

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Research Article

Turk J Chem (2013) 37: 213 – 219 © TÜBİTAK doi:10.3906/kim-1204-72

Antimicrobial activity and chemical composition of the essential oils of mosses (*Hylocomium splendens* (Hedw.) Schimp. and *Leucodon sciuroides* (Hedw.) Schwägr.) growing in Turkey

Tayyibe Beyza CANSU¹, Büşra YAYLI¹, Turan ÖZDEMİR², Nevzat BATAN², Şengül ALPAY KARAOĞLU³, Nurettin YAYLI^{1,4,*}

¹Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
 ²Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey
 ³Department of Biology, Faculty of Arts and Sciences, Rize University, 53100 Rize, Turkey
 ⁴Faculty of Pharmacy, Karadeniz Technical University, 61080 Trabzon, Turkey

Received: 26.04.2012 • Accepted: 20.12.2012 • Published Online: 17.04.2013 • Printed: 13.05.2013

Abstract: In the present work, the volatiles of mosses [Hylocomium splendens (Hedw.) Schimp. (Hylocomiaceae) and Leucodon sciuroides (Hedw.) Schwägr. (Leucodontaceae)] have been investigated by GC-FID and GC/MS. Fifty-eight compounds in the oil of H. splendens, representing 75.4%, and 41 compounds in the oil of L. sciuroides, representing 87.6%, were identified. The major components were found to be β -pinene (11.6%) and α -pinene (8.9%) in the oil of H. splendens, and nonanal (26.8%) and heptanal (13.7%) in the oil of L. sciuroides. The essential oil of H. splendens was rich in monoterpenes (30.8%), and aldehydes (49.9%) were the major constituents in the oil of L. sciuroides. The antimicrobial activities of the isolated essential oils of the mosses were also investigated. The essential oil of H. splendens showed antibacterial activities against Escherichia coli, Yersinia pseudotuberculosis, Staphylococcus aureus, Enterococcus faecalis, Bacillus cereus, Mycobacterium smegmatis, and the fungus Candida albicans with minimum inhibition concentrations in the range of 428–857 μ g/mL, respectively. The oil of L. sciuroides only showed activity against fungus C. albicans (711 μ g/mL).

Key words: Hylocomium splendens, Leucodon sciuroides, essential oils, GC-FID, GC-MS

1. Introduction

Essential oils and their constituents are widely used in cosmetics as fragrances, in medicine as parts of different medical products, and in the food industry as flavoring additives. The essential oils of mosses generate a pleasant, sometimes distinct smell in the fresh state and have been used as traditional medicines. There are approximately 25,000 taxa of mosses around the world. The genera of Hylocomium and Leucodon are represented by 1 and 4 taxa 12,13 , respectively, in Turkey. Essential oils of mosses contain a great variety of volatile metabolites, which are mainly mono-, sesqui- and diterpenes, and, in addition, various aliphatic metabolites. To our knowledge, there are no previous reports on the chemical composition and antimicrobial activity of the essential oils of H. Splendens and L. Sciuroides were mentioned and showed moderate activities. Therefore, the objective of the present study was to examine the chemical composition of the essential oils of H. Splendens

^{*}Correspondence: yayli@ktu.edu.tr

and L. sciuroides by gas chromatography—mass spectrometry (GC-MS) $^{9-15,18}$ as well as to evaluate the antimicrobial activities of the essential oils.

2. Experimental

Hylocomium splendens (Hedw.) Schimp. was collected from Borçka, Artvin, Turkey (at a height of approximately 293 m), in May 2011. Leucodon sciuroides (Hedw.) Schwägr. was collected from Yusufeli, Çıralı, Artvin, Turkey (at a height of approximately 1524 m), in May 2011. The mosses were authenticated by Associate Professor T. Özdemir immediately after collection. ^{6,7} Voucher specimens were deposited in the herbarium of the Department of Biology (Özdemir and Batan 1501 and Özdemir and Batan 1502, respectively), Karadeniz Technical University, Turkey.

2.1. Isolation of the essential oils

The fresh plant materials were separated and cut into small pieces. Crude essential oils of H. splendens and L. sciuroides were obtained from the fresh mosses (approximately 55 g each) by hydrodistillation in a modified Clevenger-type apparatus with a cooling bath (-12 °C) system (4 h) (yields: 0.1% and 0.95% (v/w), respectively). The obtained oils were dissolved in n-hexane (0.5 mL, HPLC grade), dried over anhydrous sodium sulfate, and stored at 4–6 °C in a sealed brown vial. One microliter of the essential oils was directly injected separately into gas chromatography–flame ionization detector (GC-FID) and GC-MS instruments.

2.2. Gas chromatography

The capillary GC-FID analysis was performed using an Agilent-5973 Network System equipped with a FID (supplied with air and hydrogen of high purity) and a split inlet. The chromatographic column used for the analysis was an HP-5 capillary column (30 m \times 0.32 mm i.d., film thickness 0.25 μ m). Helium was used as the carrier gas at a flow rate of 1 mL/min. The injections were performed in splitless mode at 230 °C. Two microliters of essential oil solution in hexane was injected and analyzed, with the column held initially at 60 °C for 2 min and then increased to 240 °C with a 3 °C/min heating ramp. The identity of each compound was supported by comparing their retention indices (RIs) with published values. ^{9–15} The sample was analyzed twice and the percentage composition of oil was computed from the GC peak areas without using correction factors.

2.3. Gas chromatography-mass spectrometry

GC-MS analysis was performed using an Agilent-5973 Network System. A mass spectrometer with an ion trap detector in full scan mode under electron impact ionization (70 eV) was used. The chromatographic column used for the analysis was an HP-5 capillary column (30 m \times 0.32 mm i.d., film thickness 0.25 μ m). Helium was used as the carrier gas at a flow rate of 1 mL/min. The injections were performed in splitless mode at 230 °C. Two microliters of essential oil solution in hexane was injected and analyzed, with the column held initially at 60 °C for 2 min and then increased to 240 °C with a 3 °C/min heating ramp.

2.4. Identification of components

RIs of all compounds were determined by the Kovats method using n-alkanes (C_6-C_{32}) as standards. Identification of individual components was made by comparison of their retention times with those of available analytical standards (α -pinene, camphene, β -pinene, limonene, borneol, pulegone, n-tetradecane, n-heptadecane,

n-nonadecane, n-eicosane, n-heneicosane, n-docosane, n-tricosane, n-tetracosane, and n-pentacosane purchased from Merck and Sigma) and by computer search, matching mass spectral data with those held in the NIST and Wiley library of mass spectra and literature comparison. $^{11-15,18}$ Component relative concentrations were obtained directly from GC peak areas obtained with GC-FID.

2.5. Antimicrobial activity

All test microorganisms were as follows: Escherichia coli ATCC 25922, Yersinia pseudotuberculosis ATCC 911, Pseudomonas aeruginosa ATCC 43288, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Bacillus cereus 702 Roma, Mycobacterium smegmatis ATCC 607, and Candida albicans ATCC 60193. All extracts were weighed and dissolved in hexane to prepare extract stock solution of between 45,000 and 46,000 μ g/mL. The antimicrobial effects of the substances were tested quantitatively in respective broth media by using double microdilution and the minimal inhibition concentration (MIC) values (μ g/mL) were determined. ¹⁹ The antibacterial and antifungal assays were performed in Mueller-Hinton broth or Tween 20 (Difco, Detroit, MI, USA) at pH 7.3 and buffered in yeast nitrogen base or Tween 20 (Difco) at pH 7.0, respectively. The microdilution test plates were incubated for 18–24 h at 35 °C. Brain heart infusion broth (Difco) was used for M. smegmatis, incubated for 48–72 h at 35 °C. ²⁰ The MIC was defined as the lowest concentration that showed no growth. Ampicillin (10,000 μ g/mL), streptomycin (10,000 μ g/mL), and fluconazole (2000 μ g/mL) were used as standard antibacterial and antifungal drugs, respectively. Hexane with dilution of 1:10 was used as the solvent control.

3. Results and discussion

The mosses (H. splendens and L. sciuroides) were collected at different locations in Artvin, Turkey. Before extraction, the mosses were carefully inspected for contaminations. Other plant material, conifer needles, and soil were completely removed. The essential oils of the mosses (H. splendens and L. sciuroides) were obtained by hydrodistillation method using a modified Clevenger-type apparatus. The obtained crude essential oils were then investigated by GC-FID and GC-MS techniques. $^{9-15,18}$ The RIs, percentages, and chemical compositions of the essential oils of H. splendens and L. sciuroides are listed in the Table.

Fifty-eight components were identified from the oil of H. splendens, representing 75.4% of the total oil, and the major compounds were β -pinene, α -pinene, limonene, camphene, and heptadecene. n-Nonanal, heptanal, tetradecanol, eicosane, and octanal were the main compounds of L. sciuroides out of 41 components, representing 87.6% of the total oil.

The volatiles of most mosses are abundant in terpenes, aliphatic and aromatic aldehydes (α - and β -pinene, camphene, p-cymene, n-heptanal, benaldehyde, n-nonanal, E,E-2,4-decadienal, E,Z-2,4-decadienal, ben-zaldehyde, E,E-2,4-nonadienal, phenylacetaldehyde, undecanal, etc.), aliphatic alcohols and ketones (decanol, tetradecanol, hexadecanol, 3-octanone, etc.), and hydrocarbons (C_{14} – C_{25} , saturated). $^{9-15,18}$ In addition, a great variety of terpenoid compounds were detected. Some of them could be readily identified by their characteristic mass spectra and seem to be almost ubiquitous in mosses. $^{12-15}$ Very common volatile constituents of the essential oils of moss are α - and β -pinene, camphene, Δ -3-carene, sabinene, myrcene, camphor, limonene, p-cymene, α -terpinene, and γ -terpinene, as well as borneol, bornylacetate, terpinen-4-ol, α -terpineol, pinocarvone, safranal, pulegone, carveol, longicyclene, and α -terpinylacetate. $^{9-15}$ We also observed the similar terpenes, aliphatic aldehydes, and hydrocarbons in the oils of mosses (Table). In the essential oil of L sciuroides, n-nonanal (26.8%) was found to be the major compound, which could be of use as a marker.

CANSU et al./Turk J Chem

Table. Identified components in the essential oils of *H. splendens* and *L. sciuroides*.

Nonoterpenes September Nonoterpenes Tricyclene O.5 - 925 927		C 1	A	В	Exp.	Lit.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	No.	Compounds			RI^b	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Monoterpenes				
3 Camphenec 4.2 - 950 954 4 Δ - 3 - Carene - 0.8 975 979 5 β-Pinenec 11.6 - 976 978 6 α-Phellandrene 0.6 - 1005 1003 7 Limonenec 4.7 - 1027 1029 8 p-Cymene 0.3 - 1089 1091 Monoterpenoids - - 1089 1091 9 α -Campholenal 0.3 - 1125 1126 10 Nopinone 0.3 - 1138 1140 11 Camphor 0.8 - 1144 1146 12 Pinocarvone 1.5 - 1161 1165 13 Borneolc 0.6 - 1167 1169 14 α -Terpineol 2.1 - 1186 1189 15 Safranal 0.6 -	1	Tricyclene	0.5	-	925	927
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	α -Pinene c	8.9	0.5	936	939
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	Camphene c	4.2	-	950	954
6 α-Phellandrene 0.6 - 1005 1003 7 Limonenee 4.7 - 1027 1029 8 p-Cymene 0.3 - 1089 1091 Monoterpenoids - 1089 1091 9 α-Campholenal 0.3 - 1125 1126 10 Nopinone 0.3 - 1138 1140 11 Camphor 0.8 - 1144 1146 12 Pinocarvone 1.5 - 1161 1165 13 Borneolc 0.6 - 1167 1169 14 α-Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegonec 0.2 - 1212 1215 17 β-Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232	4		-	0.8	975	979
7 Limonenec 4.7 - 1027 1029 8 p-Cymene 0.3 - 1089 1091 Monoterpenoids - 1089 1091 9 α-Campholenal 0.3 - 1125 1125 1126 10 Nopinone 0.3 - 1138 1140 11 Camphor 0.8 - 1144 1146 12 Pinocarvone 1.5 - 1161 1165 13 Borneolc 0.6 - 1167 1169 14 α-Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegonec 0.2 - 1212 1215 17 β-Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1225 18 Carveol 0.3 - <th< td=""><td>5</td><td>β-Pinene^c</td><td>11.6</td><td>-</td><td>976</td><td>978</td></th<>	5	β -Pinene ^c	11.6	-	976	978
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	α -Phellandrene	0.6	-	1005	1003
Monoterpenoids 0 1125 1126 10 Nopinone 0.3 - 1125 1126 10 Nopinone 0.3 - 1138 1140 11 Camphor 0.8 - 1144 1146 12 Pinocarvone 1.5 - 1161 1165 13 Borneol ^c 0.6 - 1167 1169 14 α-Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegone ^c 0.2 - 1212 1212 16 Pulegone ^c 0.2 - 1212 1212 17 β-Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perlila aldehyde 0.3 - 1268 1272 Sesquiterpene - 0.4 - 1336	7	Limonene ^c	4.7	-	1027	1029
9 α-Campholenal 0.3 - 1125 1126 10 Nopinone 0.3 - 1138 1140 11 Camphor 0.8 - 1144 1146 12 Pinocarvone 1.5 - 1161 1162 13 Borneol° 0.6 - 1167 1169 14 α-Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegone° 0.2 - 1212 1215 17 β-Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 Sesquiterpenes - 0.4 - 1356 1353 20 Presilphiperfol-7-ene - 0.4 1333 1337 21 Longicyclene	8	p-Cymene	0.3	-	1089	1091
10 Nopinone 0.3 - 1138 1140 11 Camphor 0.8 - 1144 1146 12 Pinocarvone 1.5 - 1161 1165 13 Borneole 0.6 - 1167 1186 1189 14 α-Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegonee 0.2 - 1212 1215 17 β-Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 20 Presilphiperfol-7-ene - 0.4 1333 1337 21 Longipinene 0.4 - 1356 1353 22 Longipylene 0.3 - 1376 1374 23 Panas		Monoterpenoids				
11 Camphor 0.8 - 1144 1146 12 Pinocarvone 1.5 - 1161 1165 13 Borneole 0.6 - 1167 1169 14 α-Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegonee 0.2 - 1212 1215 17 β-Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 Sesquiterpenes - 0.4 1333 1337 21 Longiphiperfol-7-ene - 0.4 1333 1337 21 Longipyclene 0.3 - 1356 1353 22 Longicyclene 0.3 - 1376 1374 23 Panasinsene 0.9 - 1385 1383 24 β-Elemene - 0.2 <td>9</td> <td>α-Campholenal</td> <td>0.3</td> <td>-</td> <td>1125</td> <td>1126</td>	9	α -Campholenal	0.3	-	1125	1126
12 Pinocarvone 1.5 - 1161 1165 13 Borneolc 0.6 - 1167 1169 14 α-Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegonec 0.2 - 1212 1215 17 β-Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 Sesquiterpenes - 0.4 1333 1337 21 Longiphiene - 0.4 - 1356 1353 22 Longicyclene 0.3 - 1365 1353 22 Longicyclene 0.3 - 1385 1383 24 β-Elemene - 0.2 1388 1391 25 cis-α-Bergamotene	10	Nopinone	0.3	-	1138	1140
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	Camphor	0.8	-	1144	1146
14 α —Terpineol 2.1 - 1186 1189 15 Safranal 0.6 - 1196 1197 16 Pulegone ^c 0.2 - 1212 1215 17 β —Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 Sesquiterpenes - 0.4 1333 1337 20 Presilphiperfol-7-ene - 0.4 1336 1353 21 Longipinene 0.4 - 1356 1353 22 Longicyclene 0.3 - 1376 1374 23 Panasinsene 0.9 - 1385 1383 24 β —Elemene - 0.2 1388 1391 25 cis-α-Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 α —Guaiene <t< td=""><td>12</td><td>Pinocarvone</td><td>1.5</td><td>-</td><td>1161</td><td>1165</td></t<>	12	Pinocarvone	1.5	-	1161	1165
15 Safranal 0.6 - 1196 1197 16 Pulegone ^c 0.2 - 1212 1215 17 β -Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 Sesquiterpenes - 0.4 1333 1337 20 Presilphiperfol-7-ene - 0.4 1333 1337 21 Longipinene 0.4 - 1356 1353 22 Longicyclene 0.3 - 1376 1374 23 Panasinsene 0.9 - 1385 1383 24 β -Elemene - 0.2 1388 1391 25 cis-α-Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 α -Guaiene - 0.3 1446 1450 28 cis-Muurola-3,5-diene	13	$\mathrm{Borneol}^c$	0.6	-	1167	1169
16 Pulegonec 0.2 - 1212 1215 17 β -Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 Sesquiterpenes - 0.4 1333 1337 20 Presilphiperfol-7-ene - 0.4 1335 1353 21 Longipinene 0.4 - 1356 1353 22 Longicyclene 0.3 - 1376 1374 23 Panasinsene 0.9 - 1385 1383 24 β -Elemene - 0.2 1388 1381 24 β -Elemene - 0.2 1388 1391 25 cis- α -Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 α -Guaiene - 0.3 1446 1450 28 cis-Muurola-3,5-diene <td>14</td> <td>α-Terpineol</td> <td>2.1</td> <td>-</td> <td>1186</td> <td>1189</td>	14	α -Terpineol	2.1	-	1186	1189
17 β -Cyclocitral - 0.3 1219 1221 18 Carveol 0.2 - 1232 1229 19 Perilla aldehyde 0.3 - 1268 1272 Sesquiterpenes 20 Presilphiperfol-7-ene - 0.4 1333 1337 21 Longipinene 0.4 - 1356 1353 22 Longicyclene 0.3 - 1376 1376 1376 23 Panasinsene 0.9 - 1385 1383 24 β -Elemene 0.9 - 1385 1383 24 β -Elemene 0.9 - 1385 1383 25 cis- α -Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 α -Guaiene - 0.3 1443 1440 28 cis-Muurola-3,5-diene 0.2 - 1446 1450 29 trans- Muurola-3,5-diene 0.3 <	15	Safranal	0.6	-	1196	1197
18	16	$Pulegone^c$	0.2	-	1212	1215
Perilla aldehyde 0.3 - 1268 1272	17	β -Cyclocitral	-	0.3	1219	1221
Sesquiterpenes	18		0.2	-		1229
Presilphiperfol-7-ene - 0.4 1333 1337	19	Perilla aldehyde	0.3	-	1268	1272
21 Longipinene 0.4 - 1356 1353 22 Longicyclene 0.3 - 1376 1374 23 Panasinsene 0.9 - 1385 1383 24 $β$ -Elemene - 0.2 1388 1391 25 cis- $α$ -Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 $α$ -Guaiene - 0.3 1443 1440 28 cis-Muurola-3,5-diene 0.2 - 1446 1450 29 trans- Muurola-3,5-diene 0.3 1460 1460 30 Ishwarane 0.2 - 1463 1467 31 $γ$ -Muurolene 0.3 - 1479 1480 32 trans-Cadina-(1,6) 4- diene 0.3 - 1481 1477 Sesquiterpenoids 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 <		Sesquiterpenes				
22 Longicyclene 0.3 - 1376 1374 23 Panasinsene 0.9 - 1385 1383 24 $β$ -Elemene - 0.2 1388 1391 25 cis-α-Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 $α$ -Guaiene - 0.3 1443 1440 28 cis-Muurola-3,5-diene 0.2 - 1446 1450 29 trans- Muurola-3,5-diene 0.3 1460 1460 30 Ishwarane 0.2 - 1463 1467 31 $γ$ -Muurolene 0.3 - 1479 1480 32 trans-Cadina-(1,6) 4- diene 0.3 - 1481 1477 Sesquiterpenoids 33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 <t< td=""><td>20</td><td>Presilphiperfol-7-ene</td><td>-</td><td>0.4</td><td>1333</td><td></td></t<>	20	Presilphiperfol-7-ene	-	0.4	1333	
23 Panasinsene 0.9 - 1385 1383 24 β -Elemene - 0.2 1388 1391 25 cis- α -Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 α -Guaiene - 0.3 1443 1440 28 cis-Muurola-3,5-diene 0.2 - 1446 1450 29 trans- Muurola-3,5-diene 0.3 1460 1460 30 Ishwarane 0.2 - 1463 1467 31 γ -Muurolene 0.3 - 1479 1480 32 trans-Cadina-(1,6) 4- diene 0.3 - 1481 1477 Sesquiterpenoids 33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750	21	Longipinene	0.4	-	1356	1353
24 β -Elemene - 0.2 1388 1391 25 cis-α-Bergamotene 0.6 - 1417 1413 26 E-Caryophyllene 0.2 - 1422 1419 27 α -Guaiene - 0.3 1443 1440 28 cis-Muurola-3,5-diene 0.2 - 1446 1450 29 trans- Muurola-3,5-diene 0.3 1460 1460 30 Ishwarane 0.2 - 1463 1467 31 γ -Muurolene 0.3 - 1479 1480 32 trans-Cadina-(1,6) 4- diene 0.3 - 1481 1477 Sesquiterpenoids 33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpenoids 38 Manool 0.9	22	Longicyclene	0.3	-	1376	1374
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	Panasinsene	0.9	-	1385	1383
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	β –Elemene	-	0.2	1388	1391
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	$\operatorname{cis-}\alpha ext{-Bergamotene}$	0.6	-	1417	1413
28 cis-Muurola-3,5-diene 0.2 - 1446 1450 29 trans- Muurola-3,5-diene 0.3 1460 1460 30 Ishwarane 0.2 - 1463 1467 31 γ-Muurolene 0.3 - 1479 1480 32 trans-Cadina-(1,6) 4- diene 0.3 - 1481 1477 Sesquiterpenoids 33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 38 Manool 0.9 - 2055 2057 Terpenoid-related	26	E-Caryophyllene	0.2	-	1422	1419
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		α -Guaiene		0.3	1443	1440
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	cis-Muurola-3,5-diene	0.2	-	1446	1450
31 γ-Muurolene 0.3 - 1479 1480 32 trans-Cadina-(1,6) 4- diene 0.3 - 1481 1477 Sesquiterpenoids 33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 38 Manool 0.9 - 2055 2057 Terpenoid-related		trans- Muurola-3,5-diene		0.3		
32 trans-Cadina-(1,6) 4- diene 0.3 - 1481 1477 Sesquiterpenoids 33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 38 Manool 0.9 - 2055 2057 Terpenoid-related		Ishwarane		-		
Sesquiterpenoids 33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 38 Manool 0.9 - 2055 2057 Terpenoid-related		,		-		1480
33 Caryophyllene oxide 0.8 1579 1583 34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 0.9 - 2055 2057 Terpenoid-related 0.9 - 2055 2057	$\overline{32}$		0.3	-	1481	1477
34 Isolongifolonone 0.4 1613 1613 35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 38 Manool 0.9 - 2055 2057 Terpenoid-related						
35 1,10-di-epi-Cubenol 0.2 1622 1619 36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 38 Manool 0.9 - 2055 2057 Terpenoid-related						1583
36 (E)-2-hexylcinnamaldehyde 0.6 0.4 1748 1750 Diterpene - 0.9 1996 1998 Diterpenoids - 0.9 - 2055 2057 Terpenoid-related - 0.9 - 2055 2057						1613
Diterpene - 0.9 1996 1998 37 Kaurene-15 - 0.9 1996 1998 Diterpenoids - 2055 2057 Terpenoid-related - 2055 2057						1619
37 Kaurene-15 - 0.9 1996 1998 Diterpenoids 38 Manool 0.9 - 2055 2057 Terpenoid-related	36	()	0.6	0.4	$17\overline{48}$	1750
Diterpenoids 0.9 - 2055 2057 Terpenoid-related - 2055 2057						
38 Manool 0.9 - 2055 2057 Terpenoid-related	37		-	0.9	1996	1998
Terpenoid-related						
	38		0.9	-	2055	2057
39 3-neo-iso-Thujyl acetate 3.3 - 1275 1276						
	39	3-neo-iso-Thujyl acetate	3.3	-	1275	1276

CANSU et al./Turk J Chem

 ${\bf Table.}\ \ {\bf Continued.}$

		A	В	Exp.	Lit.
No.	Compounds	% Area ^a	% Area ^a	RI^b	RI
40	cis-Jasmone	-	0.9	1392	1391
41	Vestitenone	0.7	-	1450	1447
42	Ionone epoxide		0.5	1456	1454
43	β -Ionone		0.5	1487	1489
44	Hexahydrofarnesyl acetone	3.0	3.3	1832	1835
	Hydrocarbons				
45	$Tetradecane^c$	-	0.4	1398	1400
46	$\mathrm{Heptadecene}^c$	3.4	-	1696	1699
47	Nonadecane c	1.8	-	1904	1900
48	$\mathrm{Eicosane}^c$	1.6	4.6	2001	2000
49	Heneicosane ^c	1.1	0.5	2102	2100
50	$Docosane^c$	1.7	0.9	2200	2200
51	$Tricosane^c$	1.1	2.0	2301	2300
52	$Tetracosane^c$	0.3	0.7	2400	2400
53	$Pentacosane^c$	0.7	1.7	2500	2500
	Aldehyde				
53	Heptanal	1.2	13.7	904	902
54	Benzaldehyde	-	1.4	962	960
55	Octanal	-	2.6	998	999
56	Benzene acetaldehyde	0.8	1.1	1043	1042
55	Octenal	1.2	0.6	1056	1055
56	Nonanal	1.5	26.8	1104	1101
57	(2E)-Nonenal	-	0.5	1160	1162
58	(2E,4E)-Nonadienal	0.2	-	1213	1215
59	Decanal	-	1.3	1199	1202
60	(2Z)-Decenal	-	0.2	1262	1264
61	(2E)-Decenal	0.7	-	1264	1264
62	(2E,4E)-Decadienal	0.7	-	1291	1293
63	Undecanal	0.2	1.2	1305	1307
64	(2E,4Z)-Decadienal	1.4	0.5	1314	1317
C.F	Others	1.0	0.2	004	004
65	3-Octanone	1.0	2.3	984	984
66	2-Pentylfuran	1.6 0.1	2.3	989	993
	Acetophenone		0.4	1067	1065
68 69	Decanol	-	0.4	1193 1269	1197
	Benzophenone	- 0.2			1270
70	3-Dodecanone	0.3	0.3	1388	1391
71 72	Dodecanol Tridecanol	-	1.7	1471 1576	1471 1572
73	Tetradecanol	0.2	8.5	1675	1673
74	1-Methoxy, 4-(2-phenylethyl)benzene	-	0.4	1755	1755
75	Pentadecanol	-	0.4	1779	1776
77	Hexadecanol	1.3	0.4	1877	
	Octadecanol				1876
78	Octadecanoi	0.3	-	2080	2078

Table. Continued.

No.	Compounds	A	В	Exp.	Lit.
		% Area ^a	% Area ^a	RI^b	RI
				N.C.	
	Monoterpenes	30.8	1.3	7	2
	Monoterpenoids	6.9	0.3	10	1
	Sesquiterpenes	3.4	1.2	9	4
	Sesquiterpenoids	2.0	0.4	4	1
	Diterpene	-	0.9	-	1
	Diterpenoids	0.9	-	1	0
	Terpenoid-related	7.0	5.2	3	4
	Hydrocarbons	11.7	10.8	8	7
	Aldehydes	7.9	49.9	9	11
	Others	4.8	17.6	7	10
	Total isolate	75.4%	87.6%	58	41

A: Hylocomium splendens, B: Leucodon sciuroides.

The qualitative and quantitative determination of essential oil of H. splendens and L. sciuroides showed that monoterpenes (30.8%) were major constituents in the oil of H. splendens and aldehydes (49.9%) were the main components in the oil of L. sciuroides. Generally, the number of volatile compounds present in the oil of H. splendens is greater than that in L. sciuroides. In the literature $^{9-15}$, chemical profiles of the essential oils of the mosses showed large differences, as in our case, which can be explained by the locality, climatic conditions, and the subspecies of the plant used.

The antimicrobial activities of the isolated essential oils were tested quantitatively in respective broth media by using double dilution and the MIC values $(\mu g/mL)^{19,20}$ of 8 microorganisms (E. coli, Y. pseudotuberculosis, P. aeruginosa, S. aureus, E. faecalis, B. cereus, M. smegmatis, and C. albicans). The essential oil of H. splendens showed moderate antibacterial activities against E. coli, Y. pseudotuberculosis, S. aureus, E. faecalis, B. cereus, M. smegmatis, and C. albicans with MICs in the range of 428–857 $\mu g/mL$, but no antimicrobial activity was observed against the bacteria P. aeruginosa. The test extract of L. sciuroides showed only antimicrobial activity against the fungus C. albicans (MIC: 711 $\mu g/mL$), and no antimicrobial activity was observed against bacteria E. coli, Y. pseudotuberculosis, P. aeruginosa, S. aureus, E. faecalis, B. cereus, and M. smegmatis.

Acknowledgments

This study was supported by grants from the Karadeniz Technical University Research Fund (KTÜ-BAP 2010.11.004.7) and the State Planning Agency (DPT) of Turkey.

References

- 1. Singh, G.; Kapoor, I. P. S.; Pandey, S. K.; Singh, U. K.; Singh, R. K. Phytother. Res. 2002, 16, 680-682.
- 2. Ando, H. China Proc. Bryol. Soc. Jpn. 1983, 3, 124-125.

^a% Area obtained by FID peak-area normalization.

^bRI calculated from retention times relative to that of n-alkanes (C₆-C₃₂) on the nonpolar HP-5 column.

N.C.: Number of compounds.

^cIdentified by authentic samples.

CANSU et al./Turk J Chem

- 3. Hart, J. A. J. Ethnophar. 1981, 4, 1–55.
- 4. Miller, N. G.; Miller H. Horticulture 1979, 57, 40-47.
- 5. Smith, A. J. E. The Moss Flora of Britain and Ireland, 2nd ed., Cambridge University Press, Cambridge, 2004.
- 6. Uyar, G.; Çetin, B. J. Bryol. 2004, 26, 203-220.
- 7. Zoghbia, M. G. B.; Andrade, E. H. A.; Lobato, R. C. L.; Tavares, A. C. C.; Souza, A. P. S.; Conceiçao, C. C. C.; Guimaraesc, E. F. *Biochem. System. Ecol.* **2005**, *33*, 269–274.
- 8. Kürschner, H.; Erdağ, A. Turk J. Bot. 2005, 29, 95-154.
- 9. Sarıtaş, Y.; Sonwa, M. M.; Iznaguen, H.; König, W. A.; Muhle, H.; Mues, R. Phytochemistry 2001, 57, 443-457.
- 10. Mues, R. In Bryophyte Biology; Shaw, A. J.; Goffinet, B., Eds.; Cambridge University Press, Cambridge, 2000.
- 11. Asakawa, Y. In *Progress in the Chemistry of Organic Natural Compounds*, Vol. 65; Herz, W.; Kirby, G. W.; Moore, R. E.; Steglich, W.; Tamm, C., Eds.; Springer Verlag, Vienna, 1995.
- 12. Üçüncü, O.; Cansu, T. B.; Özdemir, T.; Karaoğlu, Ş. A.; Yaylı, N. Turk. J. Chem. 2010, 34, 825-834.
- 13. Özdemir, T.; Yaylı, N.; Cansu, T. B.; Volga, C.; Yaylı, N. Asian J. Chem. 2009, 21, 5505–5509.
- 14. Cansu, T. B.; Üçüncü, O.; Kariman, N.; Özdemir, T.; Yaylı, N. Asian J. Chem. 2010, 22, 7280–7284.
- Özdemir, T.; Üçüncü, O.; Cansu, T. B.; Kahriman, N.; Yaylı, N. Asian J. Chem. 2010, 22, 7285–7290.
- 16. Kang, S. J.; Kim, S. H.; Liu, P.; Jovel, E.; Towers, G. H. N. Fitoterapia 2007, 78, 373-376.
- 17. Çolak, E.; Kara, R.; Ezer, T.; Çelik, G. Y.; Elibol, B. Afric. J. Biotech. 2011, 10, 12905–12908.
- 18. Adams, R. P. *Identification of Essential Oil Components by Gas Chromatography-Mass Spectroscopy*, Allured, Carol Stream, IL, USA, 2004.
- 19. National Committee for Clinical Laboratory Standards, 19, 18-M26-A, NCCLS, Villanova, PA, USA, 1999.
- 20. Woods, G. L.; Brown-Elliott, B. A.; Desmond, E. P.; Hall, G. S.; Heifets, L.; Pfyffer, G. E.; Ridderhof, J. C.; Wallace, R. J.; Warren, N. C.; Witebsky; F. G. *Approved Standard. NCCLS 23*, 18-M24-A, NCCLS, Villanova, PA, USA, 2003.