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Abstract: The synthesis of novel, symmetrical, tetrasubstituted manganese phthalocyanine complexes bearing 4

hexylthio, 2’,3’,4’,5’,6’-pentafluorobenzyloxy, 2’,3’,5’,6’-tetrafluoro-4’-hexylthio-benzyloxy, and 2’,3’,5’,6’-tetrafluoro-4’-

pentoxy-benzyloxy units is reported. The new compounds have been characterized by using elemental analyses and

UV-Vis, FT-IR, and mass spectroscopic data. The electrochemical properties of the manganese phthalocyanine com-

plexes were investigated by cyclic and square wave voltammetry and the nature of the observed redox processes was

studied by spectroelectrochemistry.
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1. Introduction

Phthalocyanines (Pcs) are one of the porphyrin analogs that possess a number of unusual properties. Following

the first synthesis in 1907, metallophthalocyanines (MPcs) were used mainly as green and blue dyestuffs in

industry. In recent years, the applications of MPcs have expanded to areas such as molecular electronics,

chemical sensors, electrochromic devices, nonlinear optics, liquid crystals, photosensitizers for photodynamic

therapy, and electrocatalytic reagents.1−7

Pcs are known to have low solubility in common organic solvents due to the increasing steric interactions.

The solubility of Pcs is a very important factor for the investigation of their chemical, physical, and electrochem-

ical properties and applications. The solubility of Pcs can be improved by introducing various functional groups

on the periphery.8−13 Moreover, specificity in the applications of Pcs can be introduced by changing the central

metal ions. For example, if redox active metal ions such as Co2+ , Fe3+ , and Mn3+ are used, the Pc complex can

be used as an electrocatalyst and electrochemical sensor under homogeneous and heterogeneous conditions.14,15

Manganese phthalocyanine (MnPc) complexes show electrochemically active behavior with oxidation states of

the central manganese ion ranging from MnI to MnIV .16−20 It is necessary to examine the electron transfer

behavior of newly synthesized MnPc complexes in solution in order to study further applications.

In our previous studies, pentafluorophenyl substituted phthalonitriles and their highly soluble MPc (M:

Zn, Co, Ni) complexes at the peripheral positions were synthesized10,11,21,22 and photophysical and electro-

chemical properties of these MPcs were studied.7,10,22,23 In the present paper, we describe the synthesis and

the spectroscopic and electrochemical characterization of a series of new MnPc complexes that are easily soluble

in organic solvents, namely [2, 9/10, 16/17, 23/24-tetrakis(hexylthio)phthalocyaninato]manganese(III) chloride,
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[2, 9/10, 16/17, 23/24-tetrakis(2’,3’,4’,5’,6’-pentafluorobenzyloxy)phthalocyaninato]manganese(III) chloride, [2,

9/10, 16/17, 23/24-tetrakis (2’,3’,5’,6’-tetrafluoro-4’-hexylthio-benzyloxy) phthalocyaninato]manganese(III) chlo-

ride, and [2, 9/10, 16/17, 23/24-tetrakis(2’,3’,5’,6’-tetrafluoro-4’-pentoxy-benzyloxy)phthalocyaninato]mangane-

se(III) chloride.

2. Results and discussion

2.1. Synthesis and characterization

Manganese(III) phthalocyanine complexes 1 and 3 were prepared by the template reaction of corresponding

phthalonitrile precursors with anhydrous MnCl2 using high-boiling point solvents (pentanol and DMF). Com-

plex 2 was synthesized by reaction of metal-free phthalocyanine (2, 9/10, 16/17, 23/24-tetrakis[2’,3’,4’,5’,6’-

pentafluoro benzyloxy]phthalocyanine) with metal salt (MnCl2) in DMF at 145 ◦C under N2 atmosphere. 4-

(2’,3’,4’,5’,6’-Pentafluorobenzyloxy)phthalonitrile was converted into complex 4 bearing 4 (2’,3’,5’,6’-tetrafluoro-

4’-pentoxy)benzyloxy groups on the periphery by the ‘Li method’ in pentanol. The direct conversion of Li2Pc to

complex 4 was achieved without isolating the unmetallated Pc complex. Substitution of the para-fluorine atom

in the pentafluorobenzyloxy group with an alkoxy group from the solvent also occurred during the synthesis.

We have mentioned earlier that various functionalized fluorinated phthalocyanines were prepared by regioselec-

tive substitution reaction of the para-fluorine atoms of 4-(2’,3’,4’,5’,6’-pentafluorobenzyloxy) phthalonitrile by

several nucleophiles.21,24,25

Pcs have low solubility in most organic solvents; however, introduction of substituents on the Pc core

increases the solubility. All studied Pcs 1–4 (Scheme) were soluble in most organic solvents, such as THF,

DMF, CHCl3 , acetone, and DMSO (except for 3). Column chromatography with silica gel using CHCl3 and

a CHCl3 :ethyl acetate (1:4) mixture as the mobile phase was used to purify complexes. The complexes were

obtained in moderate yields (35%, 73%, 42%, and 38% for 1–4, respectively). Due to the presence of single

substituents on each phthalonitrile precursor, the Pcs were isolated as a mixture of isomers as expected for

tetra-substituted Pcs.26,27 No attempt was made to separate the isomers of the complexes.

Scheme. Molecular structure of tetra-substituted manganese(III) phthalocyanine complexes (1–4).
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Characterization of the new complexes involved a combination of elemental analysis and spectroscopic

data (FT-IR, UV-Vis, and mass). Spectral investigations for all these complexes were consistent with the

assigned structures.

In the FT-IR spectra of 1, 3, and 4, the formation of the corresponding manganese(III) phthalocyanine

complexes (1, 3, and 4) was confirmed by the disappearance of the characteristic C≡N stretch at 2234, 2232, and

2233 cm−1 of 4-(hexylthio)phthalonitrile, 4-[2’,3’,5’,6’-tetrafluoro-4’-hexylthio)benzyloxy]phthalonitrile, and 4-

(2’,3’,4’,5’,6’-pentafluorobenzyloxy)phthalonitrile, respectively. Disappearance of the NH stretching band at

3290 cm−1 in the inner core was confirmed by the formation of complex 2. Pcs 1 and 3 also have similar

aliphatic CH stretching bands for the corresponding peripheral substituents. In the case of 4, the FT-IR

spectral data clearly indicated the formation of complex 4 with the presence of alkoxy groups by the intense

stretching bands at 2952–2862 cm−1 .

The mass spectra of 1–4 confirmed the proposed structures. In the MALDI-TOF mass spectrum of 1, in

addition to the [M+1]+ peak at m/z= 1066.73, a fragment ion peak corresponding to the loss of [[M+1]-Cl]+

at 1031.68 was easily identified. In the case of 3 and 4, molecular ion peaks were found at m/z= 1778.41

[M+1]+ and 1659.56 [M]+ . A fragment ion peak corresponding to the loss of [[M+1]-Cl]+ for compounds 2

and 4 was found at m/z= 1351.42 and 1625.31, respectively. The elemental analyses were satisfactory.

2.2. Ground-state electronic absorption spectra

The best indications for Pc systems are given by their UV-Vis spectra in solution. They have 2 distinct bands,

the Q band in the visible region (600–700 nm) and the B (Soret) band in the UV region (300–350 nm). These

bands are transitions that arise from the highest occupied molecular orbital (HOMO) to the lowest unoccupied

molecular orbital (LUMO) of the Pc−2 ring. The Q and B bands depend largely on the type of group present

at the peripheral position of the Pc compound and the nature of the metallic substitution.

The UV-Vis spectra of MnPcs 1–4 were recorded in THF. The UV-Vis spectra of 1–4 are typical of

manganese(III) phthalocyanine complexes with a red-shifted Q band at 723, 718, 721, and 719, respectively.

The red shift is a result of the lowering of the HOMO–LUMO gap, by either the destabilizing of the HOMO or

stabilizing of the LUMO by the central metal.28 Furthermore, these complexes (1–4) have an absorption band

near 500 nm, interpreted as a charge transfer absorption (phthalocyanine→metal, LMCT).28,29 Comparison

of the UV-Vis spectra of PcMn(Cl) 2–4 and the corresponding complexes of pentafluorophenyl substituted

metallophthalocyanines (ZnPc, CoPc, and NiPc) shows that the central metal (M) leads to the bathochromic

shift of the Q band (718–723 nm) and to the bathochromic shift of the B-band (373–389 nm). Furthermore,

the Q band of 1 was red-shifted by 36 nm when compared to the corresponding NiPc. This is good agreement

with the theoretical results.11,21,30 Similar bathochromic shift of the Q band was observed in order of 1 > 3

> 4 > 2 substituted complexes of Mn(III)Cl. Compared to the Q bands of 1 and 3, the Q bands of 2 and 4

were red-shifted by 3–5 nm. The effect of electron-donating thiol substitution on the peripheral positions of all

Pcs causes a shift in the Q bands to longer wavelengths.21,31

2.3. Electrochemical measurements

Electrochemical studies were carried out with the aim of finding the redox potentials of manganese phthalo-

cyanine complexes 1–4. Cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements were

performed in deaerated DMF using tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte
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system on a glassy carbon working electrode. The half-wave potentials (E1/2) and difference between the first

oxidation and reduction processes (∆E1/2) for the complexes are presented in the Table. All complexes dis-

played 3 reduction processes and 1 oxidation process versus SCE. Figures 1 and 2 show the CV and SWV results

of complexes 1 and 4, respectively.

Table. The electrochemical potentials of manganese phthalocyanine complexes.

Compound Ox MnIII/MnII MnII/MnI RR ∆E1/2

1 1.12a –0.12 –0.85 –1.41 1.24
2 1.08a –0.14 –0.76 –1.42 1.22
3 1.13a –0.13 –0.84 –1.42 1.26
4 1.10a –0.14 –0.78 –1.43 1.24

RR: Ring reduction. Ox: Oxidation. E1/2 = (Epa + Epc)/2 at 0.100 Vs−1 vs. SCE. ∆E1/2 = E1/2 (first oxidation)

– E1/2 (first reduction). a : Determined by SWV.
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Figure 1. CV and SWV of 1 in DMF/TBAP.
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Figure 2. CV and SWV of 4 in DMF/TBAP.

2.4. Spectroelectrochemical measurements

Spectroelectrochemical experiments were employed to examine the origin of the redox processes. In comparison

with the results of detailed spectroelectrochemical studies reported in the literature, the first reduction couple is

ascribed to the formation of manganese(II) species and the second reduction couple is ascribed to the formation

of manganese(I) or Pc−3 species.16−20,28,32−39 Figure 3a shows the in situ UV-Vis spectral changes during

controlled potential reduction of 1 at –0.30 V. Shift of the Q band from 719 to 679 nm and the B band from

382 to 345 nm with increase in intensity and a decrease in intensity of the charge transfer band at 497 nm

appeared during the first reduction. A blue shift of the Q band and disappearance of the charge transfer band
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characterize the Mn(III) reduction process, so these spectral changes suggest that the first reduction couple

observed at –0.12 V was the reduction of Mn(III) to Mn(II). Clear isosbestic points at 387, 513, and 702 nm

reveal that this is a clean reduction. Figure 3b shows spectral changes observed during the second reduction

process. There is debate about the reduction of the Mn(II)Pc−2 species; some studies offer metal reduction

to the Mn(I)Pc−2 species and others ring reduction to the Mn(II)Pc−3 , forming a monoanion radical.28,32−37

Decrease in the Q band intensity and formation of 2 new bands at 519 and 851 nm with well-defined isosbestic

points at 649 and 751 nm can characterize a metal-based reduction. Decrease in the Q band intensity at 678 nm

and formation of a new band at 551 nm suggests that the third reduction is ring-based. During the oxidation

process of 1 the absorption of the Q band decreases in intensity with a shift to 725 nm and the band at 497

nm is shifted to 503 nm. These spectral changes can characterize a ring-based oxidation process in manganese

phthalocyanines.

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000

Wavelength (nm)

(a) (b)

Wavelength (nm)

Figure 3. Electronic absorption spectra of 1 under reduction at –0.3 V (a) and –1.0 V (b).

Shift of the Q band from 717 to 678 nm with increasing B band from 380 to 375 nm and a decrease in

intensity of the charge transfer band at 497 nm appeared during the first reduction with clear isosbestic points

at 518 and 701 nm, suggesting that the first reduction is manganese-based. First the increase and then the

decrease in the Q band intensity and formation of 2 new bands at 516 and 846 nm also show that the second

reduction is manganese-based. Decrease in the Q band intensity at 678 nm with the band at 518 nm and

formation of a new band at 565 nm with isosbestic points at 496, 540, 604, and 749 nm suggest that the third

reduction is ring-based. During the oxidation process of 2 the absorption of the Q band and the band at 497

nm decreases in intensity, suggesting that these spectral changes are ring-based oxidation process.

Complexes 3 and 4 showed similar changes during the reduction and oxidation processes and the changes

are compatible with the other manganese phthalocyanines. Figures 4a and 4b show the in situ UV-Vis spectral

changes during controlled potential reduction of 3. The Q band of the complex 3 shifted from 721 to 679 nm,

the B band shifted from 379 to 348 nm with increase in intensity, and the charge transfer band at 497 nm

disappeared during the first reduction with clear isosbestic points at 385, 520, and 702 nm. The Q band of

complex 4 shifted from 718 to 680 nm, the B band shifted to 354 nm with an increase in intensity, and the

charge transfer band at 498 nm disappeared during the first reduction with clear isosbestic points at 392, 515,

and 701 nm. The decrease in the Q band intensities and formation of 2 new bands at 521 and 846 nm for

complex 3 and at 514 and 845 nm for complex 4 show the manganese-based second reduction. Decrease in
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the Q band intensity at 678 nm with the band at 520 nm with isosbestic points at 498, 534, 606, and 707 nm

for complex 3 and decrease in the Q band intensity with an increase together with the band at 514 nm with

isosbestic points at 601 and 741 nm for complex 4 suggest phthalocyanine ring-based reduction. During the

oxidation process the absorption of the Q band and the charge transfer band decreasing in intensity suggest

that these spectral changes are ring-based.

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
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Figure 4. Electronic absorption spectra of 3 under reduction at –0.3 V (a) and –1.0 V (b).

Figures 5a and 5b show the in situ UV-Vis spectral changes of complex 4 without purging with nitrogen

gas. Complex 4 gives a new band at 622 nm in the first reduction process, which belongs to the formation of

the MnPc µ -oxo complex.28 In the second reduction process the band at 622 nm decreases in intensity and the

Q band at 676 nm increases in intensity.
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Figure 5. Electronic absorption spectra of 4 under reduction at –0.3 V (a) and –1.0 V (b).

3. Experimental

All reagents and solvents were of reagent-grade quality, obtained from commercial suppliers. The solvents were

stored over molecular sieves (4 Å). The homogeneity of the products was tested in each step by TLC (SiO2).

All reactions were carried out under nitrogen atmosphere in dried solvents. 4-(Hexylthio)phthalonitrile;30
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2, 9/10, 16/17, 23/24-tetrakis(2’,3’,4’,5’,6’-pentafluorobenzyloxy)phthalocyanine;11 4-(2’,3’,5’,6’-tetrafluoro-4’-

hexylthio-benzyloxy)phthalonitrile;21 and 4-(2’,3’,4’,5’,6’-pentafluoro-benzyloxy)phthalonitrile11 were synthe-

sized according to published methods. IR spectra were recorded on a PerkinElmer Spectrum One FT-IR

spectrometer with ATR capability; electronic spectra were recorded on a Scinco SD 1000 single-beam UV-Vis

spectrophotometer using 1-cm path length cuvettes at room temperature. Mass spectra were recorded on a

Bruker Microflex MALDI-TOF/MS spectrometer. Melting points were determined on a Büchi Melting Point

B-540 apparatus. Elemental analyses were performed on a Thermo Flash EA 1112.

Electrochemical measurements were carried out on a Gamry Reference 600 potentiostat/galvanostat

utilizing a 3-electrode cell configuration in DMF containing 0.1 mol dm−3 TBAP. The cell consists of glassy

carbon working electrode (surface area of 0.071 cm2), a platinum wire counter electrode, and a saturated calomel

reference electrode. In situ UV-Vis absorption spectra were measured with an Ocean Optics HR2000+ diode

array spectrophotometer. For in situ spectroelectrochemical measurements, an optically transparent thin-layer

quartz cell of path length 1 mm was employed, in which a Pt gauze electrode, a Pt wire, and a SCE were used

for the working, counter, and reference electrodes, respectively.

3.1. [2, 9/10, 16/17, 23/24-Tetrakis(hexylthio)phthalocyaninato]manganese(III) chloride (1)

A mixture of 4-(hexylthio)phthalonitrile (0.245 g, 1 mmol), anhydrous MnCl2 (0.031 g, 0.250 mmol), and 2

drops of 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU) was dissolved in n-pentanol (2 mL). The reaction mixture

was heated with stirring at 145 ◦C under nitrogen atmosphere for 24 h. After cooling the mixture to room

temperature, it was treated with ethanol (20 mL) and the mixture was filtered off. The residue was washed

several times with ethanol, water, and methanol and then dried in vacuo. Finally, pure product was obtained

by chromatography on a silica gel column using CHCl3 as an eluent. Yield: 0.093 g (35%); mp > 200 ◦C;

anal. calcd. for C56H64ClMnN8S4 : C, 62.99; H, 6.04; N, 10.49%. Found: C, 63.11; H, 6.03; N, 10.52%. IR:

νmax , cm
−1 2950–2870 (alkyl C-H). UV-Vis (THF): λmax , nm (log ε) 354 (4.81), 495 (4.30), 723 (4.93). MS

(MALDI-TOF): m/z 1031.68 [[M+1]-Cl]+ , 1066.73 [M+1]+ .

3.2. [2, 9/10, 16/17, 23/24-Tetrakis(2’, 3’, 4’, 5’, 6’-pentafluorobenzyloxy) phthalocyaninato]man-

ganese(III) chloride (2)

A solution of 2, 9/10, 16/17, 23/24-tetrakis(2’,3’,4’,5’,6’-pentafluorobenzyloxy) phthalocyanine (0.100 g, 0.077

mmol) and anhydrous MnCl2 (0.012 g, 0.092 mmol) was refluxed in DMF (1.5 mL) with stirring for 4 h under

N2 atmosphere. The resulting suspension was cooled to room temperature and then poured into water (20 mL).

The precipitate was filtered off and washed with water, hot ethanol, and hot hexane. Pure product was obtained

by chromatography on a silica gel column using CHCl3 as an eluent. Yield: 0.078 g (73%); mp > 200 ◦C;

anal. calcd. for C60H20ClF20MnN8O4 : C, 51.95; H, 1.45; N, 8.08%. Found: C, 51.73; H, 1.49; N, 8.11%. IR:

νmax , cm
−1 3083 (aryl C-H), 2950–2890 (alkyl C-H), 1338 (C-F), 1049 (C-O), 1217 (C-O-C). UV-Vis (THF):

λmax , nm (log ε) 373 (4.77), 496 (4.29), 718 (4.93). MS (MALDI-TOF): m/z 1351.42 [[M+1]-Cl]+ .

3.3. [2, 9/10, 16/17, 23/24-Tetrakis(2’,3’,5’,6’-tetrafluoro-4’-hexylthio-benzyloxy) phthalocyani-

nato]manganese(III) chloride (3)

A mixture of 4-[2’,3’,5’,6’-tetrafluoro-4’-hexylthio-benzyloxy]phthalonitrile (0.200 g, 0.473 mmol) and anhydrous

MnCl2 (0.015 g, 0.119 mmol) in 2 mL of dry DMF was heated and stirred at 140 ◦C in a glass sealed tube for
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20 h under nitrogen atmosphere. After cooling to room temperature, water was added to the reaction mixture.

The solid product was precipitated, collected by filtration, and washed with water and ethanol. Finally, the

solid product was chromatographed on column chromatography with silica gel using CHCl3 :ethyl acetate (1:4)

as the eluent. Yield: 0.088 g (42%); mp > 200 ◦C; anal. calcd. for C84H72ClF16MnN8O4S4 : C, 56.68; H,

4.08; N, 6.29%. Found: C, 56.57; H, 4.09; N, 6.30%. IR: νmax , cm
−1 2956–2855 (alkyl C-H), 1310 (C-F), 1097

(C-O), 1271 (C-O-C). UV-Vis (THF): λmax , nm (log ε) 389 (4.75), 494 (4.27), 721 (4.95). MS (MALDI-TOF):

m/z 1778.41 [M+1]+ .

3.4. [2, 9/10, 16/17, 23/24-Tetrakis(2’,3’,5’,6’-tetrafluoro-4’-pentoxy-benzyloxy) phthalocyani-

nato]manganese(III)chloride (4)

Freshly cut lithium (0.123 g, 17.739 mmol) was dissolved in 15 mL of pentanol by heating at 80 ◦C, and then 4-

(2’,3’,4’,5’,6’-pentafluorobenzyloxy)phthalonitrile (0.200 g, 0.617 mmol) was added to the solution while stirring

and the solution was left to reflux under nitrogen atmosphere for 1 h. The solution turned dark green as soon as

lithium metal was added (possibly forming Li2Pc). Anhydrous MnCl2 (0.019 g, 0.155 mmol) was then added

to the solution and the solution was stirred at reflux temperature for 3 h. The reaction mixture was cooled to

room temperature; the solid product was precipitated by adding water and was washed with hot water. The

product was isolated by silica gel column chromatography first with CHCl3 and then with CHCl3 :ethyl acetate

(1:4) as the eluent. Yield: 0.097 g (38%); mp > 200 ◦C; anal. calcd. for C80H64ClF16MnN8O8 : C, 57.89; H,

3.89; N, 6.75%. Found: C, 57.99; H, 3.90; N, 6.76%. IR: νmax , cm
−1 2952–2862 (alkyl C-H), 1341 (C-F), 1077

(C-O), 1277 (C-O-C). UV-Vis (THF): λmax , nm (log ε) 357 (4.63), 496 (4.05), 719 (4.94). (MALDI-TOF):

m/z 1659.56 [M]+ , 1625.31 [[M+1]-Cl]+ .

4. Conclusion

Four new tetrasubstituted manganese phthalocyanine complexes with different moieties at peripheral positions

were reported. All complexes were characterized by elemental analysis, FT-IR, mass spectroscopy, and electronic

spectroscopy. Compounds 1–4 have good solubility in various organic solvents and are nonaggregated (in

THF) within a wide concentration range. Well-defined redox processes were observed and confirmed using

spectroelectrochemical studies. Electrochemical and spectroelectrochemical properties of the complexes are in

harmony with similar manganese phthalocyanines with small potential shifts.
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24. Özçeşmeci, M.; Ecevit, Ö. B.; Sürgün, S.; Hamuryudan, E. Dyes Pigments 2013, 96, 52–58.
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30. Gürol, İ.; Ahsen, V.; Bekaroğlu, Ö. J. Chem. Soc. Dalton Trans. 1994, 497–500.

31. Ünlü, S.; Yaraşır, M. N.; Kandaz, M.; Koca, A.; Salih, B. Polyhedron 2008, 27, 2805–2810.
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