{H}$

Svete et al., in 1997, reported the stereoselectivity reaction of $(1 Z)$-rel-($4 R, 5 R$)-1-benzylidene-4-benzo-ylamino-5-phenyl-3-pyrazolidinon-1-azomethinimine ($\mathbf{8}, \mathrm{Ar}=\mathrm{Ph}$) with different dipolarophiles such as dimethyl maleate and 3-hydroxybut-2-enoates 12 to afford pyrazolo[1,2-a]pyrazoles 13 and $\mathbf{1 4}$, respectively. Compound 14 underwent dehydration by heating in acidic medium to afford $\mathbf{1 5}$, and the latter compounds were prepared directly by heating of $\mathbf{8}$ with 12 in ethanol containing a catalytic amount of acid. ${ }^{35}$

Pyrazolidin-1-ium-2-ides 17 were synthesized, in good yield, by refluxing pyrazolidin-3-ones $\mathbf{1 6}$ with aromatic aldehydes for 1 h in absolute ethanol containing a catalytic amount of trifluoroacetic acid. 1,3-Dipolar cycloaddition of azomethines $\mathbf{1 7}$ with DMAD, dimethyl maleate, or methyl acetoacetate afforded pyrazolo[1,2a]pyrazoles $\mathbf{1 8}-\mathbf{2 0}$, respectively. ${ }^{37-39}$

KHIDRE et al./Turk J Chem

20

19

18
$\mathrm{R}_{2}=\mathrm{N}$-morphinyl, $\mathrm{N}(\text { allyl })_{2} ; \mathrm{Ar}=\mathrm{Ph}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
Copper(I)-exchanged zeolites were used as heterogeneous ligand-free catalysts for [3+2] cycloaddition of azomethine ylides $\mathbf{2 1}$ to terminal alkynes $\mathbf{2 2}$ to afford pyrazolopyrazolone derivatives $\mathbf{2 3} .{ }^{40}$

$$
\begin{aligned}
& \mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}_{3}=\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}, \text { cyclohexyl, Ph, } 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} ; \\
& \mathrm{R}_{4}=\mathrm{COCHMe}, \mathrm{CO}_{2} \mathrm{Et}, 4-\mathrm{F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}
\end{aligned}
$$

A copper-catalyzed regioselective 1,3-dipolar cycloaddition of azomethine imines $\mathbf{2 4}$ with terminal alkynes $\mathbf{2 5}$ in the presence of a chiral phosphaferrocene-oxazoline ligand gave dihydropyrazolo[1,2-a]pyrazolones $\mathbf{2 7}$ with very good enantiomeric excess (up to 95% ee). ${ }^{41} 2$-Nitro- and 2 -amino- 5 -oxoperhydropyrazolo[1,2-a]pyrazoles $\mathbf{2 8}$ were prepared by the condensation of $\mathbf{2 4}$ with nitroalkenes $\mathbf{2 6} .^{42,43}$

The enantioselective 1,3-dipolar cycloaddition of azomethine imines $\mathbf{3 0}$ to 2-acryloyl-3-pyrazolidinone $\mathbf{2 9}$ was catalyzed by $\mathrm{Cu}(\mathrm{OTf})_{2} /$ bis(oxazoline) to give cycloadducts $\mathbf{3 1}$ with high diastereoselectivities (up to $>96: 4$ exo/endo) and enantioselectivities (up to 98% ee). ${ }^{44}$

Jungheim in 1989 reported the conversion of pyrazolidinones $\mathbf{3 2 a}-\mathbf{c}$ to bicyclic compounds $\mathbf{3 5 a} \mathbf{- c}$ via 1,3-dipolar cycloaddition. Thus, ylides $\mathbf{3 3}$ were generated in situ by treating 32a-c with aqueous formaldehyde followed by heating to reflux in 1,2-dichloroethane. Diallyl acetylenedicarboxylate readily underwent cycloaddition with $\mathbf{3 3}$ giving rise to $\mathbf{3 4}$. Removal of the allyl esters via the method of McCombie ${ }^{45}$ completed the preparation of C-3 carboxy-substituted bicyclic pyrazolidinones $\mathbf{3 5 a} \mathbf{- c}{ }^{46}$

Jungheim also reported in 1989 that the (E)-olefin geometry is required for high regioselectivity. Thus, ylides $\mathbf{3 3 a}$ - \mathbf{c} underwent 1,3-dipolar cycloaddition with vinyl sulfone $\mathbf{3 6}$ and subsequent base-catalyzed elimination of benzenesulfinic acid to give $\mathbf{3 7 a}-\mathbf{c}$. $\mathrm{Pd}(0)$-mediated allyl ester deprotection gave rise to acids $\mathbf{3 8 a}-\mathbf{c}$. Nitrile 40 was prepared via cycloaddition of (E)-vinyl sulfoxide $\mathbf{3 9}$ followed by in situ thermal elimination of benzene sulfenic. Compound 40 was converted to sodium (S)-2-cyano-6-((R)-1-hydroxyethyl)-7-oxo-3,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-1-carboxylate 41 using diacetoxypalladium. ${ }^{46}$

In 2009, Syroeshkina et al. reported the synthesis of 1,3-diaryl-2-nitrotetrahydro- $1 H, 5 H$-pyrazolo[1,2a]pyrazoles 46 by the action of 1-nitro-2-(3-nitrophenyl)ethylene 44 a on 6 -aryl-1,5-diazabicyclo[3.1.0]hexanes 42 in ionic liquid with the $\mathrm{Et}_{2} \mathrm{O}_{2} \mathrm{BF}_{3}$ catalyst. The same reaction with unsubstituted β-nitrostyrene produced only 1,3 -diaryl-2-nitrotetrahydro- $1 H, 5 H$-pyrazolo[1,2-a]pyrazole derivatives 48 . Thus, there were reactions of 6-aryl-1,5-diazabicyclo[3.1.0]hexanes 42a-d with dipolarophiles in ionic liquids. β-Nitrostyrenes 44a,b were used as dipolarophiles and $[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ and $[\mathrm{bmim}]\left[\mathrm{PF}_{6}\right]$ as ionic liquids. $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ in a catalytic amount was added to the reaction mixture to break the diaziridine ring in initial compounds 42a-d to reactive azomethine iminic intermediates $\mathbf{4 3 a} \mathbf{- d}$. It could be expected that the addition of β-nitrostyrenes $\mathbf{4 4 a} \mathbf{a} \mathbf{b}$ to dipolar intermediates 45 should run via the Michael addition pathway through intermediates 45 , generating 1,3-diaryl-2-nitrotetrahydro-1 $H, 5 H$-pyrazolo[1,2- a]pyrazoles 46a-d, which are potential inhibitors of neuronal NO synthase. ${ }^{47}$ The reaction was carried out at room temperature or with moderate heating. Compounds 48 were formed as a result of the interaction of β-nitrostyrene $\mathbf{4 4 a}$ with dipolar intermediates $\mathbf{4 7 b} \mathbf{- d}$, contrary to the Michael addition mechanism, generating second intermediates $\mathbf{4 5}^{\prime}$, which were then cyclized to bicycles 48. ${ }^{48}$

$\mathrm{i}, 0.5 \mathrm{mmol}$ of $1,0.4-0.6 \mathrm{~g}[\mathrm{bmim}]\left[\mathrm{BF}_{4}\right]$ or [bmim] $\left[\mathrm{PF}_{6}\right]$ and 2 drops of $\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}$ ii, 0.5 mmol of β-nitrostyrene 44

Molchanov et al., in 2003, reported the reaction of 6 -aryl-1,5-diazabicyclo[3.1.0]hexanes 42 with fumaric acid derivatives 49 in a stereoselective fashion to afford perhydropyrazolo[1,2-a]pyrazoles 50. ${ }^{49}$

$$
\begin{aligned}
& \mathrm{Ar}=\mathrm{Ph} ; \mathrm{R}=\mathrm{CN}, \mathrm{CO}_{2} \mathrm{Ph} \\
& \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}=\mathrm{CN}
\end{aligned}
$$

2.2. Cycloaddition of azines to dipolarophiles

Pyrazolopyrazoles 53-55 were obtained by a "crisscross" cycloaddition reaction of 1,2-bis(perfluoropropan-2ylidene)hydrazine $\mathbf{5 1}$ with 2 equivalents of olefins $\mathbf{5 2}$; the principal products were $\mathbf{5 3}$ obtained in yields of approximately $65 \% .^{50}$

$$
\begin{array}{ll}
\mathrm{R}=\mathrm{OEt} ; \mathrm{R}_{3}=\mathrm{H}, \mathrm{CO}_{2} \mathrm{Me} & \mathrm{R}=\mathrm{OEt} ; \mathrm{R}_{1}=\mathrm{R}=\mathrm{H}, \mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me} \\
\mathrm{R}=\mathrm{NEt}_{2}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{2}=\mathrm{H}
\end{array}
$$

Similarly, the crisscross cycloaddition of 51 with 1-ethoxyprop-1-yne 56 gave 3-ethoxy-4-methyl-2-(perfluoropropan-2-ylidene)-5,5-bis(trifluoromethyl)-2,5-dihydropyrazol-2-ium-1-ide 57, stable only in solution. Subsequently, the latter compound was reacted with alkynes 58 and alkenes $\mathbf{5 9}$ to give $\mathbf{6 0}$ and $\mathbf{6 1}$, respectively, in good yields. ${ }^{51-53}$
$1,2-\mathrm{Di}$ (propan-2-ylidene)hydrazine $\mathbf{6 2}$ reacted with 2,2-diphenylethenone to give pyrazolopyrazole $\mathbf{6 3} .{ }^{54}$

Cycloaddition of azines 64 with maleic acid gave tetrahydro- $1 H$, $5 H$-pyrazolo[1,2-a]pyrazole-2,3,6,7tetracarboxylic acid 65. ${ }^{55}$

Aldazines or ketazines $\mathbf{6 6}$ were reacted with 2 equivalents of DMAD in [2+3] cycloaddition reactions to give pyrazolopyrazole $67 .{ }^{56}$

$$
\mathrm{R}_{1}=\text { alkyl or aryl; } \mathrm{R}_{2}=\mathrm{H}, \mathrm{Me}, \text { alkyl }
$$

Pyrazolo[1,2-a]pyrazole derivatives $\mathbf{6 9}$ were synthesized via 2:1 equivalent cycloaddition of sulfolene 68 with aldazines $64 .{ }^{57}$

$\mathrm{R}=\mathrm{Ph}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{FC}_{6} \mathrm{H}_{4}, 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, 2-furyl, 2-thienyl

Adib et al., in 2005, reported the synthesis of functionalized 7 -oxo- $1 H, 7 H$-pyrazolo[1,2-a]pyrazoles 73. Thus, isocyanides $\mathbf{7 0}$ and dialkyl acetylenedicarboxylates $\mathbf{7 1}$ in the presence of 2 ,4-dihydro- 3 H -pyrazol-3-ones 72 undergo a smooth 1:1:1 addition reaction in acetone at ambient temperature to produce highly functionalized 7-oxo-1 $H, 7 H$-pyrazolo[1,2-a]pyrazole derivatives $\mathbf{7 3}$ in $69 \%-81 \%$ yields. ${ }^{58}$

$R=$ cyclohexyl, $\mathrm{Bu}^{-t}, \mathrm{R}_{1}=\mathrm{Me}, \mathrm{Et} ; \mathrm{R}_{2}=\mathrm{Me}, \mathrm{Ph}$

Bipyrazolidine antibiotics $\mathbf{7 8}$ were obtained from pyrazolidin-3-ones $\mathbf{7 4}$ by a 2 -step reaction sequence involving formation of an azomethine-imine ylide $\mathbf{7 6}$, which subsequently reacted in situ with acetylene derivative $77 .{ }^{59}$

2.3. Reaction of pyrazoles with ketene, 1,3-dicarbonyl, or dinitrile compounds

Reactions of pyrazoles, with aryl(chlorocarbonyl)ketenes or alkylmalonyl dichlorides, were reported. Thus, pyrazoles $\mathbf{7 9}$ were treated with propa-1,2-diene-1,3-dione or 3-oxo-2-phenylacryloyl chloride to give cross-conjugated pyrazolium hydroxides $\mathbf{8 1}$, respectively. Similarly, $(\mathbf{8 0}, \mathrm{R}=\mathrm{Me})$ and 2-ethylmalonyl dichloride $\left(\mathbf{8 0}, \mathrm{R}_{1}=\mathrm{Et}\right)$, 2-allylmalonyl dichloride ($\mathbf{8 0}, \mathrm{R}_{1}=$ allyl $)$ gave $\mathbf{8 1} .{ }^{60,61}$

$$
\mathrm{O}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{O}
$$

or

$$
R=H, M e, R_{1}=H, P h ; R=M e, R_{1}=E t, \text { allyl }
$$

Substituted anhydro-1-hydroxy-3-oxopyrazolo[1,2-a]pyrazolium hydroxides $\mathbf{8 6}$ were prepared by treating 1,3 -dicarbonyl compounds $\mathbf{8 3}$ or $\mathbf{8 5}$ with derivatives of pyrazoles $\mathbf{8 2}$ or $\mathbf{8 4} .{ }^{62}$

$$
\mathrm{R}_{1}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H}, \text { benzyl, } \mathrm{R}_{3}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}, \mathrm{R}_{4}=\text { aryl }
$$

The addition of (chlorocarbonyl)phenylketene $\mathbf{8 3}$ to pyrazol-3-one derivatives $\mathbf{7 2}$ led to 3-hydroxypyrazolo [1,2-a]pyrazolediones $87 .{ }^{63}$

7-Amino-3-hydroxy-5-imino-2,6-diarylpyrazolo[1,2-a]pyrazol-1 $(5 H)$-ones 89 were prepared in yields of $30 \%-39 \%$ by cyclization of pyrazoles $\mathbf{8 4}$ with dinitriles $\mathbf{8 8}$. ${ }^{64}$

$$
R=P h, p-\text { anisyl } ; R_{1}=P h, p-a n i s y l, p-C l C_{6} H_{4}
$$

Thermal cyclocondensation of pyrazoles 90 with substituted diethyl malonates 91 yielded 1-oxo- 1 H -pyrazolo[1,2-a]pyrazol-4-ium-3-olates $\mathbf{9 2} .{ }^{65}$ Olates $\mathbf{9 3}$ were obtained by treating pyrazole $\mathbf{9 0}$ with diacyl dichloride $\mathbf{8 0}$. ${ }^{66}$

$R=H, M e ; R_{1}=E t, \mathrm{Ph}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{PhCH}_{2}$

The reaction of 5 -hydroxypyrazoles 94 with β-ketoesters $\mathbf{9 5}$ gave mainly pyrazolo[1,2-a]pyrazole-1,5 $(1 H, 5 H)$-diones $96 .{ }^{67}$

$$
\mathrm{R}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{R}_{1}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{Ph} ; \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{Ac}
$$

With the reaction of 3-methylpyrazolin-5-one ($\mathbf{9 4}, \mathrm{R}=\mathrm{Me})$ with ethyl acetoacetate and phosphorus tribromide in benzene, both syn-97 and anti-97 ${ }^{\text { }}$ are formed. ${ }^{68}$

2.4. Cycloaddition of l-allylpyrazoles

1-Allylpyrazole $\mathbf{9 8}$ was brominated and the resulting product was thermally quaternized to yield $\mathbf{9 9}$. Treatment of $\mathbf{9 9}$ with aqueous sodium hydroxide afforded 100. ${ }^{69}$

l-Allylpyrazole ($\mathbf{9 8}, \mathrm{R}=\mathrm{H}$) was dissolved in 48% hydrobromic acid and treated with bromine. The dibromo compound that formed underwent cyclization in boiling acetone to give (101, $\mathrm{R}=\mathrm{X}=\mathrm{H}$) in an 85% overall yield. When a similar bromination was carried out using chloroform as the solvent, the major product isolated after cyclization was the dibromobromide ($\mathbf{1 0 1}, \mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Br})$. 1-Cinnamylpyrazole ($\mathbf{9 8}, \mathrm{R}=\mathrm{Ph}$) was reacted with bromine in chloroform to yield the salt ($101, \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{H}$) directly. Conversion of the latter salt to the corresponding pyrazolo $[1,2-a]$ pyrazoles $(\mathbf{1 0 2}, \mathrm{R}=\mathrm{Ph}, \mathrm{X}=\mathrm{H})$ by dehydrobromination was possible with lithium hydride in deuteriodimethyl sulfoxide. ${ }^{70}$

2.5. From pyrazoles

Pyrazole reacted with phenacyl bromides 103 in 1,2-dimethoxyethane to give a salt, which on treatment with aqueous ammonia gave 1-phenacylpyrazoles 104 in 48% yield. Alkylation of compound 104 by a second mole of phenacyl bromides 103 in dimethylformamide produced 1,2-diphenacylpyrazolium bromides 105 in 86% yield. Salts 105 were treated with 10% aqueous sodium bicarbonate and gave a 98% yield of 1 -aroyl-2-aryl- 1 H -pyrazolo[1,2-a]pyrazol-8-ium-1-ide 106. ${ }^{71,72}$

$$
\mathrm{Ar}=\mathrm{Ph}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{BrC}_{6} \mathrm{H}_{4}, 3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}
$$

Treatment of 3,5 -dimethyl-1-phenylacetylpyrazole ($\mathbf{1 0 4}, \mathrm{R}=\mathrm{Ph}$) in benzene with NaH followed by thiophosgene at $0{ }^{\circ} \mathrm{C}$ gave 5,7-dimethyl-2-phenyl-1-thioxo- 1 H -pyrazolo[1,2-a]pyrazol-8-ium-3-olate 107. ${ }^{73}$

Treatment of pyrazole derivatives $\mathbf{1 0 0}$ with an equimolar amount of 2-(chloromethyl)oxirane $\mathbf{1 0 8}$ in toluene afforded pyrazolopyrazoles 109. ${ }^{74}$

R, $R_{1}=H, M e$

3-(2-(Methylthio)pyrimidin-4-yl)-2-(o-tolyloxy)-6,7-dihydropyrazolo[1,2-a]pyrazol-1(5 H)-one 111 was prepared via heterocyclization of ketoester 110 with pyrazolidine dihydrochloride, used for the prevention of extracellular release of inflammatory cytokines. ${ }^{75-77}$

The synthesis of bicyclic pyrazolidinone 118 was described using a Curtius rearrangement. Vinyl phosphonate 113 was obtained by treatment of $\mathbf{1 1 2}$ with acetic anhydride and tetramethyl diamino methane as a formaldehyde equivalent. The crude vinyl phosphonate was used immediately in the Michael addition with 114. The Michael addition was run in dichloromethane overnight followed by addition of t-butyl oxalyl chloride and 2 equivalents of Hunig's base in the same pot to provide $\mathbf{1 1 5}$ in 58% yield from 114 after chromatography. The allyl ester was deprotected using palladium catalysis to give 115, which was purified by chromatography and subsequent trituration in ether/hexane to give 83% amorphous foam. Following Spry's one-pot procedure, 115 was converted to the acyl azide, rearranged to the isocyanate, and trapped as carbamate $\mathbf{1 1 6}$ with benzyl alcohol in 56% yield. Hydrogenation to enamine $\mathbf{1 1 7}$ was accomplished in 83% yield using 5% palladium on carbon in ethyl acetate at 40 psi on a Parr shaker. Acid-catalyzed hydrolysis of $\mathbf{1 1 7}$ was accomplished to give target compound 118 in 68% yield without substantial loss of the t-Boc and t-butyl ester protecting groups. ${ }^{78}$

a) $(\mathrm{Ac})_{2} \mathrm{O},(\mathrm{Me})_{2} \mathrm{NCH}_{2} \mathrm{~N}(\mathrm{Me})_{2}$; b) 114, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; c) Hunig's base, $\mathrm{ClC}(\mathrm{O}) \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$;
d) $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{Ph}_{3} \mathrm{P}, \mathrm{Et}_{3} \mathrm{SiH}, \mathrm{MeCN}$; e) 1) $(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}$, Hunig's base, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Benzene, 2) $\mathrm{PhCH} \mathrm{C}_{2} \mathrm{OH}$;
f) $5 \% \mathrm{Pd}$ on $\mathrm{C} /\left[\mathrm{H}_{2}\right]$; g) THF/aqueous $\mathrm{HCl}, \mathrm{pH}=2.3$
(S)-Methyl 2-(tert-butoxycarbonylamino)-3-hydroxypropanoate 119 was tosylated and the product cyclocondensed with hydrazine to give $48 \% 4$ - (R, S)-(tert-butoxycarbonylamino)-3-oxo-1-pyrazoline 120. Treatment of $\mathbf{1 2 0}$ with 37% aq. HCHO gave the 1-methylenepyrazolidinium ylide, which underwent cycloaddition with diallyl butynedioate to give 32.8% diallyl $7-(R, S)$-(tert-butoxycarbonylamino)-8-oxo-1,5-diazabicyclo[3.3.0] oct-2-ene-2,3-dicarboxylate 121. This was deprotected and the free amino group acylated with 2-thienylacetyl chloride to give $62 \% 7(R, S)$ - (R)-diallyl-7-oxo-6-(thiophen-2-ylmethylamino)-3,5,6,7-tetrahydropyrazolo[1,2a pyrazole-1,2-dicarboxylate 122. ${ }^{79-81}$

Cyclizing 3-hydrazinylpropan-1-ol in MeOH with acetylacetone gave 71% pyrazole 123, which was tosylated at $0{ }^{\circ} \mathrm{C}$ with 4 -tolylsulfonyl chloride in chloroform containing pyridine to give 5,7 -dimethyl-2,3-dihydro$1 H$-pyrazolo[1,2-a]pyrazol-4-ium toluenesulfonate $\mathbf{1 2 4} .{ }^{82}$

Chloropyrazolinone 126 was prepared by chlorination of pyrazolinone 125 by using chlorine in 1,2dichloroethane, and was then hydrated with potassium carbonate in dichloromethane to afford both the fluorescent and no-fluorescent isomers 2,3,5,6-tetramethylpyrazolo[1,2-a]pyrazole-1,7-dione 127 and 2,3,6,7-tetramethylpyrazolo[1,2-a]pyrazole-1,5-dione 128, respectively. The fluorescent isomer has the carbonyl groups in the proximal arrangement (syn, 127) and the no-fluorescent isomer has carbonyl groups in the distal arrangement (anti, 128). ${ }^{83}$

2,6-Dibromo-3,7-dimethyl- $1 H, 5 H$-pyrazolo[1,2- a]pyrazole-1,5-dione $\mathbf{1 3 0}$ was prepared by addition of 1 equivalent of sodium methoxide to pyrazolinone 129. The molecular structure of $\mathbf{1 3 0}$ was determined by X-ray crystal structure. ${ }^{84}$

2-(p-Chlorophenylazo)tetrahydropyrazolo[1,2-a] pyrazole-1,3,7-trione 132 was prepared by the action of phosphorus oxychloride on 131. ${ }^{85}$

Chalcone 133 was treated with 3 -hydrazinopropanol in refluxing benzene to give 3,5 -bis (p-chlorophenyl)2 -pyrazoline 134. Treatment of 134 with thionyl chloride in chloroform gave 5,7 -bis- (p-chlorophenyl)-2,3,6,7-tetrahydro-1 H-pyrazolo [1,2- a]pyrazol-4-ium chloride 135. However, if the reaction of 134 with thionyl
chloride was processed with aqueous sodium hydroxide, 135 and 5,7-bis-(p-chlorophenyl)-2,3-dihydro- 1 H -pyrazolo[1,2-a]pyrazol-4-ium chloride 136 were obtained. Compound $\mathbf{1 3 6}$ could also be obtained by treating 135 with aqueous sodium hydroxide in the presence of air. ${ }^{86}$

Generation of the carbamate dianion with sodium hydride and subsequent alkylation with dibromopropane provided pyrazolidine 138 in high yield (96%). At this stage, the BOC-protecting group was removed and monoprotected hydrazide 139 was acylated with commercially available 3 -chloropropionyl chloride, giving key intermediate 140. Catalytic hydrogenation to remove the Cbz-protecting group on $\mathbf{1 4 0}$ generated a transient intermediate that smoothly underwent an intermolecular exo-tet cyclization to tetrahydro-pyrazolopyrazolone $141 .{ }^{87}$

Reaction of 2-phenylmalonic acid dihydrazide 142 with 2,4-pentandione in absolute ethanol at room temperature afforded pyrazolo[1,2-a]pyrazol-4-ium-3-olate 146. ${ }^{88}$

1,7-Dimethyl-3,5-di(oxo)-1 $H, 5 H$-pyrazolo[1,2-a]pyrazole-2,6-dicarboxylic acid diethyl ester 148 (fluorescent substance) and 1,5-dimethyl-3,7-di(oxo)-1 H,5 H-pyrazolo[1,2-a]pyrazole-2,6-dicarboxylic acid diethyl ester 149 (phosphorescent substance) were prepared by action of palladium acetate on pyrazolinone 147. ${ }^{89}$

2.6. Miscellaneous methods

Pyrazolopyrazole 152 were prepared by treatment of 3-(4-methoxyphenyl)acrylohydrazide 150 with dithietane 151. ${ }^{90}$

1,5-Diaminopyrazolo[1,2-a]pyrazole-3,7-dione 154, useful as a coupling component for azo dyes, was prepared by cyclization of N, N^{\prime}-bis(cyanoacetyl)hydrazine 153 in a solvent in the presence of an acid or base at $20{ }^{\circ} \mathrm{C}$ to the boiling point of the solvent. ${ }^{91}$

Acrylonitrile was treated with hydrazine hydrate in the ratio of $2: 1$ to give 3-hydrazinylpropanenitrile $(8.8 \%) \mathbf{1 5 5}$ and 3,3 -(hydrazine-1,1-diyl)dipropanenitrile $\mathbf{1 5 6}$ (82%). Treatment of $\mathbf{1 5 6}$ with sulfuric acid in the ratio of 1:4 gave 1,7-diiminoperhydropyrazolo[1,2-a]pyrazole- $2 \mathrm{H}_{2} \mathrm{SO}_{4} \mathbf{1 5 7}$ (65\%). ${ }^{92}$

2,6-Dialkyl-1,3,5,7-tetraketopyrazo[1,2-a]pyrazoles $\mathbf{1 5 9}$ have been prepared by condensing esters of alkylmalonic acids $\mathbf{1 5 8}$ with hydrazine in the presence of sodium ethoxide. ${ }^{93}$

$$
\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Et}, \mathrm{Pr}, \mathrm{Bu} \text {, isoamyl; } \mathrm{R}_{1}=\mathrm{Et}, \mathrm{R}_{2}=\text { isoamyl, 4-hexyl, } \mathrm{Ph}
$$

The reaction of dibenzoylhydrazide 160 with Wittig reagents $\mathbf{1 6 1}$ gave rise to 3,7 -diphenylpyrazolo[1,2-a]pyrazole-1,5-diones 163. ${ }^{94}$

$$
\mathrm{R}=\mathrm{Me}, \mathrm{i}-\mathrm{Pr}
$$

3. Pyrazolo[1,5-b]pyrazoles

Pyrazolo[1,5-b]pyrazole 165 was obtained by heating of 1-amino-3-methyl-5-(2-oxoiminopropyl)pyrazole 164 in acidic medium. ${ }^{95}$

Benzopyrazolopyrazole 168 was prepared in 30% yield from the reaction of 2-aminoindazolium salt 166 with acetyl acetone followed by treatment with lead acetate. ${ }^{96}$

4. Pyrazolo $[3,4-c]$ pyrazoles

4.1. Reaction of 4-arylidenepyrazol-5-ones with hydrazines and hydrazides

Compound $\mathbf{7 2}$ on condensation with substituted benzaldehydes in the presence of sodium acetate as a base furnished 5-methyl-4-substituted benzylidene-2,4-dihydro-3 H-pyrazol-3-ones $\mathbf{1 6 9}$. Treatment of $\mathbf{1 6 9}$ with phthalimidoxyethyl bromide $\mathbf{1 7 0}$ in acetone using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as a base afforded 1- N-ethoxyphthalimido-3-methyl-4-(4-substituted benzylidene) pyrazol-5-one 171. The 6 - N-ethoxyphthalimido-4-methyl-3-(4-substituted phenyl)-2-thiocarbamoyl-3,3a-dihydro pyrazolo[3,4-c]pyrazoles $\mathbf{1 7 2}$, in yields of $53 \%-65 \%$, were obtained by the treatment of $\mathbf{1 7 1}$ with thiosemicarbazide in NaOH . Compounds $\mathbf{1 7 1}$ were converted to $6-N$-ethoxyphthalimido-2-isonicotinoyl-4-methyl-3-(4-substitutedphenyl)-3,3a-dihydro pyrazolo[3,4-c]pyrazoles 174 in yields of $60 \%-67 \%$ by the cyclization with isonicotinohydrazide $\mathbf{1 7 3}$ in the presence of sodium acetate and acetic acid. ${ }^{97}$

$$
\mathrm{Ar}=4-\mathrm{CIC}_{6} \mathrm{H}_{4}, 4-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5}
$$

2-Isonicotinoyl-5-methyl-2,4-dihydro-3 H-pyrazol-3-one 175, upon condensation with various aldehydes, afforded the corresponding arylidene derivatives 176. 1-Isonicotinoyl-3-methyl-4-(4-substituted phenyl)-3a,4-dihydropyrazolo[3,4-c]pyrazoles $\mathbf{1 7 7}$ were obtained via heterocyclization of arylidene derivatives $\mathbf{1 7 6}$ with hydrazine hydrate. ${ }^{98}$

$$
\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{OMeC}_{6} \mathrm{H}_{4}, 4-\mathrm{N}(\mathrm{Me})_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Ph}
$$

The reaction of ethyl iodide with 4-benzylidene-3-methyl-1-phenyl-1 H-pyrazol-5 ($4 H$)-one $\mathbf{1 7 8}$ gave quaternary salt 179, which on reaction with hydrazine in acetic acid followed by oxidation with selenium oxide afforded tetrahydropyrazolo[3,4-c]pyrazol-2-ium derivative 181. ${ }^{99}$

181

4-Arylidene-methyl-5-oxo-4,5-dihydropyrazoles 183 were prepared via the reaction of 3-methyl-5-oxo-4,5dihydropyrazole 182 with aromatic aldehydes. Subsequently, compounds 183 were condensed with hydrazine to give 5-[(3'-ethyl-5'-acetyl-4'-substituted pyrazolo[3,4-c]pyrazoles 184. ${ }^{100-105}$

$$
\mathrm{R}=2-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{Ar}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 3-\mathrm{OH}-4-\mathrm{MeOC}_{6} \mathrm{H}_{3} ; \mathrm{R}_{1}=\mathrm{Ph}
$$

1,3-Diphenyl-2-pyrazolin-5-one 185 was condensed with p-methoxybenzaldehyde to give pyrazolinones 186. Then condensed with hydrazine, it gave pyrazolopyrazole 187. ${ }^{103,106}$

$$
\mathrm{Ar}=\mathrm{Ph}, 4 \text {-pyridyl; } \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{p} ; \mathrm{R}_{1}=\mathrm{H}, \mathrm{Ph}, 2,4-\left(\mathrm{O}_{2} \mathrm{~N}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}
$$

Cyclization of 3-[4-(benzo[1,3]dioxolylmethylene)-5-oxo-3-pyrazolyl]-4-hydroxy-1-methylquinolin-2(1 H)one 188 with hydrazine hydrate gave pyrazolopyrazole 189. ${ }^{107}$

3-Amino-1-phenyl-2-pyrazolin-5-one 190 condensed with aromatic aldehyde in the presence of AcOH to give the corresponding dibenzylidene derivative 191. The reactions of 191 with phenyl hydrazine gave pyrazolopyrazoles 192. ${ }^{108}$

$$
\mathrm{R}=\mathrm{o}-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, \mathrm{p}-\mathrm{HOC}_{6} \mathrm{H}_{4} \text {, ferrocenyl }
$$

Reaction of 5-chloro-1 H-pyrazole-4-carbaldehydes 193 with hydrazines under microwave irradiation in the presence of $p-\mathrm{TsOH}$ gave pyrazolo[3,4-c] pyrazoles 194. ${ }^{109}$

Pyrazolo[3,4-c]pyrazoles 196 were prepared by reactions of 1,3 -disubstituted- 5 -chloro- $1 H$-pyrazole-4carbaldehydes 195 with hydrazine hydrate or phenylhydrazine in methanol. ${ }^{110-115}$

$R=H, P h$, naphthyridine substituent; $R_{1}=P h, M e, ~ P r$

4.2. From 5-(oxo)thio-4-acylpyrazol

Hydrazonopyrazolone and thione derivatives 198 were prepared from 4 -acetyl 197 by their condensation in boiling ethanol with hydrazine hydrate or phenyl hydrazine. Vilsmeier reaction on 198 at room temperature
(exothermic) simultaneously led to the deformylation of the 3-methyl group and ring closure to afford the corresponding fused pyrazolo[3,4-c]pyrazole aminoacroleins 199. ${ }^{116}$

New bis[6-phenyl-4-methyl-3-substituted-pyrazolo[4,5- d]pyrazol-1-yl] thioketones 201 were obtained in good yield by the reaction of thiocarbohydrazide with 1-phenyl-3-methyl-4-acetyl/benzoyl-pyrazol-5-one 200, followed by cyclization of the intermediate. These compounds exhibit excellent antimicrobial activity. ${ }^{117}$

4.3. From 5-amino-4-cyanopyrazoles

The formation of pyrazolo[3,4-c] pyrazole 204 was accomplished by ring transformation of 1-benzyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)-1 H-pyrazol- 5 -amine 203 under thermal conditions. ${ }^{118}$

Pyrazolopyrazole 205 was prepared from aminocyanopyrazole 201 by reaction with hydrazine. ${ }^{119,120}$

4.4. Miscellaneous methods

Pyrazolo[3,4-c]pyrazoles 207 in 45% yield were prepared by the cyclization of $\mathbf{2 0 6}$ with hydrazine in ethanol. ${ }^{121,122}$

The cyclocondensation of 4,5-dihydro-3-phenyl-5-[(2-propenyl)thio]-1 H-1,2,4-triazole 208 with ethyl 2-chloro-2-(2-p-tolylhydrazono)acetate 209 gave ethyl 4-phenyl-1- p-tolyl-1,6-dihydropyrazolo[3,4-c]pyrazole-3carboxylate 210. ${ }^{123}$

Compound 211 was prepared via reaction of 3-methyl-1-phenyl-2-pyrazolin-5-one $\mathbf{1 8 2}$ with phenyl isothiocyanate. Compound 211 was converted to pyrazolopyrazole 212 through reaction with hydrazine. ${ }^{124}$

The behavior of several amino and hydroxy pyrazoles toward hydrazonyl halides is reported. Thus, pyrazoles 213 were reacted with hydrazonyl chloride 214 to give pyrazolopyrazole 215. ${ }^{125}$

A convenient synthesis of pyrazolo[3,4-c] pyrazoles 217 using some novel α-cyanoketene dithioacetals 216 was reported by reaction with hydrazines. ${ }^{126}$

$$
\mathrm{R}=\mathrm{H}, \mathrm{Ph} ; \mathrm{Ar}=\mathrm{Ph}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}
$$

Aryl isothiocyanates 218 were reacted with the sodium salt of ethyl cyanoacetate to yield adducts 219. Compounds 219 were reacted with hydrazine to give different products depending on the reaction conditions.

Thus, they were reacted with hydrazine hydrate in the cold to give hydrazide derivative $\mathbf{2 2 0}$. On the other hand, $\mathbf{2 1 9}$ or $\mathbf{2 2 0}$ reacted with excess phenylhydrazine in boiling ethanol to give pyrazolo[4,3-c]pyrazoles 221 or 222, respectively. ${ }^{127,128}$

5. Pyrazolo [4,3- c]pyrazoles

5.1. Dipolar cycloaddition

1,3-Dipolar cycloaddition reaction of p-tolyl P-(trimethysilyl)-ethynylsulfone $\mathbf{2 2 3}$ with 2-diazopropane $\mathbf{2 2 4}$ in 16 -crown-6 followed by potassium fluoride gave cycloadduct $\mathbf{2 2 5}$. The desilylated $3 H$-pyrazoles $\mathbf{2 2 6}$ obtained were then allowed to react with either diazomethane or 2-diazopropane $\mathbf{2 2 4}$ to give 227. ${ }^{129}$

Pyrazolopyrazoles 229 were obtained in $60 \%-85 \%$ yield by a double 1,3-dipolar cycloaddition of 2diazopropane 224 with alkynes 228. ${ }^{130}$

$$
\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}_{1}=\mathrm{Ac}, \mathrm{CN}, \mathrm{Me} ; \mathrm{R}=\mathrm{Ac}, \mathrm{R}_{1}=\mathrm{CN}
$$

Dimethyl acetylenedicarboxylate is added dropwise at $-20^{\circ} \mathrm{C}$ to a solution of 2-diazopropane $\mathbf{2 2 4}$ in an ether-xylene mixture to give a mixture containing dimethyl 3,3-dimethyl-3 H-pyrazole-4,5-dicarboxylate $\mathbf{2 3 0}$ and 85% dimethyl 3,3,6,6-tetramethyl-3,3a,6,6a-tetrahydropyrazolo[4,3-c]pyrazole-3a,6a-dicarboxylate 231. ${ }^{131}$

The intramolecular cyclization of 4-diazo-3,5-dimethylpyrazole 232 catalyzed by HOAc gave $1 H, 4 H$-3-methylpyrazolo[4,3-c]pyrazole 233. ${ }^{132}$

5.2. From diazonium salts

Coupling reaction of pyrazolinediazonium chloride $\mathbf{2 3 4}$ with active methylene components $\mathbf{2 3 5}$ gave $55 \%-70 \%$ 236, which on treatment with $\mathrm{HCl}-\mathrm{EtOH}$ or $\mathrm{HCl}-\mathrm{AcOH}$ gave 1,6a-dimethyl-2-phenyl-1,2-dihydropyrazolo[4,3$c]$ pyrazol-3(6a H)-one $\mathbf{2 3 7}$ and 1,1'-(3a,4-dimethyl-6-oxo-5-phenyl-2,3,3a,4,5,6-hexahydropyrazolo[4,3- c]pyrazole-3,3-diyl)dialkenone 238. ${ }^{133}$

237: $\mathrm{R}_{2}=\mathrm{CONHPh}, \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-3, \mathrm{CONHC}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$
238: $R_{3}=\mathrm{Ph}, \mathrm{R}_{4}=\mathrm{OEt} ; \mathrm{R}_{3}=\mathrm{Me}, \mathrm{R}_{4}=\mathrm{NHPh}$
$\mathrm{R}_{1}=$ cyano, $\mathrm{R}_{2}=\mathrm{CONHPh}, \mathrm{COC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-3$;
$R_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{CONHC}_{6} \mathrm{H}_{4} \mathrm{Cl}-4$, CONHPh, Ac, $\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}_{1}=\mathrm{COPh}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Et}$

Reaction of diazotized 234 with α-chloro- β-diketones 239 in ethanol at room temperature for 2 h gave corresponding pyrazolopyrazolones 240 in 74% and 53% yield, respectively. ${ }^{134}$

1,5-Dimethyl-3R-pyrazolyl-4-diazonium salts 234 were converted into corresponding 6-(1,5-dimethyl-3 R -pyrazol-4-yl)azo-1-methyl-3 R-4H-pyrazolo[4,3-c]pyrazoles 241 via intramolecular cyclization of intermediate 242. ${ }^{135}$

5.3. Miscellaneous methods

5-Aryl-4-(arylazo)-1 H-pyrazole-3-carboxylic acids 244 were prepared by reaction of 4-aryl-3-(arylhydrazono)-2,4-dioxobutanoic acids $\mathbf{2 4 3}$ with hydrazine hydrate. Cyclization of $\mathbf{2 4 4}$ with thionyl chloride gave pyrazolopyrazolones 245, which showed moderate activity against Escherichia coli and Staphylococcus aureus. ${ }^{136}$

$$
\mathrm{Ar}=\mathrm{Ph}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4} ; \mathrm{Ar}_{1}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}
$$

Treatment of pyrazole $\mathbf{2 4 6}$ with disodium dithionite followed by diazotization with sodium nitrite and treatment with sodium bicarbonate gave 3,6-diphenyl-l-methyl-4 H-pyrazolo[4,3-c]pyrazole 247. ${ }^{137}$

Arylhydrazonobromoacetoacetates $\mathbf{2 4 8}$ were reacted with arylhydrazines to give corresponding ethyl bromodioxobutanoate diarylhydrazones $\mathbf{2 4 9}$, which on treatment with acid underwent cyclization to give corresponding hydropyrazolones 250. Hydrazones 250 on treatment with a base underwent direct cyclization to give 2-substituted aryltetrahydropyrazolopyrazolones 251. ${ }^{138}$

$$
R=P h \text { or deriv., } R_{1}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}, 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 2,4,6-\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2}
$$

Nitration of 1-aryl-3-carbethoxy-4-hydroxy-1 H-pyrazoles 252 with concentrated nitric acid under different conditions gave corresponding 5 -nitro derivatives 253, which on treatment with phosphorus oxychloride afforded 1-aryl-3-carbethoxy-4-chloro-5-nitropyrazoles 254. Treatment of $\mathbf{2 5 4}$ with hydrazine afforded acid hydrazide 255, which on treatment with phosphorus oxychloride underwent chlorination-cyclization to form $\left(\mathbf{2 5 6}, \mathrm{R}_{1}=\mathrm{Cl}\right)$. Alternatively, 253 on treatment with hydrazine in the presence of potassium fluoride in DMF afforded 5-aryl-1,5-dihydro-6-nitropyrazolo[4,3-c]pyrazol-3-ols (256, $\left.\mathrm{R}_{1}=\mathrm{OH}\right)$, which on chlorination with POCl_{3} furnished $\left(\mathbf{2 5 6}, \mathrm{R}_{1}=\mathrm{Cl}\right) .{ }^{139}$

The pyrolysis of antipyrine 4-diazonium fluoroborate 257 gave antipyrylazopyrazolopyrazolone 258, which was formed by intermolecular and intramolecular coupling of the diazo compound at elevated temperature. ${ }^{140}$

1-Methyl-2-phenyl-1,2-dihydropyrazolo[4,3-c]pyrazol-3(4H)-one 260 was prepared by deamination and cyclization of either 1-(1-phenyl-2,3-dimethyl-5-pyrazolon-4-yl)-3,3-dimethyltriazen 259. ${ }^{141}$

References

1. (a) Jungheim, L. N.; Sigmund, S. K. J. Org. Chem. 1987, 52, 4007-4013; (b) Indelicato, J.; Pasini, M. C. E. J. Med. Chem. 1988, 31, 1227-1230.
2. a) Jungheim, L. N.; Sigmund, S. K.; Fisher, J. W. Tetrahedron Lett. 1987, 28, 285-288; b) Ternansky, R. J.; Draheim, S. E. Tetrahedron Lett. 1988, 29, 6569-6572; c) Ternansky, R. J.; Draheim, S. E. Tetrahedron Lett. 1990, 31, 2805-2808; d) Holmes, R. E.; Neel, D. A. Tetrahedron Lett. 1990, 31, 5567-5570.
3. a) Fischer, R.; Bretschneider, T.; Gesing, E. R. F.; Feucht, D.; Kuck, K. H.; Loesel, P.; Malsam, O.; Arnold, C.; Auler, T.; Hills, M. J.; Kehne, H. WO 2005016873; Chem. Abstr. 2005, 142, 261530; b) Kosower, E. M.; Radkowsky, A. E.; Fairlamb, A. H.; Croft, S. L.; Nea, R. A. Eur. J. Med. Chem. 1995, 30, 659-671.
4. Kosower, E. M.; Hershkowitz, E. Isr. Patent ISXXAQ IL 94658; Chem. Abstr. 1994, $122,214077$.
5. Glenn, R.W.; Lim, M. US 20070050923 (2007); Chem. Abstr. 2007, 146, 322831.
6. Vidal, L.; Malle, G.; Monteil, E. WO 9735551 (1997); Chem. Abstr. 1997, 127, 311355.
7. Deconinck, G.; Saunier, J. B.; Desenne, P. FR 2937864 (2010); Chem. Abstr. 2010, 152, 533689.
8. Radics, U.; Michel, H. J.; Niclas, H.; Grabarse, M. DE 19958051 (2001); Chem. Abstr. 2001, $135,19121$.
9. Salim, W. S.; Shakir, M. WO 9405, 294 (1994); Chem. Abstr. 1994, $120,280314$.
10. Palmer, C.; Towfighi, J.; Roberts, R. L.; Heitjan, D. F. Pediatr. Res. 1993, 33, 405-411; Chem. Abstr. 1993, 118, 247476.
11. Marzi, M.; Minetti, P.; Foresta, P.; Tinti, M. O. EP 506, 628 (1992); Chem. Abstr. 1993, 118, 60136.
12. Bell, A. S.; Terrett, N. K. WO 9307, 149 (1993); Chem. Abstr. 1993, 119, 95549.
13. Taylor, E. C.; Patel, H.; Kumar, H. Tetrahedron 1992, 48, 8089-8100.
14. Shkineva, T. K.; Dalinger, I. L.; Shevelev, S. A. Chem. Heterocyl. Compd. 1995, 31, 509-514.
15. Abdel-Wahab, B. F.; Mohamed, H. A.; Farahat, A. A.; Dawood, K. M. Heterocycles 2011, 83, $2731-2767$.
16. Abdel-Wahab, B. F.; Mohamed H. A. J. Sulfur Chem. 2011, 32, 543-556.
17. Abdel-Wahab, B. F.; Khidre, R.E.; Farahat, A.A. Arkivoc 2011, i, 196-245.
18. Dawood, K. M.; Elwan, N. M.; Abdel-Wahab, B. F. Arkivoc 2011, i, 11-195.
19. Metwally, M. A.; Farahat, A. A.; Abdel-Wahab, B. F. J. Sulfur Chem. 2010, 31, 315-349.
20. Dawood, K. M.; Abdel-Wahab, B. F. Chem. Heterocycl. Compd. 2010, 46, 255-278.
21. Dawood, K. M.; Mohamed, H. A.; Abdel-Wahab, B. F. Chem. Heterocycl. Compd. 2010, 46, 131-139.
22. Dawood, K. M.; Elwan, N. M.; Farahat, A. A.; Abdel-Wahab, B. F. J. Heterocycl. Chem. 2010, 47, $243-267$.
23. Metwally, M. A.; Abdel-Wahab, B. F.; El-Hiti, G. A. Cur. Org. Chem. 2010, 14, 48-64.
24. Dawood, K. M.; Abdel-Gawad, H.; Mohamed, H. A.; Abdel-Wahab, B. F. Heterocycles 2010, 81, 1-55.
25. Dawood, K. M.; Abdel-Wahab, B. F. Arkivoc 2010, i, 333-389.
26. Metwally, M. A.; Shaaban, S.; Abdel-Wahab, B. F.; El-Hiti, G. A. Cur. Org. Chem. 2009, 13, $1475-1496$.

KHIDRE et al./Turk J Chem

27. Metwally, M. A.; Abdel-Wahab, B. F.; Koketsu, M. Phosphorus Sulfur Silicon Relat. Elem. 2009, 184, 3038-3074.
28. Metwally, M. A.; Abdel-Wahab, B. F. Org. Commun. 2009, 2, 84-119.
29. Amer, A. F.; Hammouda, M.; El-Ahl, A. A. S.; Abdel-Wahab, B. F. J. Heterocycl. Chem. 2008, 45, 1549-1569.
30. Turk, C.; Svete, J.; Stanovnik, B.; Golic, L.; Golobic, A., Zbornik Referatov s Posvetovanja Slovenski Kemijski Dnevi, Maribor, Slovenia, Sept. 28-29, 2000 (Pt. 1), 86; Chem. Abstr. 2000, 134, 222659.
31. Turk, C.; Svete, J.; Stovanik, B. Zbornik Referatov s Posvetovanja Slovenski Kemijski Dnevi, Maribor, Slovenia, Sept. 23-24, 1999, 245; Chem. Abstr. 1999, 132, 151727.
32. Svete, J.; Grum, P.; Preseren, A.; Zupancic, S.; Toplak, R.; Turk, C.; Stanovnik, B. Zbornik Referatov s Posvetovanja Slovenski Kemijski Dnevi, Maribor, Slovenia, Sept. 17-18, 1998, 192; Chem. Abstr. 1998, 130, 125016.
33. Jungheim, L. N.; Sigmund, S. K.; Jones, N. D.; Swartzendruber, J. K. Tetrahedron Lett. 1987, 28, 289-292.
34. Preseren, A.; Svete, J.; Stanovnik, B. J. Heterocycl. Chem. 1999, 36, 799-801.
35. Svete, J.; Preseren, A.; Stanovnik, B.; Golic, L.; Golic-Gradadolnik, S. J. Heterocycl. Chem. 1997, 34, 1323-1328.
36. Pezdirc, L.; Bevk, D.; Pirc, S.; Svete, J.; Stanovnik, B. Slovenski Kemijski Dnevi, 10th, Maribor, Slovenia, Sept. 23-24, 2004, 509; Chem. Abstr. 2005, 143, 172800.
37. Chuang, T. H.; Sharpless, K. B. Helv. Chim. Acta 2000, 83, 1734-1743.
38. Dorn, H.; Ozegowski, R.; Gruendemann, E. J. Prakt. Chem. (Leipzig) 1979, 321, 565-569.
39. Turk, C.; Golic, L.; Selic, L.; Svete, J.; Stanovnik, B. Arkivoc 2001, v, 87-97.
40. Keller, M.; Sido, A. S. S.; Pale, P.; Sommer, J. Chem. Eur. J. 2009, 15, 2810-2817.
41. Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778-10779.
42. Dorn, H.; Ozegowski, R. DD 143617 (1980); Chem. Abstr. 1981, 95, 43100.
43. Dorn, H.; Ozegowski, R.; Gruendemann, E. J. Prakt. Chem. (Leipzig) 1979, 321, 555-564.
44. Sibi, M. P.; Rane, D.; Stanley, L. M.; Soeta T. Org. Lett. 2008, 10, 2971-2974.
45. Jeffrey, P. D.; McCombie, S. W. J. Org. Chem. 1982, 47, 587-590.
46. Jungheim, L. N. Tetrahedron Lett. 1989, 30, 1889-1892.
47. Griffith, O. W.; Gross, S. S. In Methods in Nitric Oxide Research; Feelish, M.; Stamler, J. S, Eds.; John Wiley \& Sons, Chichester, 1996.
48. Syroeshkina, Y. S.; Kachala, V. V.; Ovchinnikov, I. V.; Kuznetsov, V. V.; Nelyubina, Y.V.; Lyssenko, K. A.; Makhova, N. N. Mendeleev Commun. 2009, 19, 276-278.
49. Molchanov, A. P.; Sipkin, D. I.; Koptelov, Y. B.; Kopf, J.; Kostikov, R. R. Russ. J. Org. Chem. 2003, 39, 13381345.
50. Burger, K.; Schickaneder, H.; Hein, F.; Gieren, A.; Lamm, V.; Engelhardt, H. Lieb. Ann. Chem. 1982, 845-852.
51. Burger, K.; Hein, F. Liebigs Ann. Chem. 1979, 133-141.
52. Evans, S.; Gearhart, R. C.; Guggenberger, L. J.; Schweizer, E. E. J. Org. Chem. 1977, 42, 452-458.
53. Tipping, A. E.; Forshaw, T. P. J. Chem. Soc. C 1971, 2404-2408.
54. Satsumabayashi, S.; Nakano, H.; Motoki, S. Nippon Shika Daigaku Kiyo, Ippan Kyoiku-kei 1979, 87-96; Chem. Abstr. 1979, 91, 140790.
55. Sammour, A.; Fahmy, A. F. M.; Sayed, G. H. Egypt. J. Chem. 1975, 18, 445-458; Chem. Abstr. 1978, 89, 16349.
56. El-Alali, A.; Al-Kamali. A. S. Can. J. Chem. 2002, 80, 1293-1301.
57. Ghabrial, S. S. Phosphorus Sulfur and Silicon Rel. Elem. 1993, 84, 17-22.
58. Adib, M.; Sayahi, M. H.; Aghaaliakbari, B.; Bijanzadeh, H. R. Tetrahedron 2005, 61, 3963-3966.
59. Panfil, I.; Urbanczyk-Lipkowska, Z.; Suwinska, K.; Solecka, J.; Chmielewski, M. Tetrahedron 2002, 58, 1199-1212.

KHIDRE et al./Turk J Chem

60. Potts, K. T.; Murphy, P. M.; Kuehnling, W. R. J. Org. Chem. 1988, 53, 2889-2898.
61. Potts, K. T.; Kanemasa, S.; Zvilichovsky, G. J. Am. Chem. Soc. 1980, 102, 3971-3972.
62. Zvilichovsky, G.; David, M. J. Org. Chem. 1982, 47, 295-300.
63. Abaszadeh, M.; Sheibani, H.; Saidi, K. Aust. J. Chem. 2010, 63, 92-95.
64. Zvilichovsky, G.; David, M. Synthesis 1986, 239-240.
65. Kappe, T.; Kos, C. Synthesis 1989, 629-630.
66. Friedrichsen, W. Z. Naturforsch. 1980, 35B, 1002-1008.
67. Ogawa, K.; Terada, T.; Honna, T. Chem. Pharm. Bull. 1984, 32, 930-939.
68. Veibel, S.; Lillelund, H. Tetrahedron 1957, 1, 201-213.
69. Trofimenko, S. J. Am. Chem. Soc. 1965, 87, 4393-4394.
70. Solomons, T. W. G.; Voigt, C. F. J. Am. Chem. Soc. 1966, 88, 1992-1994.
71. Solomons, T. G. W.; Fowler, F. W.; Calderazzo, J. J. Am. Chem. Soc. 1965, 87, 528-531.
72. Solomons, T. W. G.; Fowler, F. W. Chem. Ind. (London, UK) 1963, 35, 1462-1463.
73. Potts, K. T.; Kuehnling, W. R. J. Org. Chem. 1984, 49, 3672-3673.
74. Garkusha-Bozhko, V. S. Ukrain. Khim. Zh. 1990, 56, 1096-1098; Chem. Abstr. 1991, 114, 164098.
75. Clark, M. P.; Laughlin, S. K.; Golebiowski, A.; Brugel, T. A.; Sabat M. WO 2005047287 (2005); Chem. Abstr. 2005, 142, 482041.
76. Clark, M. P.; Laufersweiler, M. J.; De, B.; Janusz, M. J. U.S. Ser. No. 246,214 (2004); Chem. Abstr. 2004, 140, 375182.
77. Clark, M. P.; Laufersweiler, M. J.; Golebiowski, A.; Sabat, M.; Brugel, T. A. U.S. Ser. 246,214 (2004); Chem. Abstr. 2004, 140, 199322.
78. Neel, D. A.; Holmes, R. E.; Paschal, J. W. Tetrahedron Lett. 1996, 37, 4891-4894.
79. Jungheim, L. N.; Sigmund, S. K.; Holmes, R. E.; Barnett, C. J.; Ternansky, R. J. EP 202046 1986; Chem. Abstr. 1987, 106, 119880.
80. Jungheim, L. N.; Holmes, R. E. EP 202047 (1986); Chem. Abstr. 1987, 106, 138439.
81. Jungheim, L. N.; Sigmund, S. K.; Holmes, R. E.; Barnett, C. J. EP 202794 (1986); Chem. Abstr. 1987, 106, 102278.
82. Sucrow, W.; Wonnemann, H. Liebigs Ann. Chem. 1982, 3, 420-430.
83. Kosower, E. M.; Pazhenchevsky, B. J. Am. Chem. Soc. 1980, 102, 4983-4993.
84. Blenderman, W. G.; Carroll, P. J.; Joullie, M. M.; Ulatowski, T. G.; Nemeroff, N. H. J. Prakt. Chem. (Leipzig) 1986, 328, 648-650.
85. Elnagdi, M. H.; Ohta, M. Bull. Chem. Soc. Jpn. 1973, 46, 1830-1833.
86. Houlihan, W. J.; Theuer, W. J. J. Org. Chem. 1968, 33, 3941-3943.
87. Sherrill, R. G. Tetrahedron Lett. 2007, 48, 7053-7056.
88. Al-Talib, M.; Tashtoush, H.; Al-Ghoul, A.; Ziemer, B.; Koert, U. J. Heterocycl. Chem. 2005, 42, 287-288.
89. Jung, J. C.; Watkins, E. B.; Avery, M. A. Heterocycles 2005, 65, 77-94.
90. Peseke, K.; Blaesche, J. Ger. (East) DD 144775 (1980); Chem. Abstr. 1981, 94, 192326.
91. Schmidt, F.; Schoenafinger, K. DE 2855193 (1980); Chem. Abstr. 1981, 94, 48839.
92. Zubek, A.; Liebig, R. Z. Chem. 1969, 9, 105; Chem. Abstr. 1969, 70, 106428.
93. Dox, A. W. J. Am. Chem. Soc. 1932, 54, 3674-3678.
94. Arsanious, M. H. N.; Boulos, L. S. Monatsh. Chem. 2006, 137, 1177-1184.
95. Japanese Patent No. 6, 0043, 659; Chem. Abs. 1985, 103, 79406.
96. Koga, H.; Hirobe, M.; Okamoto, T. Chem. Pharm. Bull. 1976, 26, 2267-2269.
97. Sharma, C.; Thadhaney, B.; Pemawat, G.; Talesara, G. L. Indian J. Chem. 2008, 47B, 1892-1897.
98. Ojha, S.; Bapna, A.; Talesara, G. L. Arkivoc 2008, 112-122.
99. Koralem, A. I. M.; El-Maghraby, M. A.; Fahmy, S. M. Egypt J. Chem. 1988, 31, 531-541.
100. Abdel Hafez, A. A.; Awad, I. M. A. Phosphorus Sulfur Silicon Rel. Elem. 1992, 71, 253-259.
101. Zimaity, T.; Afsah, E.; Abbas, M. Indian J. Chem. 1978, 16B, 876-879.
102. Sammour, A. A.; Nonr El-Deen, M. M.; Abd-El-Halim, M. Unit. Arab Rep. J. Chem. 1970, 13, 7-24; Chem. Abstr. 1971, 75, 5840.
103. Sammour, A.; Abdel Raouf, A.; Elkasaby, M.; Hassan, M. A. Egypt J. Chem. 1972, 15, 429-444.
104. Bhaskar, V. H.; More, V. S.; Kumar M. Asian J. Chem. 2008, 20, 5474-5482.
105. Mehta, K. H.; Desai, A. R.; Desai, K. R. Chemistry: An Indian J. 2003, 1, 38-41; Chem. Abstr. 2003, 140, 375103.
106. Sammour, A.; Zimaity, T.; Elborai, M. J. Prakt. Chem. (Leipzig) 1972, 314, 612-620.
107. Othman, E. S. Acta Chim. Slov. 2003, 50, 15-28.
108. Hassan, K. M.; El-Maghraby, M. A.; El-Kashef, H. S. Indian J. Chem. 1978, 16B, 326-329; Chem. Abstr. 1978, 89, 146830.
109. Paul, S.; Gupta, M.; Gupta, R.; Loupy, A. Tetrahedron Lett. 2001, 42, 3827-3829.
110. Ahluwalia, V. K.; Dahiya, A.; Bala, M. Indian J. Chem. 1996, 35B, 848-851.
111. El-Latif, F. M. A.; Barsi, M. A.; Maghraby, A. S.; Badr, M. Z. A.; Doepp, D. J. Indian Chem. Soc. 1995, 72, 641-643.
112. El-Latif, F. M. A. J. Indian Chem. Soc. 1994, 71, 631-633.
113. Badr, M. A. Z.; Barsy, M. A.; Selim, M. A.; Abd El Latif, F. M. Aswan Sci. Tech. Bull. 1992, 13, 73-83; Chem. Abstr. 1993, 119, 160174.
114. Abd El Latif, F. M. Asian J. Chem. 1993, 5, 184-188.
115. Mogilaiah, K.; Kavitha, S.; Reddy, G. R. Indian J. Heterocycl. Chem. 2002, 12, 113-116.
116. Awad, I. M. A. Monatsh. Chem. 1990, 121, 1023-1030.
117. Chande, M. S.; Thakkar, N. V.; Patil, D. V. Acta Pol. Pharm. 1999, 56, 207-210; Chem. Abstr. 1999, 132, 122547.
118. Berry, D. A.; Chien, T. C.; Townsend, L. B. Heterocycles 2004, 63, 2475-2494.
119. El-Mobayed, M.; Deeb, A.; Essawy, A.; Abd El-Hamid, A.; Abd El-Hamid, A. M. J. Chem. Soc. Pakistan 1989, 11, 287-290; Chem. Abstr. 1990, 113, 231330.
120. Deeb, A.; El-Mobayed, M.; Essawy, A.; Abd El-Hamid, A.; Abd El-Hamid, A. M. Coll. Czech. Chem. Commun. 1990, 55, 728-733.
121. Peseke, K.; Bohn, I. DD144920 (1980); Chem. Abstr. 1981, 95, 7280.
122. Peseke, K.; Vogel, C.; Blaesche, J.; Kollhof, K. H. J. Prakt. Chem. (Leipzig) 1982, 324, 639-651.
123. Kumar, P. S.; Nagoji, K. E. V.; Kumar, B. V. V. R. Asian J. Chem. 2003, 15, 515-518.
124. Sayed, G. H.; Kassab, R. R. Bull. Fac. Pharm. Cairo Uni. 1998, 36, 53-56; Chem. Abstr. 1999, 131, 157727.
125. Elfahham, H. A.; Sadek, K. U.; Elgemeie, G. E. H.; Elnagdi, M. H. Chem. Lett. 1982, 1, 119-22.
126. Elgemeie, G. H.; Ali, H. A.; Elghandour, A. H.; Hussein, A. M. Heterocycl. Commun. 2002, 8, 443-446.
127. Mohareb, R. M.; Habashi, A.; Ibrahim, N. S.; Sherif, S. M. Synthesis 1987, 228-231.
128. Assy, M. G.; El-Farargy, A. F. Egypt J. Chem. 1996, 39, 281-285.
129. Padwa, A.; Wannamaker, M. W. Tetrahedron 1990, 46, 1145-1162.
130. Khemiss, A.; Franck-Neumann, M. J. Soc. Chim. Tunis. 1983, 10, 3-9; Chem. Abstr. 1984, $100,174715$.
131. Franck-Neumann, M. Angew. Chem. 1967, 6, 79-80.
132. Fukata, G.; Kawazoe, Y.; Taguchi, T. Yakugaku Zasshi 1974, 94, 17-22; Chem. Abstr. 1974, 81, 63543.
133. Elnagdi, M. H.; Elghandour, A. H. H.; Sadek, K. U.; Ramiz, M. M. M. Z. Naturforsch. B 1989, 44, $951-954$.
134. Elnagdi, M. H.; Elfahham, H. A.; Elmoghayar, M. R. H.; Sadek, K. U.; Elgemeie, G. H. J. Chem. Soc. Perkin Trans. 1 1982, 989-991.
135. Tretyakov, E. V.; Vasilevsky, S. F. Mendeleev Commun. 1996, 6, 190-191.
136. Pimenova, E. V.; Khamatgaleev, R. A.; Voronina, E. V.; Andreichikov, Y. S. Khim. Farm. Zh. 1998, 32, 27-28; Chem. Abstr. 1998, 130, 66441.
137. Lee, J. H.; Matsumoto, A.; Yoshida, M.; Simamura, O. Bull. Chem. Soc. Jpn. 1974, 47, 1039-1040.
138. Patel, H. V.; Fernandes, P. S. Indian J. Chem. 1989, 28B, 470-474.
139. Patel, H. V.; Fernandes, P. S. Indian J. Chem. 1989, 28B, 56-60.
140. Robbins, P. J. J. Heterocycl. Chem. 1977, 14, 1107-1108.
141. Voronin, V. G.; Shramova, Z. I.; Skachilova, S. Y.; Kulikova, L. D.; Ermakov, A. I.; Zaks, A. S.; Suslina, M. L. Pharm. Chem. J. 1985, 19, 700-705.

[^0]: *Correspondence: bakrfatehy@yahoo.com

