

Turkish Journal of Chemistry http://journals.tubitak.gov.tr/chem/

Research Article

Turk J Chem (2014) 38: 152 – 156 © TÜBİTAK doi:10.3906/kim-1303-81

Synthesis and antimicrobial activity of novel 2-[4-(1H-benzimidazol-1-yl)phenyl]-1H-benzimidazoles

Mehmet ALP^{1,*}, Ali Hakan GÖKER¹, Nurten ALTANLAR²

¹Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara, Turkey ²Department of Microbiology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara, Turkey

Received: 26.03.2013	•	Accepted: 20.07.2013	•	Published Online: 16.12.2013	٠	Printed: 20.01.2014
----------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: A new class of 2-[4-(1*H*-benzimidazol-1-yl)phenyl]-1*H*-benzimidazoles (13–22) were synthesized via cyclocondensation reaction of the substituted 1,2-phenylenediamines (1, 4–12) and 1-(4-formylpheny)-1*H*-benzimidazole (3). The synthesized compounds were evaluated for antibacterial and antifungal activities against *S. aureus*, methicillin-resistant *Staphylococcus aureus* (MRSA), and *Candida albicans* by the tube dilution method. Compounds 13, 15, 18, 20, and 21 have moderate antifungal activity against *C. albicans*.

Key words: 1H-Benzimidazole, antimicrobial activities, methicillin resistant Staphylococcus aureus, Candida albicans

1. Introduction

Methicillin-resistant *Staphylococcus aureus* (MRSA) infections were first detected in hospitals (healthcareacquired/associated (HA) MRSA). However, in recent years infections have emerged in the community (communityacquired/associated (CA) MRSA) and also from livestock (livestock-associated (LA) MRSA). Consequently, MRSA can no longer be considered an exclusive healthcare-associated problem and it cannot be fought by hospital infection prevention and control measures alone.¹

Most of the antibiotics currently in use can be classified as follows: β -lactam and glycopeptide antibiotics targeting cell wall biosynthesis; aminoglycoside, tetracycline, and macrolide antibiotics targeting protein synthesis; and fluoroquinolones targeting DNA gyrase and topoisomerase. To tackle the problem of drug resistance, one can focus on these proven targets and develop new drugs to overcome drug-induced resistance caused by mutations of the targets or modifications of the antibiotics.²

In our previous papers, we have reported the synthesis of some 2-phenyl-1H-benzimidazole derivatives (I, II, III, Figure) and their promising antimicrobial activities.³⁻⁶ These results prompted us to investigate a series of new 2-[4-(1H-benzimidazol-1-yl)phenyl]-1H-benzimidazoles to evaluate their antistaphylococcal and antifungal activities.

2. Results and discussion

All the benzimidazole compounds prepared herein were screened for their potential in vitro antibacterial activities against *S. aureus*, MRSA, and antifungal activities against *Candida albicans*. The in vitro minimal inhibitory concentrations (MIC₁₀₀) of the compounds were determined using the microbroth dilution method

^{*}Correspondence: malp@pharmacy.ankara.edu.tr

ALP et al./Turk J Chem

reported by the National Committee for Clinical Laboratory Standards.^{7,8} Sultamicillin and fluconazole were used as references. The MIC₁₀₀ results for the test compounds are shown in the Table. The synthesized compounds and reference drugs were dissolved in DMSO-H₂O (50%), at a concentration of 200 μ g/mL. The concentration was adjusted to 50 μ g/mL by 4-fold dilution with media culture and bacteria solution (DMSO concentration was 12.5% in the first tube). Bacterial and fungal tubes were incubated at 36 °C for 18 h and 48 h, respectively. All compounds showed poor antibacterial activities against *S. aureus* and MRSA. Compounds **13**, **15**, **18**, **20**, and **21** had moderate antifungal activity against *C. albicans* with 6.25 μ g/mL MIC₁₀₀ value.

Figure. Structures of previously reported benzimidazoles possessing antibacterial activities.

			Antimicrobial activities (MIC, μ g/mL)			
No.	R_1	R ₂	S. aureus	MRSA	C. albicans	
			ATCC25923	ATCC43300	ATCC10231	
13	Н	Н	50	25	6.25	
14	CH ₃	Н	50	25	12.5	
15	CN	Н	50	50	6.25	
16	COOH	Н	50	50	12.5	
17	NO ₂	Н	50	25	12.5	
18	Cl	Н	50	25	6.25	
19	F	Н	50	25	12.5	
20	CH ₃	CH ₃	25	25	6.25	
21	Cl	CH ₃	50	50	6.25	
22	Cl	Cl	50	25	12.5	
Sultamicillin			0.78	25	-	
Fluconazole			-	-	1.56	

Table. Formula and in vitro antimicrobial activities for 13–22.

3. Experimental

Uncorrected melting points were measured on a Büchi B-540 capillary melting point apparatus. ¹H (400 MHz) NMR spectra were recorded employing a Varian Mercury 400 MHz FT spectrometer; chemical shifts (δ) are in ppm relative to TMS and coupling constants (J) are reported in hertz. Mass spectra were obtained on a Waters Micromass ZQ connected with a Waters Alliance HPLC, using the ESI(+) method, with a C-18 column. Elemental analyses were performed using a Leco CHNS-932. Water and/or chloroform solvation of the final compounds was compatible with elemental analysis results and proton NMR confirmed the presence of chloroform. All the reagents and solvents were purchased from Sigma-Aldrich Chemical Co. or Fischer Scientific. Compounds 2⁹ and 3¹⁰ were synthesized as described in the literature.

3.1. Chemistry

The synthetic pathway for the preparation of the targeted benzimidazoles 13-22 is shown in the Scheme. The 1*H*-benzimidazole (2) was built by cyclization of *o*-phenylenediamine (1) and formic acid. The reaction of 2 with 4-fluorobenzaldehyde in DMF in the presence of anhydrous K_2CO_3 gave 1-(4-formylpheny)-1*H*benzimidazole (3). Condensation of commercial *o*-phenylenediamines (1, 4–12) with 3 in DMF afforded the corresponding benzimidazoles, 13–22. Benzimidazoles can display annular 1,3-tautomerism in imidazole moiety.^{6,11–13} Therefore, the names of the compounds are given as included tautomerism.

Scheme. Synthesis of 2-[4-(1*H*-benzimidazol-1-yl) phenyl]-1*H*-benzimidazole derivatives. Reagents and conditions: (i) Formic acid; (ii) 4-Fluorobenzaldehyde, anhydr. $K_2 CO_3$, DMF; (iii) $Na_2 S_2 O_5$, DMF.

3.2. General synthesis of 13–22

A mixture of commercial o-phenylendiamines 1, 4–12 (1 mmol), 1-(4-formylpheny)-1H-benzimidazole (3) (1 mmol), and Na₂S₂O₅ (1 mmol) in DMF (3 mL) was heated at 110–120 °C for 3 h.¹⁴ The reaction mixture was cooled, poured into H₂O, and the solid was filtered. The residue was purified by column chromatography using chloroform/methanol (100:10) as eluant.

2-[4-(1H-Benzimidazol-1-yl)phenyl]-1H-benzimidazole 13

Yield 48%, mp 199–200 °C, ¹H NMR (DMSO-d₆) δ : 7.24 (m, 2H), 7.37 (m, 2H), 7.57 (d, 1H, J = 7.2), 7.71 (d, 1H, J = 7.6), 7.76 (dd, 1H, J = 7.2, J = 1.2), 7.81 (dd, 1H, J = 6.8), 7.91 (d, 2H, J = 8.4), 8.42 (d, 2H, J = 8.4), 8.

J = 8.8), 8.68 (s, 1H), MS (ESI+) m/z (rel intensity): 311 (M+H, 100), Anal. for C₂₀ H₁₄ N₄ 0.75 H₂ O · 0.25 CHCl₃, Calc. C, 68.76, H, 4.48, N, 15.83, Found C, 68.43, H, 4.22, N, 15.47.

2-[4-(1H-Benzimidazol-1-yl) phenyl]-5(6)-methyl-1H-benzimidazole 14

Yield 30%, mp 104 °C (bubb.) 245 °C (dec.), ¹H NMR (DMSO-d₆ + NaH + one drop D₂O) δ : 2.39 (s, 3H), 6.81 (d, 1H, J = 8), 7.31–7.41 (m, 4H), 7.70–7.81 (m, 4H), 8.44 (d, 2H, J = 8.4), 8.62 (s, 1H), MS (ESI+) m/z (rel intensity): 325 (M+H, 67), 204 (100), Anal. for C₂₁H₁₆N₄ H₂O \cdot 0.25 CHCl₃, Calc. C, 68.56, H, 4.94, N, 15.05, Found C, 68.31, H, 4.72, N, 14.88.

$\label{eq:2-4-1} 2-[4-(1H-\text{Benzimidazol-1-yl}) phenyl]-1H-\text{benzimidazole-5}(6)-\text{carbonitrile}\ 15$

Yield 35%, mp 333–335 °C, ¹H NMR (DMSO-d₆) δ : 7.30–7.38 (m, 2H), 7.60 (dd, 1H, J = 8.4, J = 1.2), 7.73–7.80 (m, 3H), 7.92 (d, 2H, J = 8.8), 8.16 (s, 1H), 8.42 (d, 2H, J = 8.8), 8.66 (s, 1H), MS (ESI+) m/z (rel intensity): 336 (M+H, 100), Anal. for C₂₁H₁₃N₅ 1.66 · H₂O, Calc. C, 69.05, H, 4.50, N, 19.17, Found C, 69.26, H, 4.21, N, 18.79.

$\label{eq:2-4-1} 2-[4-(1H-\text{Benzimidazol-1-yl}) phenyl]-1H-\text{benzimidazole-5}(6)-\text{carboxylic acid 16}$

Yield 56%, mp 344–346 °C, ¹H NMR (DMSO-d₆ + NaH + one drop D₂O) δ : 7.28 (d, 1H, J = 8.4), 7.35–7.40 (m, 2H), 7.52 (dd, 1H, J = 8, J = 1.6), 7.63 (d, 2H, J = 8.4), 7.71 (d, 1H, J = 7.2), 7.80 (d, 1H, J = 7.2), 8.06 (d, 1H, J = 1.2), 8.50 (d, 2H, J = 8.4), 8.60 (s, 1H), MS (ESI+) m/z (rel intensity): 355 (M+H, 100), Anal. for C₂₁H₁₄N₄O₂ 2.2 · H₂O, Calc. C, 64.01, H, 4.70, N, 14.22, Found C, 63.83, H, 4.93, N, 14.03.

$\label{eq:2-1} 2-[4-(1H-\text{Benzimidazol-1-yl}) phenyl]-5(6)-nitro-1H-\text{benzimidazole}\ 17$

Yield 36%, mp 313–315 °C, ¹H NMR (DMSO-d₆) δ : 7.30–7.39 (m, 2H), 7.74–7.80 (m, 3H), 7.95 (d, 2H, J = 8.8), 8.14 (dd, 1H, J = 8.8, J = 2.4), 8.43 (d, 2H, J = 8.4), 8.49 (s, 1H), 8.68 (s, 1H), MS (ESI+) m/z (rel intensity): 356 (M+H, 100), Anal. for C₂₀H₁₃N₅O₂ 2H₂O, Calc. C, 61.37, H, 4.37, N, 17.89, Found C, 61.20, H, 4.32, N, 17.70.

$\label{eq:2-4-1} 2-[4-(1H-\text{Benzimidazol-1-yl}) phenyl]-5(6)-chloro-1H-benzimidazole~18$

Yield 25%, mp 88 °C (bubb.) 268 °C (dec.), ¹H NMR (DMSO-d₆ + NaH + one drop D₂O) δ : 7.06 (dd, 1H, J = 8.8, J = 2), 7.32 (m, 2H), 7.52 (d, 1H, J = 8.8), 7.55 (d, 1H, J = 2), 7.67 (d, 1H, J = 7.2), 7.75 (3H), 8.36 (s, 2H, J = 8.8), 8.59 (s, 1H), MS (ESI+) m/z (rel intensity): 345 (M+H, 45), 347 (M+H+2, 14), 214 (100), Anal. for C₂₀ H₁₃ ClN₄ H₂O · 0.3 CHCl₃, Calc. C, 61.16, H, 3.87, N, 14.05, Found C, 60.86, H, 3.66, N, 13.77.

$\label{eq:2-4-1} 2-[4-(1H-\text{Benzimidazol-1-yl}) phenyl]-5(6)-\text{fluoro-}1H-\text{benzimidazole}~19$

Yield 30%, mp 267–268 °C, ¹H NMR (DMSO-d₆ + NaH + one drop D₂O) δ : 6.88 (m, 1H), 7.29 (dd, 1H, J = 10, J = 2), 7.33–7.41 (m, 2H), 7.51 (m, 1H), 7.72–7.82 (m, 4H), 8.43 (d, 2H, J = 8.8), 8.63 (s, 1H), MS (ESI+) m/z (rel intensity): 329 (M+H, 54), 206 (100), Anal. for C₂₀H₁₃FN₄ 0.5 H₂O \cdot 0.75 CHCl₃, Calc. C, 58.38, H, 3.48, N, 13.12, Found C, 58.54, H, 3.45, N, 12.91.

$\label{eq:2-1} 2-[4-(1H-\text{Benzimidazol-1-yl}) phenyl]-5, 6-dimethyl-1H-benzimidazole\ 20$

Yield 20%, mp 286–288 °C, ¹H NMR (DMSO-d₆) δ : 2.34 (s, 6H), 7.32–7.40 (m, 4H), 7.74 (d, 1H, J = 8), 7.81 (d, 1H, J = 7.2), 7.88 (d, 2H, J = 8.8), 8.37 (d, 2H, J = 8.8), 8.67 (s, 1H), MS (ESI+) m/z (rel intensity): 339

(M+H, 62), 211 (100), Anal. for $C_{22}H_{18}N_4$ 0.5 H_2O · 0.75 CHCl₃, Calc. C, 62.53, H, 4.56, N, 12.82, Found C, 62.52, H, 4.34, N, 12.70.

2-[4-(1H-Benzimidazol-1-yl)phenyl]-5-chloro-6-methyl-1H-benzimidazole 21

Yield 45%, mp 332–333 °C, ¹H NMR (DMSO-d₆ + NaH + one drop D₂O) δ : 2.38 (s, 3H), 7.33–7.41 (m, 3H), 7.45 (s, 1H), 7.65 (d, 2H, J = 8.4), 7.70 (d, 1H, J = 7.6), 7.80 (d, 1H, J = 8), 8.46 (d, 2H, J = 8.4), 8.59 (s,1H), MS (ESI+) m/z (rel intensity): 359 (M+H, 53), 361 (18), 221 (100) Anal. for C₂₁H₁₅ClN₄ 1.2 H₂O, Calc. C, 66.29, H, 4.60, N, 14.72, Found C, 66.23, H, 4.21, N, 14.47.

2-[4-(1H-Benzimidazol-1-yl) phenyl]-5,6-dichloro-1H-benzimidazole 22

Yield 21%, mp 364–366 °C, ¹H NMR (DMSO-d₆) δ : 7.30–7.38 (m, 2H), 7.73 (dd, 1H, J = 7.6, J = 1.6), 7.77–7.80 (m, 2H), 7.91 (d, 2H, J = 8.4), 7.96 (s, 1H), 8.38 (d, 2H, J = 8.4), 8.66 (s, 1H), MS (ESI+) m/z (rel intensity): 379 (M+H, 80), 381 (M+H+2, 49), 252 (100), Anal. for C₂₀H₁₂Cl₂N₄0.75 H₂O, Calc. C, 61.16, H, 3.46, N, 14.26, Found C, 61.08, H, 3.56, N, 14.17.

Acknowledgment

Central Instrumental Analysis Lab. in Faculty of Pharmacy, Ankara University, provided the support for acquisition of the NMR, mass, and elemental analysis data used in this work.

References

- Stefani, S.; Chung, D. R.; Lindsay, J. A.; Friedrich, A. W.; Kearns, A. M.; Westh, H.; MacKenzie, F. M. Int. J. Antimicrob. Ag. 2012, 39, 273–282.
- Cheng, T.-J. R.; Wu, Y.-T; Yang, S.-T.; Lo, K.-H.; Chen, S.-K.; Chen, Y.-H.; Huang, W.-I.; Yuan, C.-H.; Guo, C.-W.; Huang, L.-Y.; et al. *Bioorg. Med. Chem.* 2010, 18, 8512–8529.
- 3. Alp, M.; Göker, H.; Brun, R.; Yıldız, S. Eur. J. Med. Chem. 2009, 44, 2002–2008.
- 4. Göker, H.; Kus, C.; Boykin, D. W.; Yıldız, S.; Altanlar, N. Bioorg. Med. Chem. 2002, 10, 2589–2596.
- 5. Göker, H.; Alp, M.; Ates-Alagöz, Z.; Yıldız, S. J. Heterocyclic Chem. 2009, 46, 936-948.
- 6. Puskullu, M. O.; Yıldız, S.; Göker, H. Arch. Pharm. Chem. Life Sci. 2010, 343, 31-39.
- 7. National Committee for Clinical Laboratory Standards (NCCLS). *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically.* Fifth Edition, 17(2), Approve Standard, M7-A5, Wayne, PA, USA, 2000.
- Shadomy, S.; Pfaller, M. A. Laboratory Studies with Antifungal Agents: Susceptibility Tests and Quantitation in Body Fluids. In: Balows, A.; Hausler, W. J.; Hermann, K. L.; Isenberg, H. D.; Shadomy, H. J.; Eds. *Manual of Clinical Microbiology*, 5th Ed., American Society of Microbiology, Washington DC, USA, 1991, Chapter 117, p. 1173.
- Furniss, B. S.; Hannaford, A. J.; Smith, P. W.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, 5th Edition, Longman Scientific & Technical: UK, 1989, pp. 1162–1163.
- 10. Sircar, I.; Duell, B. L.; Bristol, J. A.; Weishaar, R. E.; Evans, D. B. J. Med. Chem. 1987, 30, 1023–1029.
- 11. Kucukbay, H.; Durmaz, R.; Sireci, N; Gunal, S. Asian J. Chem. 2010, 22, 2816–2824.
- 12. Şireci, N.; Küçükbay, H.; Akkurt, M.; Yalçın, Ş. P.; Tahir, M. N.; Ott, H. J. Coord. Chem. 2010, 63, 3218–3228.
- 13. Özden, S.; Usta, F.; Altanlar, N.; Göker, H. J. Heterocyclic Chem. 2011, 48, 1317–1322.
- 14. Ridley, H. F.; Spickett, R. G. W.; Timmis, G. M. J. Heterocyclic Chem. 1965, 2, 453–456.