

Secondary metabolites from Sambucus ebulus

İrem ATAY^{1,*}, Hasan KIRMIZIBEKMEZ¹, Ahmet Ceyhan GÖREN², Erdem YEŞİLADA¹

¹Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Ataşehir, İstanbul, Turkey ²Chemistry Group Laboratories, TÜBİTAK UME, Gebze, Kocaeli, Turkey

Received: 17.03.2014 • Accepted: 19.06.20	14 •	Published Online: 23.01.2015	٠	Printed: 20.02.2015
--	------	------------------------------	---	----------------------------

Abstract: A new nonglycosidic iridoid, sambulin B (1), was isolated from the methanol extract of Sambucus ebulus L. leaves along with a recently reported new nonglycosidic iridoid, 10-O-acetylpatrinoside aglycone (sambulin A) (2); 2 flavonoids, isorhamnetin-3- $O-\beta$ -D-glucopyranoside (3) and isorhamnetin-3-O-rutinoside (4); and a mixture of 2 flavonoids (5), quercetin-3- $O-\beta$ -D-glucopyranoside and quercetin-3- $O-\beta$ -D-galactopyranoside. Their structures were elucidated by 1-D and 2-D nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) experiments.

Key words: Sambucus ebulus, nonglycosidic iridoids, sambulin B, flavonoids

1. Introduction

The genus Sambucus (Adoxaceae) is represented by 2 species in the flora of Turkey.¹ Among these, Sambucus ebulus L. is a perennial herb known locally as mürver, sultanotu, and şahmehlemi.^{1,2} In Anatolian folk medicine, S. ebulus is particularly used against inflammatory problems, i.e. rheumatic pain, edema, eczema, urticaria, burns, infectious wounds, and hemorrhoids as well as peptic ulcers.³ Anti-inflammatory, antinociceptive, wound-healing, cytotoxic, antiulcer, and anti-Helicobacter pylori effects of S. ebulus were reported in several previous studies.^{4–8} Simple phenols, flavonoids, anthocyanins, lignans, and iridoids have been shown to be the major secondary metabolites of the genus.^{9–13}

We herein present the isolation and structure elucidation of a new nonglycosidic iridoid named sambulin B (1), along with an iridoid, 10-*O*-acetylpatrinoside aglycone (sambulin A), and 4 known flavonoids, isorhamnetin-3-*O*- β -D-glucopyranoside (3), isorhamnetin-3-*O*-rutinoside (4), and a mixture of 2 flavonoids, hyperoside (quercetin-3-*O*- β -galactoside) and isoquercitrin (quercetin-3-*O*- β -glucoside) (5). The chemical structures of the compounds are presented in the Figure.

2. Results and discussion

The leaves of *S. ebulus* were extracted with MeOH. The crude extract was dispersed in 90% MeOH, and then submitted to partition with organic solvents in increasing polarity. Two nonglycosidic iridoids (1 and 2) were isolated from the *n*-hexane and CHCl₃ subextracts, while 2 flavonol glycosides and a mixture of 2 flavonoid glycosides were obtained from the EtOAc subextract.

^{*}Correspondence: irematay@yahoo.com

Figure. Structures of the isolated compounds.

Compound 1 was obtained as a colorless oily substance from the *n*-hexane subextract. The molecular formula, $C_{19}H_{28}O_8$, was deduced from the pseudomolecular ion peaks at m/z 407 [M+Na]⁺ and 791 [2M+Na]⁺ in the ESI-MS and by inspecting ¹³C NMR data. It exhibited UV maxima at 241, 274, and 282 nm. The IR spectrum suggested the presence of hydroxyl group (3678 cm⁻¹), olefinic C–H (3100 cm⁻¹), and ester carbonyl (1738 cm⁻¹) functionalities. The ¹H NMR spectrum contained 1 olefinic (δ_H 6.34), 2 hydroxymethylene (δ_H 4.20 and 4.16, δ_H 4.09 and 4.00), 1 methylene (δ_H 2.15, 1.96), 1 oxymethyne (δ_H 5.30), 3 methyne (δ_H 3.01, 2.34, and 2.13), and 1 hemiacetal (δ_H 5.97) signals (Table 1). Moreover, the ¹H NMR spectrum displayed 2 equivalent secondary methyl resonances at δ 0.97 (d, J: 6.4 Hz). In the COSY spectrum, 1 methyne resonance and 1 methylene (δ_H 2.26) signal conjugated to a carbonyl function were observed in a spin system. These data were indicative of the presence of an isovaleryl moiety. The signals at 22.3 (2C), 25.6, 42.9, and 171.7 in the ¹³C NMR spectrum supported this assumption.¹⁴ Moreover, the presence of 2 acetoxy groups was evident from the signals at δ_H 2.05 (3H) and 2.04 (3H) and the corresponding carbon resonances at δ_C 21.0, 20.8, and 170.2 (2C). The ¹³C NMR spectrum contained 19 signals; 5 of them were ascribed to an isovaleryl unit, while 4 of them were arising from 2 acetyl groups. The remaining 10 carbon atoms were in accordance with a C_{10} -iridoid core. The esterification sites of the acyl units were established by the long-range correlations in the HMBC. Thus, cross peaks between carbonyl carbon of isovaleryl (δ_C 171.7) with H-1 (δ_H 5.97) and carbonyl carbon of one of the acetyl units with H₂-10 (δ_H 4.20, 4.16) revealed the locations of acyl units to be at C-1 and C-10, respectively. The NMR data of 1 were very close to those of 10-O-acetylpatrinoside, a recently published molecule from the same species by another research group, except for the presence of an additional acetyl unit in compound 1. When the ${}^{1}H$ NMR spectrum of 1 was carefully inspected, H-7 signal of this appeared to be shifted to downfield about 1 ppm (δ_H 5.30) compared to 10-O-acetylpatrinoside aglycone (2).¹⁵ Moreover, the ¹³C NMR spectrum of the compound showed that the C-7 signal shifted downfield 2.5 ppm, while the C-6 and C-8 signals shifted upfield around 3 ppm compared to 10-O-acetylpatrinoside aglycone (2). Therefore, the position of the second acetyl group was determined to be C-7(OH). To determine the relative stereochemistry of the chiral centers in 1, a ROESY experiment was performed. ROe cross-peaks were observed between H-1 α and H-8 α , and H-7 α and H-8 α , showing that these protons lie on the same side (α) of the molecule. In contrast, correlations were observed between H-3 and H-11 β , H-5 and H-9, H-5 and H-6 β , and H-5 and H-11 β , indicating that these protons were on the same side (β). Based on these findings the structure of compound 1 was elucidated as 7-O-acetyl derivative of 10-O-acetyl patrinoside aglycone (2). A literature survey revealed that compound 1 was a new nonglycosidic iridoid and was named sambulin B. On the other hand, for 10-O-acetylpatrinoside aglycone (2) we propose the trivial name sambulin A.

	Sambulin I	B (1)	10-O-acetylpatrinoside aglycon (2)		HMBC $(C \rightarrow H)$
Position	$\delta_C \text{ (ppm)}$	δ_H (ppm), J (Hz)	$\delta_C \text{ (ppm)}$	$\delta_H \text{ (ppm) } J \text{ (Hz)}$	
1	91.1	$5.97 \ d \ (4.7)$	91.9	$5.96 \ d \ (4.7)$	H-3/H-8
3	138.4	6.34 s	138.0	6.39 s	H-1/H-5/H ₂ -11
4	116.9	-	118.0	-	$H-3/H-5/H_2-6/H_2-11$
5	32.0	3.01 m	32.5	3.07 m	H-1/H-3/H-7/H ₂ -11
6α	37.2	2.15 m	39.6	2.19 m	H-5
6β		1.96 m		1.70 m	
7	74.0	$5.30 \ m$	71.5	4.20 m	H-9/H ₂ -10
8	43.2	2.34 m	46.6	2.60 m	H ₂ -6
9	42.3	2.13 m †	41.1	2.16 m*	H ₂ -6/H-8/H ₂ -10
10a	62.2	$4.20 \ dd \ (11.2, \ 6.9)$	62.8	$4.49 \ dd \ (11.1, 6.9)$	H-8
10b		$4.16 \ dd \ (11.2, \ 6.9)$		$4.14 \ dd \ (11.1, \ 6.9)$	
11a	62.6	$4.09 \ d \ (12.3)$	62.5	$4.10 \ d \ (12.3)$	H-3
11b		$4.00 \ d \ (12.3)$		$4.02 \ d \ (12.3)$	
7-CO <u>CH</u> 3	21.0	2.05 s			
7- <u>CO</u> CH ₃	170.2	-			
10-CO <u>CH</u> ₃	20.8	2.04 s	21.0	2.09 s	
$10-\underline{CO}CH_3$	170.2	-	171.8	-	$H_2-10/CO\underline{CH}_3$ (10)
1'	171.7	-	171.7	-	$H-1/H_2-2'$
2'	42.9	2.26 m	43.1	2.26 m	H_3-4'/H_3-5'
3'	25.6	2.30-2.22 m †	25.6	2.20-2.10 m †	$H_2-2'/H_3-4'/H_3-5'$
4'	22.3	$0.97 \ d \ (6.4)$	22.4	$0.98 \ d \ (6.4)$	$H_2-2'/H-3'$
5'	22.3	$0.97 \ d \ (6.4)$	22.4	$0.98 \ d \ (6.4)$	$H_2-2'/H-3'$

Table 1. ¹H (600 MHz, CDCl₃) and ¹³C-NMR (150 MHz, CDCl₃) data and HMBC correlations of sambulin B (1) and 10-O-acetylpatrinoside (sambulin A (2)).

*Unclear due to overlapping

ATAY et al./Turk J Chem

In addition, 4 known flavonoids were isolated from the ethyl acetate subextract of *S. ebulus* methanol extract. The known compounds were identified by UV, IR, and 1-D and 2-D NMR techniques and by comparison with the previous published data. The structures of **3** and **4** were elucidated as isorhamnetin-3-O- β -D-glucopyranoside and isorhamnetin-3-O-rutinoside (Table 2). The NMR data of these compounds were found to be consistent with the published literature.¹⁶ Inspection of the ¹H NMR spectra of **5** revealed that it was a mixture of 2 flavonoid glycosides. A careful inspection of the spectra led to the identification of quercetin-3-O- β -D-glucopyranoside and quercetin-3-O- β -D-galactopyranoside. Thus **5** was identified as an inseparable mixture of hyperoside (quercetin-3-O- β -galactoside) and isoquercitrin (quercetin-3-O- β -glucoside). The ¹³C and ¹H NMR data of the hyperoside and isoquercitrin are given in Table 3; they were consistent with the previously published data.¹⁷

	Isorhamnetin-3-O-β	B-D-glucopyranoside (3)	Isorhamnetin-3-O-r	utinoside (4)
Position	δ_H , ppm (J, Hz)	δ_C , ppm	δ_H , ppm (J, Hz)	δ_C , ppm
2		157.2		159.2
3		130.9		132.9
4		178.0		179.9
5		160.5		164.0
6	$6.21 \ d \ (2.1)$	98.8	$6.20 \ d \ (1.7)$	100.7
7		165.1		163.5
8	$6.41 \ d \ (2.1)$	93.6	$6.39 \ d \ (1.7)$	95.6
9		157.0		159.0
10		104.1		104.9
1'		121.8		123.4
2'	$7.91 \ d \ (2.1)$	112.9	$7.94 \ d \ (1.5)$	116.4
3'		149.5		151.2
4'		147.0		148.9
5'	$6.92 \ d \ (7.9)$	114.7	$6.90 \ d \ (8.5)$	116.5
6'	$7.58 \ dd \ (7.9, \ 2.1)$	122.4	$7.63 \ dd \ (8.5, \ 1.5)$	124.5
1"	$5.37 \ d \ (7.3)$	100.2	$5.22 \ d \ (7.6)$	103.0
2"	$3.24 \ dd \ (7.3, \ 5.2)$	74.4	3.45-3.48 m	76.4
3"	3.46 t (7.3)	76.6	3.35-3.45 m	78.7
4"	3.30 m	69.9	3.35 m	72.1
5"	3.30 m	77.5	3.22 m	77.9
HA-6"	$3.56 \ dd \ (12.0, \ 5.6)$	61.2	$3.55 \ dd \ (12.0, \ 5.1)$	68.6
HB-6"	$3.72 \ dd \ (12.0, \ 2.3)$		$3.72 \ dd \ (12.0, \ 2.5)$	
OCH ₃	3.94 s	55.4	3.94 s	57.2
1"			4.53d(1.7)	102.9
2"			3.20-3.80	72.4
3"			3.20-3.80	72.8
4"			3.20-3.80	74.4
5"			3.20-3.80	70.3
6"			$1.1 \ d \ (6.5)$	18.2

Table 2. ¹H (600 MHz, CD₃OD) and ¹³C NMR (150 MHz, CD₃OD) data of isorhamnetin-3-O- β -D-glucopyranoside (3) and isorhamnetin-3-O-rutinoside (4).

Several iridoids have been reported from *Sambucus* species.^{12,18,19} Recently 6 new 'Valeriana-type' iridoid glycosides were isolated from *S. ebulus* leaves. However, sambulin B is a new nonglycosidic ester iridoid, isolated from the leaves of *S. ebulus*. Since iridoids are accepted as significant chemotaxonomic markers, the occurrence of

ATAY et al./Turk J Chem

such rare 'Valeriana-type' nonglycosidic iridoids might contribute to the chemotaxonomy of the genus *Sambucus* (formerly Caprifoliacae) within its new family (Adoxaceae).

Table 3. ¹H (600 MHz, CD₃OD) and ¹³C NMR (150 MHz, CD₃OD) data of quercetin-3-O- β -D-glucopyranoside (**5a**) and quercetin-3-O- β -D-galactopyranoside (**5b**).

	Quercetin-3- O - β -glucopyranoside (5a)		Quercetin-3- O - β -D-galactopyranoside (5b)		
Position	δ_H , ppm (J, Hz)	δ_C , ppm	$\delta_H, \text{ppm}(J, \text{Hz})$	δ_C , ppm	
2		158.8		158.5	
3		136.0		136.0	
4		179.6		179.5	
5		163.1		163.1	
6	$6.20 \ d \ (1.7)$	99.9	$6.20 \ d \ (2.1)$	99.9	
7		166.7		164.1	
8	$6.39 \ d \ (1.7)$	94.8	$6.39 \ d \ (2.1)$	94.8	
9		158.6		156.3	
10		105.5		103.9	
1'		123.1		123.1	
2'	$7.66 \ d \ (\ 2.2)$	116.1	$7.84 \ d \ (2.3)$	116.0	
3'		145.9		145.9	
4'		150.0		149.9	
5'	$6.84 \ d \ (8.5)$	117.6	$6.86 \ d \ (8.8)$	117.8	
6'	$7.63 \ dd \ (8.5, \ 2.2)$	123.2	$7.59 \ dd \ (8.8, \ 2.3)$	121.8	
1"	$5.25 \ d \ (7.6)$	104.5	$5.15 \ d \ (8.2)$	102.3	
2"	$3.42 \ dd \ (7.6, \ 9.0)$	75.8	$3.53 \ dd \ (8.2, \ 9.3)$	73.2	
3"	$3.48 \ m$	78.4	3.22 - 3.34 m	75.1	
4"	$3.35 \ m$	71.3	$3.61 \ d \ (3.2)$	70.1	
5"	$3.22 \ m$	78.2	3.22-3.34 m	77.2	
6"	$\begin{array}{c} 3.58 \ dd \ (12.0, \ 5.5) \\ 3.71 \ dd \ (12.0, \ 2.5) \end{array}$	62.6	3.60^* $3.71 \ dd \ (12, \ 2.5)$	61.9	
	· · /				

*Unclear due to overlapping

3. Experimental

3.1. General

UV spectra were recorded on an HP Aglient 8453 (USA). IR spectra were recorded on a PerkinElmer-2000 FT-IR spectrometer (USA). NMR spectra were recorded on a Varian Mercury-Mx spectrometer (USA) at 600 MHz for ¹H NMR and at 150 MHz for ¹³C NMR, with CDCl₃ and CD₃OD as solvents. Optical rotations were determined on an Opt. Act. Ltd. AA-5 polarimeter. Kieselgel 60 (0.063–0.200 mm; Merck, Darmstadt, Germany), Sephadex LH-20 (Lipophilic Sephadex, 25–100 μ m, Sigma-Aldrich, USA), and Polyamide (Fluka, USA) were used for column chromatography (CC), and precoated Kieselgel 60 F₂₅₄ (Merck) plates were used for thin layer chromatography. For medium-pressure liquid chromatography (MPLC) a CombiFlash Companion (Teledyne Isco, USA) apparatus equipped with RediSep columns (C18, 130 and 43 g; Teledyne Isco, USA) was used.

3.2. Plant material

The leaves of *S. ebulus* were collected from Uludağ, Bursa (Turkey) in June 2009. The plants were identified by Prof Dr Erdem Yeşilada (Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, İstanbul, Turkey). A voucher specimen (YEF 09017) was deposited at the Herbarium of Yeditepe University.

3.3. Extraction and isolation

The air dried and powdered leaves of *S. ebulus* (330 g) were extracted with methanol (MeOH) (2.3 l) over 24 h with intermittent stirring in a water bath (40 ° C). The extract was filtered through filter paper and evaporated to dryness under reduced pressure to give crude MeOH extract (60.5 g, yield: 18.3%). The MeOH extract was then redissolved in 200 mL of MeOH in H₂O (10%) and extracted with *n*-hexane (9 × 200 mL). Combined *n*-hexane extract was evaporated under reduced pressure to yield *n*-hexane subextract (8 g, yield: 13.8%). Then MeOH was removed from the remaining extract and diluted with distilled H₂O and fractionated by successive solvent extractions with chloroform (CHCl₃) (4 × 200 mL), ethyl acetate (EtOAc) (4 × 200 mL), and *n*-butanol saturated with H₂O (*n*-BuOH) (4 × 100 mL). Each extract after solvent extraction was evaporated to dryness under reduced pressure to yield CHCl₃ subextract (22.5 g, yield: 39.2%), EtOAc subextract (2.5 g, yield: 4.3%), and *n*-BuOH subextract (9 g yield: 15.5%), and remaining water (11.5 g, yield: 19.8%).

3.3.1. Isolation of the components from EtOAc subextract

The EtOAc subextract (2 g) was further subjected to column chromatography (CC) over polyamide (25 g) and eluted with H₂O/MeOH mixtures in different ratios (0%–100%) to yield 4 fractions: SE_{*EtOAc*} I Fr. 1–4 (746 mg), SE_{*EtOAc*} I Fr. 5–10 (400 mg), SE_{*EtOAc*} I Fr. 12–14 (415 mg), and SE_{*EtOAc*} I Fr. 15–20 (227 mg). SE_{*EtOAc*} I Fr. 12–14 was subjected to MPLC over a RediSep Rf Reversed-phase C18 column (130 g) and eluted with mixtures of MeOH/H₂O (15%–100%) to yield 2 fractions: SE_{*EtOAc*} II Fr. 26–34 and SE_{*EtOAc*} II Fr. 35–49. Further CC of SE_{*EtOAc*} II Fr. 26–34 over SiO₂ (12 g) yielded a mixture (**5**) of hyperoside (quercetin-3-O- β -galactoside) and isoquercitrin (quercetin-3-O- β -glucoside) by eluting with mobile systems of MeOH/CHCl₃ (from 10% to 15%). The other fraction SE_{*EtOAc*} II Fr. 35–49 yielded isorhamnetin-3-O- β -D-glucopyranoside (**3**) by CC over SiO₂ (15 g) and eluting with mobile systems of MeOH/CHCl₃ (from 2% to 20%).

Furthermore, fractions of polyamide CC were further subjected to chromatographic separation by MPLC. SE $_{EtOAc}$ I Fr. 15–20 was applied to MPLC over a RediSep flash column (12 g) and eluted with a MeOH/CHCl₃ solvent system (0%–80%). SE $_{EtOAc}$ I Fr. 5–10 was applied to a MPLC RediSep 13 g reverse phase C18 column and eluted with MeOH/H₂O (5%–70%) to yield isorhamnetin-3-O-rutinoside (4).

3.3.2. Isolation of the components from $CHCl_3$ subextract

The CHCl₃ (10 g) subextract was applied to CC over SiO₂ (200 g) and eluted with first a solvent system composed of EtOAc/*n*-hexane in different rates (20%–100%) and then with MeOH/CHCl₃ mixtures (10%– 50%) to give 4 fractions: SE_{CHCl3} I Fr. 2–7 (332 mg), SE_{CHCl3} I Fr. 8–13 (794 mg), SE_{CHCl3} I Fr. 14–16 (6.4 g), and SE_{CHCl3} I Fr. 17–23 (806 mg). SE_{CHCl3} I Fr. 14–16 was fractionated by CC over SiO₂ (150 g). Elution was started with CHCl₃ and then mixtures of MeOH/CHCl₃ (2.5%–60%) were used. Four subfractions were obtained: SE_{CHCl3} I Fr. 59–63 (1.289 g), SE_{CHCl3} II Fr. 71–72 (273 mg), SE_{CHCl3} II Fr. 73–74 (180 mg), and SE_{CHCl3} I Fr. 78–86 (615 mg). SE_{CHCl3} II Fr. 59–63 was applied to MPLC over a RediSep silica flash column (40 g) eluting with acetone/CHCl₃ (15%–90%) and 10-O-acetylpatrinoside aglycone (**2**) was obtained.

3.3.3. Isolation of the components from hexane subextract

The hexane subextract was applied to CC over Sephadex (16 g) and eluted with $\text{CHCl}_3/\text{MeOH}$ (50%) to yield 2 fractions: SE_{Hexane} I Fr. 9–12 (38 mg) and SE_{Hexane} I Fr. 13–15 (75 mg). The MPLC (RediSep Silica Flash Column (4 g)) of SE_{Hexane} I Fr. 9–12 with EtOAc/n-hexane (15%–80%) as eluent system yielded sambulin B (1).

3.4. Spectroscopic characteristics of the isolated compounds

Sambulin B (1): Colorless oily substance; $C_{19}H_{28}O_{8}$, $[a]_D^{20} = +39.1$ (c = 0.41, CHCl₃); UV (CHCl₃): $\lambda \max 241$, 274, 282, IR (KBr) $v_{\max} \operatorname{cm}^{-1}$: 3678, 3100, 1738, 1235, ESI-MS: $m/z = 407 [M+Na]^+$, 791 $[2M+Na]^+$, ¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) Table 1.

10-*O***-acetylpatrinoside aglycone (sambulin A)** (**2**): Colorless oily substance; $C_{17}H_{26}O_7$, $[a]_D^{20} = -4.6$ (c = 0.33, CHCl₃); UV (CHCl₃): λ max 241, 274, 282; IR (KBr) v_{max} cm⁻¹: 3418, 1736, 1372, 1235; ESI-MS: m/z = 343 [M+H]⁺, ¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃): Table 1.

Isorhamnetin-3-*O*-*β*-**D**-glucopyranoside (3): Yellow amorphous powder; C₂₂H₂₂O₁₂, UV (MeOH): λ_{max} 264, 354 nm, IR (KBr) v_{max} cm⁻¹: 3409, 1653, 1607, HR-ESI-MS: m/z = 501.1003 [M+Na]⁺, ¹H NMR (600 MHz, CD₃OD) and ¹³C NMR (150 MHz, CD₃OD) Table 2.

Isorhamnetin-3-*O*-rutinoside (4): Yellow amorphous powder; $C_{28}H_{32}O_{16}$, UV (MeOH): λ_{max} 266, 354 nm, IR (KBr) v_{max} cm⁻¹: 3452, 2934, 1665, 1608, HR-ESI-MS: m/z = 647.1583 [M+Na]⁺, ¹H NMR (600 MHz, CD₃OD) and ¹³C NMR (150 MHz, CD₃OD): Table 2.

Mixture of isoquercitrin (5a) and hyperoside (5b) (2/3) (5): Yellow amorphous powder; UV (MeOH): λ_{max} 266, 352 nm, IR (KBr) v_{max} cm⁻¹: 3415, 1655, 1605, HR-ESI-MS: m/z = 487.0847 [M+Na]⁺, ¹H NMR (600 MHz, CD₃OD) and ¹³C NMR (150 MHz, CD₃OD): Table 3.

Acknowledgements

We greatly acknowledge the Scientific and Technological Research Council of Turkey (TÜBİTAK) for its support (SBAG 110S197).

References

- Chamberline, D.; Phill, D.; Victoria, A. In *The Flora of Turkey and the East Aegean Islands Vol.* 4; Davis, P. H., Ed. Edinburgh Univ. Press: Edinburgh, UK, 1965–1988, pp. 541–543.
- 2. Yesilada, E.; Sezik, E.; Honda, G.; Takaishi, Y.; Takeda, Y.; Tanaka, T. J. Ethnopharmacol. 1999, 64, 195-210.
- 3. Sezik, E.; Zor, M.; Yesilada, E. Int. J. Pharmacogn. 1992, 30, 233–239.
- 4. Yesilada, E. Chem. Nat. Comp. 1997, 5, 539-540.
- 5. Suntar, I. P.; Akkol, E. K.; Yalcin, F. N.; Koca, U.; Keles, H.; Yesilada, E. J. Ethnopharmacol. 2010, 129, 106–114.
- Ebrahimzadeh, M. A.; Mahmoudi, M.; Pourmorad, F.; Saeidnia, S.; Salimi, E. J. Mazandaran Uni. Med. Sci. 2006, 16, 35–42.
- 7. Shokrazadeh, M.; Mirzayi, M.; Saeedi, S. Pharmacogn. Mag. 2009, 5, 316-319.
- 8. Yesilada, E.; Gurbuz, I.; Toker G. J. Ethnopharmacol. 2014, 153, 478-483.
- 9. Xiao, H. H.; Dai, Y.; Wan, H. Y.; Wong, M. S.; Yao, X. S. British J. Nutr. 2011, 106, 1802–1809.

- 10. Veberic, R.; Jakopic, J.; Stampar, F.; Schmitzer, V. Food Chem. 2009, 114, 511-515.
- 11. Yang, X. J.; Wong, M. S.; Wang, N. L.; Chan, S. C.; Yao, X. S. J. Asian Nat. Prod. Res. 2007, 9, 583-591.
- 12. Wang, Z. Y.; Han, H.; Yang, B. Y.; Xia, Y. G.; Kuang, H. X. Molecules 2011, 16, 3869–3874.
- 13. Sasaki, T.; Li, W.; Morimura, H.; Li, S.; Li, Q.; Asada, Y.; Koike, K. Chem. Pharm. Bull. 2011, 59, 1396–1399.
- 14. Pieri, V.; Schwaiger, S.; Ellmerer, E. P.; Stuppner, H. J. Nat. Prod. 2009, 72, 179–1803.
- 15. Tomassini, L.; Foddai, S.; Ventrone, A.; Nicoletti, M. Nat. Prod. Res. 2013, 27, 2012–2015.
- 16. Gutzeit, D.; Wray, V.; Winterhalter, P.; Jerz, G. Chromatographia 2007, 1-2, 1-7.
- 17. Olszewska, M. Acta Poloniae Pharmaceutica 2005, 62, 127–133.
- 18. Gross, G. A.; Sticher, O. Helv. Chim. Acta 1986, 69, 1113–1119.
- 19. Gross, G. A.; Sticher, O.; Anklin, C. Helv. Chim. Acta 1987, 70, 91–101.