

Synthesis, characterization, biological studies, and molecular modeling of mixed ligand bivalent metal complexes of Schiff bases based on N-aminopyrimidine-2-one/2-thione

Hatice Gamze SOĞUKÖMEROĞULLARI¹, Tuğba TAŞKIN TOK¹, Feyza YILMAZ¹, İsmet BERBER², Mehmet SÖNMEZ^{1,*}

¹Department of Chemistry, Faculty of Science and Arts, Gaziantep University, Gaziantep, Turkey ²Department of Biology, Faculty of Science and Arts, Sinop University, Sinop, Turkey

Received: 31.12.2014	•	Accepted/Published Online: 13.03.2015	•	Printed: 30.06.2015
recourdat officiation		riccoprod/r dombiled enimer reconcerte		I Imtour oorooizos

Abstract: New mixed Schiff bases, Cu(II), Co(II), Ni(II), and Mn(II) complexes, were synthesized derived from 5chloro-2-hydroxyacethophenone and 1-amino-5-benzoyl-4-phenyl-1H-pyrimidine-2-one/thione. These complexes were characterized by elemental analysis, magnetic measurements, molar conductivity, IR, electronic, NMR, and mass spectral studies. All the complexes showed nonelectrolytic behavior. Moreover, the newly synthesized mixed ligand complexes were evaluated for their in vitro antimicrobial efficiency against bacteria and yeast. The compound named $Co(L_1L)$ had good antifungal activity against *Candida* species, but no profound antibacterial effect against bacterial strains. In addition, the ground state geometries of the complexes were optimized using a semi-empirical method at PM6 level, which is a suitable and effective basis set for organometallic and large structures to obtain information about their 3D geometries and electronic structures.

Key words: Mixed ligand, Schiff bases, metal complexes, biological activity, molecular modeling, PM6

1. Introduction

Mixed ligand metal complexes are known to play a significant role in biological systems such as galactose oxidase (GO), chlorophyll, vitamin B_{12} , laccases, and hemoglobin.¹ Pyrimidine, which is an integral part of DNA and RNA, imparts diverse pharmacological properties as an effective bactericide and fungicide.²⁻⁴ Many pyrimidine derivatives are known to exhibit analgesic,⁵ antihypertensive,⁶ antitumor,⁷ antimalarial,⁸ antioxidant,⁹ antimitotic,¹⁰ and anti-HIV activities.¹¹ The increasing studies on Schiff bases mixed ligand and the various properties examined in studies done on this subject (anticancer¹², antimicrobial¹³ etc.) encouraged us to study in this area. Mixed ligand complexes are biologically more active than their constituting ligands for the corresponding homoligated bis-complexes.¹⁴ The electronic and magnetic properties of Schiff bases can also be widely modulated via changes in their chemical structure, using different transition metals that formed different geometrical structures in the cavity of the macro cycle such as mixed ligand metal complex.

In the present study, Schiff base mixed ligand complexes were synthesized from the reaction of substituted N-amino pyrimidine-2-on and substituted N-amino pyrimidine-2-thione with transition metal salts [Cu(II), Co(II), Ni(II), Mn(II)]. The characterization of Schiff base mixed ligand complexes was achieved by elemental,

^{*}Correspondence: msonmez@gantep.edu.tr

magnetic susceptibility, and electronic, infrared, and mass spectral analysis. All the complexes encouraged us to study their antimicrobial activities against gram-positive and gram-negative bacteria and fungi to give an insight into the steric and electronic effects on the biological activities of ligands with various substituents in the aromatic ring and their complexes. We report theoretical calculations of the Schiff bases mixed ligand complexes as well as their experimental data.

2. Results and discussion

The general view of HL₁ is shown in Figure 1. HL₁ was prepared by the condensation of one mole of 5chloro-2-hydroxyacethophenone with one mole N-aminopyrimidine-2-on in like manner to the preparation of the ligand HL in the literature.¹⁵ The ligands are soluble in MeOH, acetonitrile, and THF. The elemental analysis results for the mixed ligand metal complexes match calculated values to exhibit that the complexes have a 1:1:1 (HL₁:Metal:HL) metal–ligand ratio (Figure 2). The addition of Cu(II), Co(II), Ni(II), and Mn(II) acetate dissolved in methanol to a THF solution of the ligand gave colored complexes. The newly synthesized mixed ligand complexes are very stable at room temperature in the solid state. While all the mixed ligand metal complexes are insoluble in organic solvents like diethylether, they are soluble in methanol, THF, and DMF. We have estimated from the elemental analysis results that the mixed ligand general formula is $[ML_1L] \cdot nH_2O$, where L₁ or L is the anion of HL₁ or HL. The colors, melting points, yields, IR, and magnetic susceptibility data of the compounds are presented in the Experimental section. The molar conductance measured for 10^{-3} M solutions in DMF of these complexes fall in the range 2.46–4.51 μ S/cm, indicating their nonelectrolytic behavior.¹⁶

Figure 1. Structure of the Schiff base ligand (HL_1) .

2.1. IR spectra

Previously it was reported that a broad band in the range of 3205–3125 cm⁻¹ free v (OH) stretching frequencies was observed in the spectra of HL₁ and HL, respectively, but in the newly synthesized mixed ligand metal complexes these bands were not observed. The infrared spectra of the ligands HL₁ and HL display a sharp band around 1609 cm⁻¹, which was assigned to v(C=N) stretching.¹⁷ Actually, this band was shifted to lower (9–11 cm⁻¹) wavenumbers in the mixed ligand Co(II) and Mn(II) complexes, indicating the participation of azomethine nitrogen in the coordination to metal ion.¹⁸ The ν (C=S) at 1208 and 737 cm⁻¹ in the free ligand shifts to higher frequency after complexation, due to coordination with the sulfur atom of the thione group for all the complexes (Figure 2a). However, the ν (C=N) imine band in the spectra of Ni(II) and Cu(II) complexes remains at almost 1607 cm⁻¹, suggesting that the imine group does not take part in complexation (Figure 2b). In the spectra of all the mixed ligand complexes, the phenolic band v(C-O) is shifted to lower and higher frequencies (5–16 cm⁻¹).¹⁹ Moreover, the absorption due to v(C=S) of the ligand at 1208 cm⁻¹ is shifted to 1204–1216 cm⁻¹ in complexes, indicating that the other coordination is through the sulfur atom belonging to pyrimidine rings.²⁰

Figure 2. General structure of mixed ligand complexes.

2.2. Mass spectra

In the mass spectra of the mixed ligand metal complexes, peaks were attributable to the molecular ions: m/z: 966.1[Cu+L₁+L+1], m/z: 977 [Co + L₁+L+H₂O]⁺, m/z: 977 [Ni + L₁+L+H₂O]⁺, m/z: 956 [Mn + L₁+L]. The spectra of the mixed ligand complexes Cu(II), Mn(II), Ni(II), and Co(II) are shown in Figures 3–6, respectively.

Figure 6. Mass spectrum of Co(II) complex.

2.3. Electronic spectra and magnetic measurements

 $[Cu(L_1L)]$, $[Co(L_1L)] \cdot 4H_2O$, $[Ni(L_1L)] \cdot 4H_2O$, and $[Mn(L_1L)]$ mixed complexes exhibit green, brown, dark yellow, and yellow colors in DMF or aqueous solutions, respectively. The electronic spectra of the metal

complexes displayed strong bands in the range of 350–381 nm, which can be assigned to $n \rightarrow \pi^*$, and a charge transfer LMCT band was exhibited in the range of 400–410 nm. On the other hand, the spectra of metal complexes displayed bands in the visible region observed at 422–468 nm, which are assigned to d–d electronic transition. The room temperature magnetic moment of the mixed ligand mononuclear complex of Cu(II) = 1.72–1.80 B.M. almost agrees with the spin-only value of 1.77 B.M. for S = 0.5, as mostly seen for Cu(II) complexes.^{21,22} The measured magnetic moment value (3.69 B.M.) of the Co(II) complex was much the same as the spin-only value (3.87 B.M.) and this value complies with values reported for octahedral complexes.^{23,24} The Mn(II) complex has a magnetic moment of 5.44 B.M., as expected for high spin distorted octahedral geometry around the central metal ion.²⁵ The magnetic moment value of 0.52 B.M. for the Ni(II) complex suggests a square planar environment of the structure.²⁶

2.4. Proton and carbon nuclear magnetic resonance spectra

DMSO was used as a deuterated solvent to measure the ¹H NMR and ¹³C NMR spectra of the ligand (HL₁). A sharp singlet was observed at about δ 10.68 ppm due to the phenolic proton of the ligand (HL₁).²⁷ The singlet at δ 9.97 ppm is the proton of the pyrimidine ring. In the spectrum of the Schiff base aromatic protons appeared as a multiplet band between δ 7.01 and 7.61 ppm. The ¹³C NMR spectrum of HL₁ indicated a signal at 156 ppm, which may be attributed to the C=N group.²⁸ The spectrum of HL₁ indicated signals in the region 110–147 ppm, due to aromatic carbons. The spectrum of the ligand indicated signals at 195 ppm and 158 ppm, which may be attributed to the C(7)=O and C(2)=O groups, respectively.

2.5. Biological results

Biological activity of the newly prepared ligand and 4 mixed ligand complexes [Ni(L₁L), Mn(L₁L), Cu(L₁L), and Co(L₁L)] was determined toward 4 gram-positive (*S. aureus* ATCC 6538, *S. aureus* ATCC 25923, *B. cereus* ATCC 7064, and *M. luteus* ATCC 9345) and 1 gram-negative (*E. coli* ATCC 4230) bacteria and against 3 yeast species (*C. albicans* ATCC 14053, *C. krusei* ATCC 6258, and *C. parapsilosis* ATCC 22019) by using microdilution. The obtained antimicrobial findings against the tested microorganisms are presented in Tables 1 and 2. The biological activity of HL ligand and its metal complexes has been discussed in a previous manuscript.¹⁵

Compounds	Bacillus cereus	Staphylococcus aureus	Staphylococcus aureus	Escherichia coli ATCC	Micrococcus luteus ATCC	
	ATCC 7064	ATCC 6538	ATCC 25923	4230	9345	
(HL)	80	80	80	160	40	
(HL_1)	640	640	640	-	640	
$[Ni(L_1L)] \cdot 4H_2O$	320	640	640	640	640	
$[Mn(L_1L)]$	320	640	640	320	640	
$[Cu(L_1L)]$	320	640	640	320	640	
$[Co(L_1L)] \cdot 4H_2O$	80	160	160	320	80	
Ampicillin	5	5	10	20	10	

Table 1. The MICs^{*} of the (HL) and (HL₁) ligand and mixed ligand complexes against bacterial strains.

*The MICs values were determined as $\mu g \text{ mL}^{-1}$ active compounds in medium.

- No activity.

Compounds	Candida albicans	Candida parapsilosis	Candida krusei
	ATCC 14053	ATCC 22019	ATCC 6258
(HL)	640	640	640
(HL_1)	640	320	320
$[Ni(L_1L)] \cdot 4H_2O$	320	640	640
$[Mn(L_1L)]$	320	640	640
$[Cu(L_1L)]$	160	640	640
$[Co(L_1L)] \cdot 4H_2O$	40	20	20
Fluconazole	5	5	10

Table 2. The MICs^{*} of the (HL) and (HL₁) ligand and mixed ligand complexes against fungal strains.

* The MICs values were determined as $\mu g m L^{-1}$ active compounds in medium.

The biological results showed that all tested chemicals prevented the growth of bacteria with MICs between 80 and 640 μ g mL⁻¹, also exhibiting antifungal activity with MIC values in the range of 20–640 μ g mL⁻¹.

Our results demonstrated that the substance called $Co(L_1L)$ had medium-level antibacterial efficacy against *B*. cereus ATCC 7064 and *M*. luteus ATCC 9345, with a MIC value of 80 μ g mL⁻¹. On the other hand, the rest of the tested compounds presented low antibacterial activity against bacteria, with MIC values in the range of 160–640 μ g mL⁻¹.

Antiyeast activity values of HL₁ ligand and mixed ligand complexes [Ni(L₁L), Mn(L₁L), Cu(L₁L), and Co(L₁L)] toward 3 *Candida* species are given in Table 2. The results of the antifungal assay exhibited that merely Co(L₁L) complex had high antifungal activity against 3 *Candida* strains (MICs 20–40 μ g mL⁻¹). However, some compounds showed low antiyeast activity, with MICs between 160 and 640 μ g mL⁻¹.

As a result, the antimicrobial results suggested that $Co(L_1L)$ compound had good antifungal activity against the tested *Candida* species but did not have good antibacterial activity against bacterial strains.

2.6. Molecular modeling results

It is known that geometry optimized structures and Mulliken atomic charge distribution are very important for the present complexes, as given in Figure 7 and Table 3. The complexes that include Ni(II) and Cu(II) metals were computed to have square planar geometry at heterocyclic moieties of ligands (Figures 7A and 7B, respectively), based on the results of electronic spectra and magnetic measurements. The Schiff bases ligand HL was oriented perpendicular to the ligand HL₁. The Co(II) and Mn(II) heterocyclic mixed ligand complexes were found to have six coordinated octahedral and distorted octahedral geometry at the phenyl and pyrimidine moieties of both ligands, respectively (Figures 7C and 7D). In the meantime, Table 3 exhibits the importance of a representative charge distribution in the complexes. Figure 8 also summarizes the charge distribution of the different metal complexes. As seen in Figure 8, the net charges on Ni, Cu, Co, and Mn are about 0.731, -0.0364, 1.932, and 0.730, being lower than the formal charge +2. These cases are a consequence of charge donation from coordinating sulfur, oxygen, and nitrogen atoms. A prominent point of these data is that the Cu compound shows a different trend, when we compare the Ni, Co, and Mn compounds. This arises from the diamagnetic property of Cu metal in the complex.

3. Experimental

3.1. Physical measurements

Elemental analyses (C, H, N, S) were performed using a Thermo Scientific Flash 2000 elemental analyzer. UV-Vis spectra were recorded on a PG Instruments T80+UV/Vis spectrometer. The samples were dissolved in

DMF and the spectra were recorded in the 190–1100 nm range. The magnetic moments of the complexes were measured by the Gouy method on a Sherwood Scientific model instrument. The IR spectra were recorded in the range 4000–400 cm⁻¹ on a Shimadzu FTIR (8000) model spectrometer. Molar conductances of the mixed Schiff base ligand metal complexes were determined in DMF at room temperature by using a Thermo Scientific conductivity meter.

Figure 7. Geometry optimized structures of the complexes.

Figure 8. Mulliken atomic charges of the complexes.

Mulliken atomic charges											
	HL		HL1		NiLL1		CuLL1		CoLL1		MnLL1
				1 Ni	0.73149	1 Cu	-0.03645	1 Co	1.93208	1 Mn	0.73041
10	-0.65896	10	-0.63793	2 O	-0.46173	2 O	-0.01971	2 O	-0.55732	2 O	-0.46085
2 C	0.33014	2 C	0.30503	3 C	0.47586	3 C	-0.03541	3 C	0.48883	3 C	0.47751
3 C	-0.15898	3 C	-0.18781	4 C	-0.35142	4 C	-0.00732	4 C	-0.35236	4 C	-0.33339
4 C	-0.12568	4 C	-0.12677	5 C	-0.00669	5 C	-0.00445	5 C	0.01845	5 C	0.00615
5 C	-0.07710	5 C	-0.07126	6 C	-0.12799	6 C	0.00626	6 C	-0.11492	6 C	-0.09413
6 C	-0.17983	6 C	-0.16454	7 C	-0.00351	7 C	-0.00612	7 C	-0.01000	7 C	-0.03296
7 C	0.06632	7 C	0.07641	8 C	-0.38391	8 C	0.01052	8 C	-0.42606	8 C	-0.35242
8 Cl	-0.02849	8 Cl	-0.01745	9 Cl	-0.10785	9 Cl	0.00003	9 Cl	-0.05449	9 Cl	-0.05050
9 C	0.24087	9 C	0.32841	10 C	0.31917	10 C	-0.00387	10 C	0.31271	10 C	0.31765
10 C	-0.51482	10 C	-0.50783	11 C	-0.55368	11 C	0.00039	11 C	-0.55914	11 C	-0.57048
11 N	-0.28109	11 N	-0.30469	12 N	-0.20680	12 N	0.00402	12 N	-0.23281	12 N	-0.05698
12 N	-0.36967	12 N	-0.32800	13 N	-0.20825	13 N	-0.01251	13 N	-0.27798	13 N	-0.25373
13 C	0.73940	13 C	0.28833	14 C	0.61851	14 C	0.04771	14 C	0.55743	14 C	0.62857
14 0	-0.53706	14 S	-0.23159	15 O	-0.39058	15 O	0.02782	15 O	-0.43514	15 O	-0.34111
15 C	0.11198	15 C	0.08720	16 C	0.16557	16 C	0.00332	16 C	0.14292	16 C	0.14290
16 C	-0.02523	16 C	-0.02500	17 C	-0.50475	17 C	-0.00382	17 C	-0.46438	17 C	-0.46837
17 C	0.22206	17 C	0.23199	18 C	0.40103	18 C	0.00613	18 C	0.40248	18 C	0.42385
18 N	-0.53707	18 N	-0.47377	19 N	-0.48052	19 N	0.00802	19 N	-0.44180	19 N	-0.44071
19 C	0.29783	19 C	0.31738	20 C	0.59394	20 C	0.00031	20 C	0.58464	20 C	0.58488
20 O	-0.47399	20 O	-0.45252	21 O	-0.47532	21 O	-0.00023	21 O	-0.46075	21 O	-0.45978
21 C	0.09487	21 C	0.06892	22 C	-0.20926	22 C	-0.00006	22 C	-0.22764	22 C	-0.22674
22 C	-0.15367	22 C	-0.15121	23 C	-0.04688	23 C	0.00007	23 C	-0.03297	23 C	-0.03424
23 C	-0.13437	23 C	-0.13414	24 C	-0.18955	24 C	-0.00006	24 C	-0.18975	24 C	-0.18888
24 C	-0.11723	24 C	-0.11801	25 C	-0.07512	25 C	0.00006	25 C	-0.05521	25 C	-0.05638
25 C	-0.13492	25 C	-0.13392	26 C	-0.18808	26 C	-0.00006	26 C	-0.19202	26 C	-0.19037
26 C	-0.16665	26 C	-0.18286	27 C	-0.06105	27 C	0.00007	27 C	-0.05540	27 C	-0.05736
27 C	0.10481	27 C	0.13149	28 C	-0.08519	28 C	-0.00441	28 C	-0.11328	28 C	-0.12120
28 C	-0.17514	28 C	-0.15571	29 C	-0.10697	29 C	0.00529	29 C	-0.09299	29 C	-0.08723
29 C	-0.13462	29 C	-0.13853	30 C	-0.15783	30 C	-0.00487	30 C	-0.15815	30 C	-0.16157
30 C	-0.11770	30 C	-0.11790	31 C	-0.09977	31 C	0.00523	31 C	-0.07707	31 C	-0.07221
31 C	-0.13618	31 C	-0.13696	32 C	-0.16644	32 C	-0.00490	32 C	-0.16872	32 C	-0.17141
32 C	-0.14630	32 C	-0.14890	33 C	-0.07951	33 C	0.00528	33 C	-0.06974	33 C	-0.06243
33 H	0.15690	33 H	0.13659	34 S	-0.04803	34 S	0.03326	34 S	-0.20346	34 S	-0.07776
34 H	0.15985	34 H	0.16436	35 N	-0.14004	35 N	-0.09335	35 N	-0.17379	35 N	-0.04228
35 H	0.15445	35 H	0.17864	36 O	-0.59205	36 O	0.02027	36 O	-0.62525	36 O	-0.51805
36 H	0.18189	36 H	0.17081	37 C	0.28639	37 C	0.27758	37 C	0.23531	37 C	0.30858
37 H	0.16942	37 H	0.16880	38 N	-0.39076	38 N	-0.28997	38 N	-0.36559	38 N	-0.38541
38 H	0.21705	38 H	0.22801	39 C	0.35103	39 C	0.62669	39 C	0.35767	39 C	0.38730
39 H	0.21212	39 H	0.20087	40 C	-0.44310	40 C	-0.32563	40 C	-0.40955	40 C	-0.41620
40 H	0.16316	40 H	0.16751	41 C	0.10408	41 C	0.34336	41 C	0.08726	41 C	0.09672
41 H	0.14128	41 H	0.14363	42 N	-0.12134	42 N	0.28061	42 N	-0.20511	42 N	-0.14725
42 H	0.14105	42 H	0.14214	43 C	-0.07042	43 C	-0.27289	43 C	-0.10381	43 C	-0.12117
43 H	0.14024	43 H	0.13996	44 C	-0.07344	44 C	0.26089	44 C	-0.05968	44 C	-0.04572
44 H	0.14076	44 H	0.14067	45 C	-0.16338	45 C	-0.23006	45 C	-0.16846	45 C	-0.17689
45 H	0.15817	45 H	0.13228	46 C	-0.10397	46 C	0.24876	46 C	-0.07931	46 C	-0.06759
46 H	0.14035	46 H	0.13437	47 C	-0.15473	47 C	-0.23051	47 C	-0.15776	47 C	-0.16463
47 H	0.13864	47 H	0.13472	48 C	-0.11935	48 C	0.26031	48 C	-0.10787	48 C	-0.09524
48 H	0.13977	48 H	0.13779	49 C	0.58154	49 C	0.01858	49 C	0.57220	49 C	0.57292
49 H	0.16115	49 H	0.17241	50 O	-0.43556	50 O	-0.01225	50 O	-0.41978	50 O	-0.41505

 Table 3. Mulliken atomic charges of each ligand and complex.

Table 3. Continued.

Mulliken atomic charges											
	HL		HL1		NiLL1		CuLL1		CoLL1		MnLL1
				1 Ni	0.73149	1 Cu	-0.03645	1 Co	1.93208	1 Mn	0.73041
50 H	0.46018	50 H	0.41857	51 C	-0.22322	51 C	-0.00561	51 C	-0.23537	51 C	-0.23854
				52 C	-0.07846	52 C	0.00372	52 C	-0.08076	52 C	-0.08106
				53 C	-0.18867	53 C	-0.00364	53 C	-0.19017	53 C	-0.18901
				54 C	-0.07771	54 C	0.00390	54 C	-0.06104	54 C	-0.05984
				55 C	-0.18676	55 C	-0.00372	55 C	-0.18512	55 C	-0.18468
				56 C	-0.04727	56 C	0.00414	56 C	-0.03379	56 C	-0.03347
				57 C	0.25060	57 C	0.12400	57 C	0.23892	57 C	0.26714
				58 C	-0.54804	58 C	-0.00459	58 C	-0.54578	58 C	-0.55551
				59 C	-0.37103	59 C	-0.03527	59 C	-0.37973	59 C	-0.34699
				60 C	0.50493	60 C	0.02313	60 C	0.47459	60 C	0.48409
				61 C	-0.37714	61 C	-0.02117	61 C	-0.35077	61 C	-0.34242
				62 C	-0.00125	62 C	0.02599	62 C	0.01052	62 C	0.00348
				63 C	-0.13551	63 C	-0.02376	63 C	-0.11192	63 C	-0.10004
				64 C	-0.00293	64 C	0.02900	64 C	-0.01925	64 C	-0.02707
				65 CI	-0.11117	65 CI	-0.00028	65 CI	-0.05703	65 CI	-0.05813
				66 H	0.18324	66 H	0.00013	66 H	0.18964	66 H	0.19338
				67 H	0.15396	67 H	-0.00040	67 H	0.16812	67 H	0.17142
				60 H	0.14009	08 H 60 U	0.00026	08 H 60 H	0.10302	08 H 60 H	0.15908
				09 H 70 H	0.17494	09 H 70 H	-0.00011	09 H 70 H	0.19320	09 H 70 H	0.19731
				70 II 71 H	0.10011	70 II 71 H	-0.00003	70 II 71 H	0.10391	70 II 71 H	0.10930
				71 II 72 H	0.20234	71 II 72 H	-0.00003	71 II 72 H	0.18954	71 II 72 H	0.21270
				73 H	0.16167	73 H	0.00000	73 H	0.16600	73 H	0.16570
				74 H	0.15779	74 H	0.00000	74 H	0.16707	74 H	0.16683
				75 H	0.14697	75 H	0.00000	75 H	0.15441	75 H	0.15445
				76 H	0.15669	76 H	0.00000	76 H	0.16089	76 H	0.16123
				77 H	0.14690	77 H	0.00000	77 H	0.13883	77 H	0.13992
				78 H	0.15904	78 H	-0.00018	78 H	0.15822	78 H	0.15796
				79 H	0.15588	79 H	0.00017	79 H	0.16458	79 H	0.16515
				80 H	0.14903	80 H	-0.00018	80 H	0.15739	80 H	0.15741
				81 H	0.15573	81 H	0.00017	81 H	0.16343	81 H	0.16475
				82 H	0.16213	82 H	-0.00018	82 H	0.15876	82 H	0.16128
				83 H	0.18502	83 H	-0.01130	83 H	0.18294	83 H	0.19082
				84 H	0.16658	84 H	-0.00901	84 H	0.16368	84 H	0.16643
				85 H	0.15590	85 H	0.00817	85 H	0.16366	85 H	0.16589
				86 H	0.14795	86 H	-0.00864	86 H	0.15606	86 H	0.15659
				87 H	0.15250	87 H	0.00817	87 H	0.16098	87 H	0.16322
				88 H	0.14964	88 H	-0.00905	88 H	0.15209	88 H	0.15193
				89 H	0.14884	89 H	-0.00003	89 H	0.14060	89 H	0.14157
				90 H	0.15653	90 H	0.00013	90 H	0.15999	90 H	0.16132
				91 H	0.14855	91 H	-0.00014	91 H	0.15571	91 H	0.15654
				92 H	0.15981	92 H	0.00013	92 H	0.10840	92 H	0.16899
				95 H 04 H	0.10550	95 H 94 H	-0.00014	95 H 04 H	0.17010	95 H 94 H	0.10970
				94 H 95 H	0.17470	94 H 95 H	0.00371	94 H 95 H	0.10904	94 H 95 H	0.19101
				96 H	0.13073	96 H	0.00157	96 H	0.20090	96 H	0.1831/
				97 H	0.17678	97 H	0.00074	97 H	0.18328	97 H	0.18600
				98 H	0.15114	98 H	-0.00090	98 H	0.16743	98 H	0.16780
				99 H	0.14478	99 H	-0.00103	99 H	0.15518	99 H	0.15770

3.2. Synthesis of Schiff base ligands and mixed ligand complexes

3.2.1. Synthesis of Schiff base ligand (HL)

1-[[1-(5-Chloro-2-hydroxyphenyl)ethyliden]amino]-4-phenyl-5-benzoyl-pyrimidine-2-thione [HL] was prepared by the reported method.¹⁵

3.2.2. Synthesis of Schiff base ligand (HL_1)

1-Amino-5-benzoyl-4-phenyl-1H-pyrimidine-2-one/thione (N-aminopyrimidine-2-one/N-amino pyrimidine-2thione) was prepared according to the literature.^{29,30} The Schiff bases ligand (1-[[1-(5-chloro-2-hydroxyphenyl) ethylidenamino-4-phenyl-5-benzoyl-pyrimidine-2-one) (HL₁) was synthesized by a condensation method. Naminopyrimidine-2-one (0.291 g, 0.1 mmol) was dissolved in n-butanol (40 mL) and was added to a solution of 5-chloro-2-hydroxyacethophenone (0.17 g, 0.1 mmol) and sodium acetate catalyst. The mixture was heated to 100 °C and kept at this temperature for 24 h. After cooling to room temperature the residue was filtered and the crude solid product was purified by recrystallization from an acetonitrile-methanol (4:1) mixture. Yield was HL₁: 0.350 g (79%), mp 311–312 °C. IR (ATR) (v_{max} , cm⁻¹): 3205 (OH), 1686 (C=O)_{benzoyl}, 1649 $(-C=O)_{Pyrimidine}$, 1609 (C=N), 1342 (C-O)_{phenolic}. ¹H NMR (400 MHz, d₆-DMSO) δ (ppm); s, singlet; d, doublet; m, multiplet: 10.67 (s, 1H, OH proton), 9.95 (s, 1H, H-6), 7.61 (s, 2H, H-2', H-6'), 7.47 (s, 2H, H-2'', H-6''), 7.35 (d_d, 1H, H-6'''); 7.21 (d, 1H, J = 7.28 Hz, H-4'''), 7.07–7.17 (m, 6H, Harm). 7.01 (d, 1H, J = 7.28 Hz, H-4'''), 7.07–7.17 (m, 6H, Harm). J = 8.8 Hz, H-3^{'''}). ¹³ C NMR (d₆-DMSO, ppm), δ 195.06 (C=O)_{benzoyl}, 158.24 (C=O)_{pyrimidine ring}, 156.17 (C=N), 147.96 (C6), 147.64 (C5), 139.54 (C4), 133.28 (C2'''), 131.87 (C5'''), 130.42 (C3'''), 129.31 (C4'''), 128.54 (C6"), 128.27 (C1"), 128.04 (C1'), 123.57 (C1"), 118.82 (C4', C4"), 118.35 (C3', C3", C5', C5"), 109.87 (C2', C2'', C6'', C6''), 58.51 (CH₃-C=N). UV-Vis (DMF) $\lambda \max$ (log ε): 330 (0.377), 303 (0.251) nm. LC-MS, m/z: 444.1 [HL₁+H⁺]. Anal. Calc. for C₂₅H₁₈ClN₃O₃ (443.88): C, 67.65; H, 4.09; N, 9.47. Found: C, 67.89; H, 4.05; N, 10.04%.

3.2.3. General procedure for the preparation of mixed ligand complexes

First 0.110 g (0.25 mmol) (HL₁) of the ligand and 0.115 g (0.25 mmol) (HL) were solved in 30 mL of THF/MeOH (4:1) mixture, and a solution of 0.25 mmol of the metal salt $Cu(AcO)_2 \cdot H_2O$, $Co(AcO)_2 \cdot 4H_2O$, $Ni(AcO)_2 \cdot 4H_2O$ or $Mn(AcO)_2 \cdot 2H_2O$ in 10 mL of methanol was added dropwise with continuous stirring. The mixture was stirred further for 30 min at 70 °C. The product separated out solid was filtered, washed with cold methanol, and dried.

[Cu(L₁L)]: Dark green compound. Yield: 0.121 g (50%); 239 °C decompose. IR (ATR) (v_{max} , cm⁻¹): 2970 (Aliphatic C–H); 1738, 1688 (C=O), 1607 (C=N), 1364 (C–O)_{phenolic}, 1217 (C=S). UV-Vis (DMF) λ max (log ε): 456 (0.180), 397.91 (0.139), 350.71 (0.296), 328 (0.495), 282 (0.506). μ_{eff} : 1.77 BM. Λ_M (10⁻³ M, in DMF, μ S/cm): 4.51. API-ES, m/z: 966.1 [Cu+L₁+L+H]. Anal. Calc. for C₅₀H₃₄Cl₂CuN₆O₅S (965.4): C, 61.82; H, 4.12; N, 8.18; S, 3.10. Found: C, 61.45; H, 3.81; N, 8.19; S, 2.55%.

[Co(L₁L)]·4H₂O: Brown compound. Yield: 0.116 g (45%); 258 °C decompose. IR (ATR) (v_{max} , cm⁻¹): 3027, 2970 (Aliphatic C–H); 1738, 1687 (C=O), 1595 (C=N), 1365 (C–O)_{phenolic}, 1216 (C=S). UV-Vis (DMF) λ max (log ε): 422 (0.129), 355.73 (0.249), 328 (0.495), 282 (0.523). μ_{eff} : 3.69 BM. Λ_M (10⁻³ M, in DMF, μ S/cm): 2.95. API-ES, m/z: 977 [Co + L₁+L+H₂O]⁺. Anal. Calc. for C₅₀H₄₂Cl₂CoN₆O₉S (1032.8): C, 58.15; H, 4.10; N, 8.14; S, 3.10. Found: C, 58.21; H, 4.10; N, 8.08; S, 3.50%.

 $[\text{Ni}(\text{L}_{1}\text{L})] \cdot 4\text{H}_{2}\text{O: Dark yellow compound. Yield: 0.095 g (37\%); 241 °C decompose. IR (ATR) (<math>v_{max}$, cm⁻¹): 3061 (Aliphatic C–H); 1733 (C=O), 1606 (C=N), 1327 (C–O)_{phenolic}, 1214 (C=S). UV-Vis (DMF) λ max (log ε): 468 (0.094), 352.72 (0.244), 330 (0.301), 276 (0.451), 265 (0.589). μ_{eff} : 0.52 BM. Λ_{M} (10⁻³ M, in DMF, μ S/cm): 2.58. API-ES, m/z: 977 [Ni + L₁+L+H₂O]⁺. Anal. Calc. for C₅₀H₄₂Cl₂NiN₆O₉S (1032.56): C, 58.16; H, 4.10; N, 8.14; S, 3.11. Found: C, 58.13; H, 3.62; N, 8.16; S, 2.54\%.

[Mn(L₁L)]: Yellow compound. Yield: 0.12 g (50%); 265–266 °C. IR (ATR) (v_{max} , cm⁻¹): 3102 (Aliphatic C–H); 1691, 1627 (C=O), 1596 (C=N), 1326 (C–O)_{phenolic}, 1218 (C=S). UV-Vis (DMF) λ max (log ε): 445 (0.037), 381.84 (0.244), 336 (0.616), 290 (0.583), 265 (0.865). μ_{eff} : 5.44 BM. Λ_M (10⁻³ M, in DMF, μ S/cm): 2.46. API-ES, m/z: 956 [Mn + L₁+L]⁺. Anal. Calc. for C₅₀H₃₄Cl₂MnN₆O₅S (956.7): C, 62.77; H, 3.58; N, 8.78; S, 3.35. Found: C, 62.52; H, 3.90; N, 8.54; S, 3.69%.

3.3. Biological assay

3.3.1. Compounds

The newly synthesized chemical substances and standard antibiotics were dissolved in DMSO (12.5%) at an initial concentration 1280 μ g mL⁻¹ and then two-fold serial dilutions of all tested chemicals were prepared in approved broth medium.

3.3.2. Microorganisms

The tested microorganisms using in the study were supplied from the American Types Culture Collection and Refik Saydam Hifsishha Research Institute, Ankara, Turkey.

3.3.3. Antimicrobial procedures

Antibacterial efficiency of all the chemicals was screened toward the tested bacterial strains as summarized by the guidelines in the NCCLS proposed standard document M7-A6 with the conventional microdilution procedure.³¹ The tested bacterial strains were *Staphylococcus aureus* ATCC 6538, *S. aureus* ATCC 25923, *Bacillus cereus* ATCC 7064, *Micrococcus luteus* ATCC 9345, and *Escherichia coli* ATCC 4230. The yeast activities of the compounds were also evaluated against 3 *Candida* species (*Candida albicans* ATCC 14053, *C. krusei* ATCC 6258, and *C. parapsilosis* ATCC 22019) as mentioned by the guidelines in the NCCLS recommended standard document M27-A2 with the microdilution procedure.³² Ampicillin for bacteria and fluconazole for yeasts were chosen as standard drugs. Two-fold serial dilutions of chemicals and standard antibiotics were prepared to reach the final concentrations as follows: 1280, 640, 320, 160, 80, 40, 20, 10, >5 μ g mL⁻¹. One noninoculated tube was defined as the negative control, while one inoculated tube with bacterial suspension was selected as the positive control.

Antimicrobial activity assays were carried out in Mueller–Hinton broth (DIFCO) medium at pH 7.2 for bacterial strains and in RPMI 1640 medium (Sigma) at pH 7.0 for yeast with an inoculum of $(1-2) \times 10^3$ cells mL⁻¹ according to the modified spectrophotometric method.³³ All serial tube dilutions inoculated with each microorganism were cultivated at 37 °C for 18 h at 150 rpm in an orbital rotary shaker. The minimum inhibitory concentrations (MICs) of all the chemicals were recorded as the lowest concentration of each chemical substance in comparison with negative controls (no turbidity).

3.3.4. Molecular modeling

In an attempt to gain a better insight into the molecular structure of the ligands and their complexes, geometry optimization was carried out using density functional theory at $B3LYP/6-31G^*$ level for the ligands and the semiempirical method at PM6 with no symmetry constrains for the complexes as implemented in Gaussian 09.³⁴

4. Conclusion

New Ni(II), Cu(II), Co(II), and Mn(II) heterocyclic mixed ligand complexes containing a pyrimidine ring were synthesized and characterized. Analytical data, electronic spectra, and magnetic susceptibility, IR mass spectral, and molecular modeling data reveal square planar and distorted octahedral geometry for the complexes. Various attempts such as crystallization using mixtures of solvents, and low temperature crystallization were unsuccessful to obtain a single crystal for X-ray crystallography. However, the analytical, spectroscopic, and magnetic data enable us to predict the possible structure of the synthesized complexes. The newly prepared HL₁ ligand and mixed ligand complexes were screened for their in vitro antimicrobial properties against some bacteria and yeast. The compound named $[Co(L_1L)].4H_2O$ had good antifungal efficiency towards *Candida* species, with MIC values in the range of 20–40 μ g mL⁻¹. Multiple drug resistance or multiresistant microorganisms are a significant public health problem in the medical environment all over the world and therefore there is an urgent need to find new drugs. In conclusion, we hope that the $[CoL_1L].4H_2O$ chemical compound can be effective against fungi.

Acknowledgment

We are grateful to the Presidency of Scientific Research Projects of Gaziantep University (FEF-10-09) for the support of this research.

References

- 1. Ahmad, J. U.; Räisänen, M. T.; Nieger, M.; Leskelä, M.; Repo, T. Inorg. Chim. Acta 2012, 384, 275–280.
- 2. Williams, R. R.; Cline, J. K. J. Am. Chem. Soc. 1936, 58, 1504–1505.
- 3. Maddila, S.; Jonnalagadda, S. B. Arch. Pharm. Chem. Life Sci. 2012, 345, 163-168.
- 4. Sönmez, M.; Berber, I.; Akbaş, E. Eur. J. Med. Chem. 2006, 41, 101-105.
- 5. Regnier, G. L.; Canevar, R. J.; Le Douarec, J. C.; Halstop, S.; Daussy, J. J. Med. Chem. 1972, 15, 295-301.
- 6. Winter, C. A.; Fisley, E. A. R.; Nuss, G. W.; Proc. Soc. Exp. Biol. Med. 1962, 111, 544-547.
- 7. Suguira, K.; Schmid, A. F.; Schmid, M. M.; Brown, F. G.; Cancer Chemother. Rep. 1973, 23, 231–233.
- 8. Brown, D. J.; Evans, R. F. In: *The Chemistry of Heterocyclic Compounds*; Weissberger, A.; Taylor, E. C., Eds. Wiley: Hoboken, NJ, USA, 1985.
- Stefani, H. A.; Oliveira, C. B.; Almeida, R. B.; Pereira, C. M. P.; Braga, R. C.; Cella, R.; Borges, V. C.; Savegnago, L.; Nogueira, C. W. Eur. J. Med. Chem. 2006, 41, 513–518.
- Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. I.; Mitchison, T. J. Science 1999, 286, 971–974.
- 11. Okabe, M.; Sun, R. C.; Zenchoff, G. B. J. Org. Chem. 1991, 56, 4393-4395.
- 12. Ravoof, T. B. S. A.; Crouse, K. A.; Tahir, M. I. M.; Cowley, A. R.; Ali, M. A. Polyhedron 2007, 26, 1159–1165.
- 13. Mohamed, G. G.; Abd El-Wahab, Z. H. Spectrochim. Acta Part A 2005, 61, 1059–1068.

- 14. Dholakiya, P. P.; Patel, M. N. Synth. React. Inorg. Met-Org Chem. 2004, 34, 383-395.
- 15. Sönmez, M.; Sogukomerogullari, H. G.; Öztemel, F.; Berber, İ. Med. Chem. Res. 2014, 23, 3451–3457.
- 16. Maravalli, P. B.; Dhumwad, S. D.; Goudar, T. R. Synth. React. Inorg. Met-Org Chem. 1999, 29, 525-540.
- 17. Sönmez, M.; Şekerci, M. J. Serb. Chem. Soc. 2007, 72, 259-264.
- 18. Shivakumar, K.; Shashidhar; Vithal Reddy P.; Halli, M. B. J. Coord. Chem. 2008, 61, 2274–2287.
- Rabia, M. K. M.; Aly, G. Y.; El-Dessouki, M. M.; Al-Mohanna, M. A. F. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2005, 35, 801–809.
- Prabhakaran, R.; Geetha, A.; Thilagavathi, M.; Karvembu, R.; Krishnan, V.; Bertagnolli, H.; Natarajan, K. J. Inorg. Biochem. 2004, 98, 2131–2140.
- 21. Thaker, B. T.; Surati, K. R.; Patel, P.; Parmar, S. D. J. Iran. Chem. Soc. 2006, 3, 371–377.
- 22. Hankare, P. P.; Chavan, S. S. Synth. React. Inorg. Met.-Org. Chem. 2003, 33, 423-434.
- 23. Gülcan, M.; Sönmez, M. Phosphorus Sulfur and Silicon 2011, 186, 1962–1971.
- 24. Emara, A. A. A.; Adly, O. M. I. Trans. Met. Chem. 2007, 32, 889-901.
- 25. Anacona, J. R.; Bastardo, E.; Camus, J. Trans. Met. Chem. 1999, 24, 478-480.
- 26. Uçan, S. Y.; Uçan, M.; Mercimek, B. Synth. React. Inorg. Nano-Met. Chem. 2005, 35, 417-421.
- 27. Sönmez, M.; Hacıyusufoğlu, M. E. Asian J. Chem. 2006, 18, 2032–2036.
- Tümer, M.; Deligönül, N.; Gölcü, A.; Akgün, E.; Dolaz, M.; Demirelli, H.; Dığrak, M. Trans. Met. Chem. 2006, 31, 1–12.
- 29. Akçamur, Y.; Altural, B.; Sarıpınar, E.; Kollenz, G.; Kappe, O.; Peters, K.; Peters, E.; Schering, H. J. Heterocyclic Chem. 1988, 25, 1419–1422.
- 30. Akçamur, Y.; Altural, B.; Sarıpınar, E.; Kollenz, G. Monats. für Chem. 1989, 120, 1015–1020.
- National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Approved Standard M7-A6. NCCLS: Wayne, PA, USA, 2003.
- 32. National Committee for Clinical Laboratory Standards. *Reference method for broth dilution antifungal susceptibility testing of yeasts*, Approved Standard M27-A2. NCCLS: Wayne, PA, USA, 2002.
- 33. Sönmez, M.; Çelebi, M.; Berber, I. Eur. J. Med. Chem. 2010, 45, 1935-1940.
- 34. Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian, Inc., Wallingford CT, USA, 2009.