http://journals.tubitak.gov.tr/chem/

Turk J Chem
(2016) 40: $225-247$
(C) TÜBİTAK
doi:10.3906/kim-1502-56

Wittig-Horner reagents: powerful tools in the synthesis of 5-and 6-heterocyclic compounds; shedding light on their application in pharmaceutical chemistry

Rizk Elsayed KHIDRE ${ }^{1,2, *}$, Wafaa Mahmoud ABDOU ${ }^{1}$
${ }^{1}$ Chemical Industries Division, National Research Centre, Dokki, Giza, Egypt
${ }^{2}$ Department of Chemistry, Faculty of Science, Jazan University, Jazan, Saudi Arabia

| Received: 09.02 .2015 | Accepted/Published Online: 22.06 .2015 | \bullet | Final Version: 02.03 .2016 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract

This paper reviews literature over 25 years' activity on phosphoryl carbanion reagents and shows that these compounds are powerful tools in organic chemistry. The main target of this review is to outline some of the reactive peculiarities that make this class of compounds powerful tools in the synthesis of 5 - and 6 -heterocyclic compounds and/or substituted heterocycle phosphor esters. The importance of these latter compounds in pharmacology is also discussed.

Key words: Phosphonyl carbanions reagents, phospha-Michael (P-Michael) addition, Perkin-type reaction, fivemembered heterocycles, six-membered heterocycles, nucleophiles

1. Introduction

Organophosphorus compounds, in parallel, are noteworthy for their biological activity, ${ }^{1-4}$ especially when they are associated with various heterocycles. ${ }^{5}$ One of the most important of these bioactive heterocycles are the substituted heterocycle phosphor esters and/or heterocycles containing phosphorus groups. ${ }^{6}$ In spite of their importance, methods for the direct synthesis of these types of heterocycles are quite limited. ${ }^{7,8}$ With this aim, our group and others investigated for over 25 years the usefulness of phosphoryl carbanions (also known as Wittig-Horner (WH) or Wadsworth-Horner-Emmons (WHE) reagents) in the construction of several fiveand six-membered heteroring systems. Related substituted heterocycle phosphor esters and/or heterocycles containing phosphorus groups were reported.

This review article describes the progress over last three decades in the chemistry of phosphoryl carbanions, showing their synthetic usefulness as versatile building blocks in the construction of five- or six-membered heterocycles (Scheme 1) and in connection to our previous review articles. ${ }^{9-14}$ The classification is based upon the size of the heterocyclic rings (five-membered and six-membered rings) and the number of heteroatoms in the given molecule regardless of the site of attack by the reagent. There are, however, some exceptions to this classification, some of which will emerge in the subsequent discourse. Heterocyclic derivatives, on the other hand, are of great importance in pharmaceutical chemistry. The main purpose of this review is to represent a survey of the utility of phosphonyl carbanions in the synthesis of 5 - and 6 -heterocyclic compounds and provide useful and up-to-date data for chemists. Furthermore, pharmacological applications of the produced heterocycles are discussed.

[^0]

Scheme 1.

2. Synthesis of five-membered heterocycles

2.1. Five-membered heterocycles with one heteroatom

2.1.1. Pyrroles and their fused systems

Phosphonyl carbanions 17 were reacted with amine 18 in refluxed toluene containing p-toluenesulfonic acid (PTSA) to give phosphorylpyrrolidin-2-ones 21 in high yields via formation of intermediates imines 19 and enamines 20 followed by lactamization (Scheme 2). ${ }^{15}$
δ-Amino- β-keto-phosphonates 22 were treated with 4 -acetamidobenzenesulfonyl azide (4-ABSA) in the presence of NaH to afford δ-amino- α-diazo- β-ketophosphonates 23. Stereoselective intramolecular cyclization of the latter compounds gives pyrrolidine-2-phosphonates 24 . Olefination reaction of 24 gives 2-ethylidene pyrrolidine 25 in good yields (Scheme 3). ${ }^{16}$

Hydroxypyrroles 29 were obtained, in excellent yields, by reaction of oxime $\mathbf{2 6 a}, \mathbf{b}$ with α-phosphoryl-vinyl- p-tolylsulfoxide $\mathbf{2 7}$ in DMF containing NaH via intermediates 28 (Scheme 4). ${ }^{17}$

$$
\begin{aligned}
& \mathrm{R}^{1}=\mathrm{Me}, \mathrm{n}-\mathrm{Bu}, \mathrm{Ph}, 3,4-(\mathrm{OMe})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \\
& \mathrm{R}^{2}=n \text {-hexyl, benzyl }
\end{aligned}
$$

Scheme 2.

$$
\begin{aligned}
& \mathrm{R}^{1}=n \text { - } \mathrm{Bu}, t-\mathrm{Bu}, \mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{Me}, n-\mathrm{Pr}, n-\mathrm{C}_{6} \mathrm{H}_{13} \\
& \mathrm{Boc}=t \text {-buty carboxylate }
\end{aligned}
$$

Scheme 3.

Scheme 4.

Indol-2-yl methylphosphonate $\mathbf{3 3}$ and 1,4-dihydroquinolin-2-ylphosphonate $\mathbf{3 4}$ were synthesized by reaction of 3-phenyl-[2,4]-benzoxazine-1-one $\mathbf{3 0}$ with diethyl vinylphosphonate 31a (Scheme 5). ${ }^{18}$

Scheme 5.

N-aryl- α-phosphonylglycine derivatives $\mathbf{3 7}$ were formed by reaction of ethyl 2-diazophosphonylacetate $\mathbf{3 5}$ and substituted aromatic aniline $\mathbf{3 6}$ in toluene in the presence of catalytic $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ at reflux temperature, while the Wittig-Horner reaction of $\mathbf{3 7}$ with o-iodobenzaldehydes $\mathbf{3 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave Z-olefinic adducts $\mathbf{3 9}$ in high yields. Intramolecular cyclization of 39 in DMF in the presence of PdCl_{2} and KOAc gave 2-ethyl indole carboxylates 40 in good yields (Scheme 6). ${ }^{19,20}$

Scheme 6.

Intramolecular cyclization of N-((diphenylphosphoryl)methyl)aniline 41 in THF containing either BuLi at $-78{ }^{\circ} \mathrm{C}^{17}$ or LDA ${ }^{21}$ afforded indole-2-diphenylphosphine oxides 42 in high yields (Scheme 7).

Scheme 7.

3-Formyl pyrrolidine 43 was treated with triethyl phosphonoacetate 31a in THF to yield pyrrolidine
acrylate 44 . Hydrogenation, and hydrolysis followed by intramolecular cyclization of $\mathbf{4 4}$ gave aminopyrrolizidine 45 (Scheme 8). ${ }^{22}$

45, 61\%

Scheme 8.

In the same fashion, (1,2-bis(benzyloxy)-5-methylhexahydro- $1 H$-pyrrolizin- 3 -yl)methyl benzoate 48 was synthesized from the reaction of pyrrolidine-2-carbaldehyde 46 with diethyl acetyl methylenephosphonate 31d to yield adduct $\mathbf{4 7}$, followed by hydrogenation and intramolecular cyclization (Scheme 9). ${ }^{23-25}$

Scheme 9.

2.1.2. Furans and thiophenes and their fused systems

Cyclopropane phosphonate $\mathbf{5 0 a} \mathbf{a} \mathbf{b}$ and 3-(thiophen-2-yl)pent-2-enedinitrile $\mathbf{5 1 a} \mathbf{a} \mathbf{b}$ were prepared from the reaction of 3 (2-thienyl)acrylonitrile $49 \mathrm{a}, \mathrm{b}$ with cyano methylene phosphonate $\mathbf{3 1 e}$ in THF containing NaH at reflux. In addition, phosphono-substituted furan 52c was also isolated from 49a (Scheme 10). ${ }^{26}$

KHIDRE and ABDOU/Turk J Chem

Scheme 10.

Similarly, treatment of 49a with phosphonoacetate 31c afforded phosphono-substituted furans 173 and 174 (Scheme 11). ${ }^{26}$

Scheme 11.

Diethyl (1,7-dioxaspiro-[4.4]nona-3,8-dien-9-yl)phosphonate 57 was recently obtained from reaction of 2-acetylfuran 55 with diethyl vinylphosphonate 31a in DMF containing lithium hydride (Scheme 12). ${ }^{27}$

Scheme 12.

Knoevenagel condensation reaction of oxathiolone $\mathbf{5 8}$ with α-phosphonyl carbanions $\mathbf{3 1 b}, \mathbf{c}, \mathbf{e}$ in refluxed ethanol in the presence of EtONa followed by sequential alkylation gave benzothien-3-ylphosphonates $\mathbf{6 0}$ in 66% yield (Scheme 13). Benzothienylphosphonate esters 60a-c showed significant antimicrobial activity against a panel of representative gram-positive pathogenic microorganisms, gram-negative microorganisms, and fungi. ${ }^{28}$

Scheme 13.

2.2. Synthesis of five-membered heterocycles with more than one heteroatom

2.2.1. Pyrazoles and their fused systems

[3+2] Cycloaddition reaction of diazomethane with vinyl-1,2-butadienylphosphonates $\mathbf{6 1 a}$, \mathbf{b} yielded pyrazole3 -phosphonates 63a,b (Scheme 14). ${ }^{29}$

Scheme 14.

Pyrazolinyl-3-phosphonate $\mathbf{6 6}$ and diazaphosphole $\mathbf{6 7}$ were prepared in 27% and 44% yields, respectively, from the reaction of 2-diazo-1,3-indandione $\mathbf{6 4}$ with phosphonoacetate $\mathbf{3 1 b}, \mathbf{c}$ in a mixture of $\mathrm{LiOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CHCl}_{3}$ at reflux. On the other hand, spiroindene-2, 3^{6}-pyrazolyl phosphonate $\mathbf{6 9}$ and spiro diazaphosphole 70 were yielded from the reaction of $\mathbf{6 4}$ with cyanomethylphosphonate $\mathbf{3 1 e}$ (Scheme 15). ${ }^{30}$

Similarly, spiro[indene-2, $3^{〔}$-pyrazol]-5‘-yl)phosphonate $\mathbf{7 2}$ was synthesized in 72% yield by treatment of diazoketone 64 with diethyl vinylphosphonate 31a under phase-transfer catalysis conditions (Scheme 16). ${ }^{30}$

Spiroindene- $2,3^{〔}$-pyrazolinyl phosphonates $(\mathbf{6 6}, \mathbf{6 9}$, and $\mathbf{7 2}$) and spiro diazaphospholes $(\mathbf{6 7}, \mathbf{7 0})$ showed more significant antimicrobial activity towards tested organisms (bacteria and fungi). Furthermore, the phosphole derivatives $(\mathbf{6 7}$ and $\mathbf{7 0})$ are more active than the phosphonate derivatives $(\mathbf{6 6}, \mathbf{6 9}$, and $\mathbf{7 2}) .{ }^{30}$

Scheme 15.

Scheme 16.

Vilsmeier-Haack reaction of phosphonyl ethylene hydrazones 73 gave 1-phenyl-4-diethoxyphosphonylpyrazoles 74 in $46 \%-81 \%$ yields (Scheme 17). ${ }^{31}$

Cyclization of β-hydrazonophosphonates 75 into their corresponding 4-phosphonopyrazoles 76 was achieved via their reaction with triethyl orthoformate in xylene containing a few drops of glacial acetic acid (Scheme 18). ${ }^{32,33}$

Scheme 18.

2.2.2. Oxazole and its fused systems

In a recent report, 2-azido-4,6-di-tert-butylphenol 77 was reacted with diethyl vinylphosphonate 31a in sodium ethanolate solution under reflux to give 2-benzoxazole phosphonate $\mathbf{7 8}$ in 74% yield via a coupling cyclization reaction of $\mathbf{7 7}$ with 31a in one step with tandem NH alkylation and extrusion of nitrogen. Similarly, benzoxazole phosphonates $\mathbf{7 9}(72 \%)$ were formed from the reaction of the azide $\mathbf{7 7}$ with saturated WHE reagents $\mathbf{3 1}$ (Scheme 19). ${ }^{34}$

Stereoselective 1,3-dipolar cycloaddition of allyldiphenylphosphine oxides $\mathbf{8 0}$ with nitrile oxides $\mathbf{8 1}$ afforded Δ^{2}-isoxazolines 82 (Scheme 20). ${ }^{35,36}$

$$
\begin{aligned}
& \mathrm{R}^{1}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{n}-\mathrm{Pr}, i-\mathrm{Pr} \\
& \mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et}, \mathrm{n}-\mathrm{Pr}, \text { hexyl, } \mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Et},\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{CO}_{2} \mathrm{Me}(\mathrm{n}=2,3)
\end{aligned}
$$

Scheme 20.

Treatment of diethyl phosphonoacetates $\mathbf{3 1 b}, \mathbf{c}$ with triketoindane-2-oxime $\mathbf{8 3}$ in $\mathrm{EtOH} / \mathrm{EtONa}$ at reflux temperature yielded spiroindene-2,3'-isoxazolidinylphosphonate $\mathbf{8 5}$ and adduct $\mathbf{8 6}$. Compound $\mathbf{8 3}$ was treated with (methylthio)methylphosphonate 31f,g in $\mathrm{EtOH} / \mathrm{EtONa}$ at reflux to give diethyl(3-ethoxy 4-oxo4 -hydroindeno $[2,1-d][1,3]$ oxazol-2yl)phosphonate $\mathbf{8 8}$ (Scheme 21). Compounds 85, 86, and $\mathbf{8 8}$ were screened against some gram-positive bacteria, gram-negative bacteria, and fungi. Compound $\mathbf{8 5}$ showed feeble activity against gram-positive bacteria. Compounds 86 and 88 displayed no activity against the tested bacteria. Compound $\mathbf{8 6}$ is moderately active against D. specifera at $780 \mu \mathrm{~g} / \mathrm{cm}^{3}$ while compounds $\mathbf{8 5}$ and $\mathbf{8 8}$ are more active against D. specifera at $780 \mu \mathrm{~g} / \mathrm{cm}^{3}$. Compounds $\mathbf{8 5}$ and $\mathbf{8 8}$ registered 100% spore germination inhibition of F. oxysporum at $320 \mu \mathrm{~g} / \mathrm{cm}^{3} .{ }^{37}$

Scheme 21.

Oxazolophosphonate 91 and the diolefin 90 were obtained from the reaction of 2-(hydroxyimino)-1,3-diphenylpropane-1,3-dione 89 with phosphoacetonitrile 31c (Scheme 22). ${ }^{38}$

Scheme 22.

The reaction between alloxan-5-oxime derivatives $\mathbf{9 2}$ with thiomethylphosphonates $\mathbf{4 4 f}, \mathrm{g}$ to give the corresponding fused substituted $[1,3]$ oxazolo[4,5- $d] 2$-pyrimidinylphosphonate $\mathbf{9 3}$ was reported. Triazaspiro[4,5]dec3 -en-4-ylphosphonate $\mathbf{9 4}$ and $[1,3]$ oxazolo[4,5- $d]$ pyrimdin-2-ylidene ethylphosphonate $\mathbf{9 5}$ were obtained from the reaction of 92 with allyl phosphonates 31h (Scheme 23). ${ }^{39}$

Scheme 23.

2.2.3. Thiazole and oxaphosphole and their fused systems

5-Benzylidene-4-thiazolidines $\mathbf{9 6}$ was reacted with phosphonoacetates 31b,c in $\mathrm{EtOH} / \mathrm{EtONa}$ at room temperature to yield diethyl 6-benzylidene-3,5-dioxotetrahydro- $2 H$-thiazolo $2,3-b]$ thiazol- 2 -ylphosphonate 97 . Fused phosphonopyranones 99 together with olefins 98 were regioselectivity synthesized when the above reaction occurred at reflux temperature (Scheme 24). ${ }^{40}$

Scheme 24.

On the other hand, compound $\mathbf{9 6}$ was reacted with phosphonoacetonitrile $\mathbf{3 1 f}$ in DMF containing LiH at reflux temperature to afford Michael addition product 100 along with thiazolo[2,3-b]thiazolo-phosphonate 101 (Scheme 25). ${ }^{40}$

Scheme 25.
Treatment of phosphonyl carbanions 31b, c,f with 1-(5-methylfuran-2-yl)ethanone 102, in DMF containing LiH under reflux, afforded oxaphospholes 104 ($55 \%-48.2 \%$ yield) along with phosphonate 103 ($17 \%-22.6 \%$ yield) (Scheme 26). ${ }^{28}$

2.2.4. Triazoles and diazaphosphole and their fused systems

One pot reaction of methoxyimine 105, phosphonyl acetohydrazide 106, and aromatic or/and heterocycles aldehyde gave 1,2,4-triazoles 107 in moderate to excellent yields (Scheme 27). ${ }^{41}$

Hydrazonyl halides 108 were reacted with WH reagents 31c,f in NaOEt at room temperature to yield diazaphospholes $\mathbf{1 0 9}$ via cyclization followed by hydrolysis of intermediates \mathbf{B} and \mathbf{C}, respectively (Scheme 28). ${ }^{42}$

$$
\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{Ph}, \mathrm{COPh} ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{CN}
$$

Scheme 28.

Diazoketone 64 was reacted with diethyl (methylthio) methylphosphonate $\mathbf{3 1 g}$ to yield spiro[1,2,4-diazaphosphole-$3,2^{〔}$-indene]-1‘, $3^{〔}$-dione-4-oxide 110 along with indeno-[2,1-e][4,1,2]oxadiazin- $9(1 H)$-one 111 (Scheme 29). ${ }^{30}$ Compound 110 showed more significant antimicrobial activity than the unphosphorylated oxadiazine 111.

Scheme 29.

Nucleophilic addition of HWE reagents 31b,c,f to 1,2,4-triazole-3-thiol-4-aminoarylidenes 112 in DMF containing LiH yielded β-amino-phosphonates 113 ($\approx 55 \%$ yield) and thiadiazoles 114 . On the other hand, thiadiazoles $\mathbf{1 1 4}$ were, however, exclusively obtained in $75 \%-80 \%$ yield when the reaction ($\mathbf{1 1 2}$ and the same WHE reagents) proceeded in $\mathrm{MeOH} / \mathrm{MeONa}$ containing a catalytic amount of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) (Scheme 30). ${ }^{43}$

Compounds 114 showed more significant antimicrobial activity, with minimal inhibitory concentration (MIC) of 54-140 and 22-143 mmol L^{-1} and minimal bactericidal concentration (MBC) values of $70-439$ and 44-268 mmol L ${ }^{-1}$ compared with MIC/MBC for ciprofloxacin of 48-386 (MIC, $\mathrm{mmol} \mathrm{L}^{-1}$) and 55-396 for ($\mathrm{MBC} \mathrm{mmol} \mathrm{L}^{-1}$) and MIC/MBC for chloramphenicol of 70-439 (MIC, mmol^{-1}) and 65-619 (MBC mmol L^{-1}) against a panel of gram-positive and gram-negative bacterial pathogens: Klebsiella pneumoniae 2011E, Pseudomonas aeruginosa 6065 Y, Escherichia coli BW54, Escherichia coli BW55, Acinetobacter haemolyticus BW62, Stenotrophomonas maltophilia D457R, Staphylococcus epidermis 887E, Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 29213, and Sarcina lutea. ${ }^{43}$

3. Synthesis of six-membered heterocycles

3.1. Synthesis of six-membered heterocycles with one heteroatom

3.1.1. Pyridines and pyrans and their fused systems

Diethyl 1-cyano-2-ethoxyvinylphosphonate 117 was reacted with cyclobutenyl amine $\mathbf{1 1 5}$ in a mixture of DMF and THF (1:1) containing sodium hydride to afford pyridine-3-carbonitriles 119 (Scheme 31). ${ }^{44}$

$$
\mathrm{R}^{1}=4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Et}, \mathrm{CN}
$$

Scheme 30.

Scheme 31.

Reaction of β-fluoroamidinium salt 120 with acetyl methylene phosphonate 31e in DMF containing t-BuOK gave the 1,3-butadienylphosphonates 121 in good yields. The latter compound was treated with ammonia to afford pyridin-3-ylphosphonate $\mathbf{1 2 2}$ in 60% yield (Scheme 32). ${ }^{45}$

Scheme 32.

2-(hydroxyimino)-1,3-Diphenylpropane-1,3-dione $\mathbf{8 9}$ was reacted with diethyl phosphonoacetates 31b,c to yield oxazolophosphonate $\mathbf{1 2 3 a} \mathbf{, b}(20 \%)$ and phosphono-1-ethoxypyridinone $\mathbf{1 2 6 a} \mathbf{b} \mathbf{b}$ (32\%) (Scheme 33). ${ }^{38}$

89

124

125

Scheme 33.

Quinolinyl phosphonate 129 and 2-aminoquinolin-3-ylphosphonate 132 along with $1 H$-indol-2-ylphosphonate 133 were synthesized from the reaction of 3 -phenyl-2,4-benzoxazine-1-one $\mathbf{3 0}$ with phosphonoacetate $\mathbf{3 1 b}, \mathbf{c}$ and phosphonoacetonitrile 31e, respectively (Scheme 34). ${ }^{18}$

Scheme 34.

4-(p-tolyl)-2,3-Benzoxazine-1-one 134 was treated with phosphonyl carbanion $\mathbf{3 1 a} \mathbf{- c}$, \mathbf{e} to give the substituted isoquinoline derivative 136 and 138 , via intermediates 135 and 138 , respectively (Scheme 35). ${ }^{18}$

134, $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
135
136, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Et}, \mathrm{CN}$

Scheme 35.

2-(phenylmethylene)-1,3-Diphenylpropanedione 139 was reacted with phosphonyl carbanion 140 in the presence of NaH and/or NaOEt to afford substituted pyran-3-ylphosphonate $\mathbf{1 4 2}$ via intermolecular 1:4 addition followed by intramolecular cyclization 141 (Scheme 36). ${ }^{46}$

Scheme 36.

3.2. Synthesis of six-membered heterocycles with more than one heteroatom

3.2.1. Pyridazines, oxazines, and oxathiines and their fused systems

2-Diazotrifluoroacetoacetate 143 was allowed to react with phosphonyl carbanion reagents 31c,e in acetonitrile to give olefinic adduct $\mathbf{1 4 4 a}$, \mathbf{b}. Reductive cyclization of $\mathbf{1 4 4 a}$ using triphenylphosphine yielded pyridazines 146 (Scheme 37). ${ }^{47}$

Scheme 37.

When compound 83 was reacted with diethyl cyanomethylphosphonate $31 \mathbf{e}$, indeno- $[1,2-b][1,4]$ oxazin$3 y l)$ phosphonate 148 together with indeno[2,1-d][1,3]-oxazole-2-carbonitrile $\mathbf{1 5 0}$ was obtained (Scheme 38). Compound 148 showed more significant antifungal activity against D. specifera and F. oxysporum. ${ }^{37}$

Scheme 38.

In a systematic study, the behavior of indandione oxime 83 towards diethyl vinylphosphonate 31a was reported and indeno $[1,2-b][1,4]$ oxazin- $3-y l)$ phosphonate 153 along with indeno[a]pyrrole $\mathbf{1 5 0}$ was obtained (Scheme 39). ${ }^{37}$

Barbituric acid-5-oximes 92 were reacted with phosphonyl carbanion reagents $\mathbf{3 1 b}, \mathbf{c}$ to afford the pyrimidino[4,5-b][1,4] oxazin-3yl)phosphonate 156 and spiro[pyrimidine[5, $\left.3^{6}\right][1,2]$ oxazole]- 4^{6} yl)phosphonate 158 via intermediates 155 and 157, respectively. Moreover, $[1,4]$ oxazino $[3,2-d]$ pyrimidin- 2,4 -dione phosphonates 160 were obtained via Perkin-type condensation of $\mathbf{9 2}$ with phosphonoacetonitrile 31f (Scheme 40). ${ }^{39}$

Scheme 39.

Scheme 40.

Similarly, pyrimido[4,5-b][1,4] oxazin-6-ylphosphonate 162 via intermediate 161, and pyrrolo-[3,2- d]pyri-midine-2,4-dione $\mathbf{1 6 5}$ were obtained from the reaction between compound $\mathbf{9 2}$ and vinylphosphonate 31a (Scheme 41). ${ }^{39}$

165, 21\%
Scheme 41.

Diethyl vinylphosphonate 31a was reacted with oxime $\mathbf{8 9}$ to give $[1,4]$ oxazinephosphonate $\mathbf{1 6 7}$ via intermediate 166 (Scheme 42). ${ }^{38}$

Scheme 42.

6-Hydroxybenzo $[d][1,3]$ oxathiol-2-one 58 was reacted with diethyl vinylphosphonate 31a in EtONa solution to furnish 1,4-benzoxathiin-2-ylphosphonate 168 in 64% yield via a cycloaddition reaction and tandem OH-alkylation as displayed in Scheme $43 .{ }^{28}$

58
31a
168, 64%
Scheme 43.

In the same fashion, 1,4-benzoxathiin-2yl-methylphosphonate 169 was obtained from the reaction between 58 and allylphosphonate $\mathbf{3 1 h}$ (Scheme 44). ${ }^{28}$

Scheme 44.

Benzoxathiinphosphonates 168 and 169 showed more significant antimicrobial activity than some known drugs ciprofloxacin and ketoconazole (standards) against a panel of representative gram-positive pathogenic microorganisms, gram-negative microorganisms, and fungi. ${ }^{28}$

3.2.2. Oxaphosphinine, diazaphosphinine, and thiadiazine and their fused systems

Phosphonates 171 and oxaphosphinine oxides 173 were synthesized, in almost equal yields, by reaction of 5 -bromo-2-acetylthiophene $\mathbf{1 7 0}$ with phosphonyl carbanion $\mathbf{3 1 b}, \mathbf{c}, \mathbf{e}$ in dry DMF containing LiH under reflux temperature (Scheme 45). ${ }^{27}$ The antiinflammatory activity in vivo of compound $\mathbf{1 7 3}$ was examined at $50 \mathrm{mg} / \mathrm{kg}$ body weight and displayed inhibitory activities, which were equivalent to that of the standard indomethacin at $100 \mathrm{mg} / \mathrm{kg}$. ${ }^{27}$

Scheme 45.

Enamine phosphonates $\mathbf{1 7 4}$ was reacted with nitriles to afford 1,5,2-diazaphosphine-2-oxides $\mathbf{1 7 5}$. While highly stable hydrogen-bonded amine-dihydrodiazaphosphinine adducts $\mathbf{1 7 6}$ were synthesized either by addition of diisopropyl amine to diazaphosphine oxide $\mathbf{1 7 5}$ or by the reaction of phosphonate $\mathbf{1 7 4}$ with nitriles in the presence of lithium diisopropylamine (LDA) (Scheme 46). ${ }^{48}$

Reactions between 1,2,4-triazole-3-thiol-4-aminoarylidenes 115 and diethyl [methyl(thioalkyl)]phosphonates methanolic sodium methoxide in the presence catalytic amount of DDQ yielded thiadiazine-2-phosphonates $\mathbf{1 7 7}$ ($\approx 72 \%$ yield). As displayed in Scheme 47, compounds 177 were formed via elimination of the alkylthiol motif from intermediate $\mathbf{1 7 6}$, followed by intramolecular cyclization (Scheme 47). ${ }^{43}$

$$
\begin{array}{r}
\mathrm{R}^{1}=4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} ; \mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et} \\
\text { Scheme } 47 .
\end{array}
$$

1,2,4-Triazole-3-thiol-4-aminoarylidenes 115 were reacted with diethyl(2-methylallyl)phosphonate $\mathbf{1 7 8}$ in $\mathrm{MeOH} / \mathrm{MeONa} / \mathrm{DDQ}$ solution to give the fused thiadiazine-5-methylphosphonates $\mathbf{1 8 0 a}, \mathbf{b}$ in $\approx 75 \%$ yield. According to the mechanism outlined in Scheme 48, Michael addition by imine 115 onto the isomerized ylide form of the phosphonate reagent resulted in the formation of final products $\mathbf{1 8 0}$ via tandem loss of the H_{2} molecule from the initially formed intermediate 179. ${ }^{43}$

4. Conclusion

Phosphoryl carbanions (WHE) are versatile and convenient intermediates for construction of many types of five- and six-membered heterocycles. This survey attempted to summarize the synthetic potential of phosphoryl carbanions, as starting precursors, in the synthesis of 5-and 6-membered heterocycles since 1985.

179
180

Scheme 48.

References

1. Wardle, N. J.; Bligh, S. W. A.; Hudson, H. R. Curr. Org. Chem. 2005, 9, 1803-1828.
2. Manier, M. L.; Hachey, D. L.; Bachmann, B. O. Org. Lett. 2005, 7, 2763-2765.
3. Seto, H.; Kuzuyama, T. Nat. Prod. Rep. 1999, 16, 589-596.
4. Fields, S. C. Tetrahedron 1999, 55, 12237-12273.
5. Franco, S.; Melendez, E.; Merchan, F. L. J. Heterocycl. Chem. 1995, 32, 1181-1183.
6. Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2007, 9, 1125-1128.
7. Konovets, A. I.; Kostyuk, A. N.; Pinchuk, A. M.; Tolmachev, A. A.; Fischer, A.; Jones, P. G.; Schmutzler, R. Heteroat. Chem. 2003, 14, 452-458.
8. Tolmachev, A. A.; Sviridon, A. I.; Kostyuk, A. N.; Pinchuk, A. M. Heteroat. Chem. 1995, 6, 449-459.
9. Abdel-Wahab, B. F.; Khidre, R. E. Turk. J. Chem. 2014, 38, 1-27.
10. Khidre, R. E.; Abdel-Wahab, Bakr F. Turk. J. Chem. 2013, 37, 1-27.
11. Abdou, W. M.; Khidre R. E. Curr. Org. Chem. 2012, 16, 913-930.
12. Abdel-Wahab, B. F.; El-Mansy, Khidre, R. E. J. Iran. Chem. Soc. 2013, 10, 1085-1102.
13. Abdou, W. M.; Barghash, R. F.; Khidre, R. E. Monatsh. Chem. 2013, 144, 1233-1242
14. Abdel-Wahab, B. F.; Khidre, R. E. J. Chem. 2013, Article ID 851297.
15. Albrecht, A.; Kedzia, J.; Koszuk, J. F.; Warzycha, E.; Janecki, T. Tetrahedron Lett. 2006, 47, 2353-2355.
16. Davis, F.A.; Wu, Y.; Xu, H.; Zhang, J. Org. Lett. 2006, 8, 2273-2276.
17. Mikolajczyk, M.; Krysiak, J. A.; Midura, W. H.; Wieczorek, M. W.; Rozycka-Sokolowska, E. J. Org. Chem. 2006, 71, 8818-8823.
18. Kamel, A. A. Phosphorus, Sulfur Silicon Relat. Elem. 2007, 182, 765-777.
19. Ferris, L.; Haigh, D. Moody, C. J. J. Chem. Soc., Perkin Trans. 1 1996, 2885-2888.
20. Brown, J. A. Tetrahedron Lett. 2000, 41, 1623-1626.
21. Broekhof, N. L. J. M.; van Elburg, P.; Hoff, D. J.; van der Gen, A. Recueil des Travaux Chimiques des Pays-Bas 1984, 103, 317-321.
22. Langlois, N.; Radom, M. O. Tetrahedron Lett. 1998, 39, 857-860.
23. Izquierdo, I.; Plaza, M. T.; Tamayo, J. A.; Rodriguez, M.; Martos, A. Tetrahedron 2006, 62, 6006-6011.
24. Izquierdo, I.; Plaza, M. T.; Franco, F. Tetrahedron: Asymmetry 2004, 15, 1465-1469.
25. Robins, D. J. Nat. Prod. Rep. 1995, 12, 413-418.
26. Abdou, W. M.; Salem, M. A. I.; Barghash, R. F. Synth. Commun. 2003, 33, 1341-1357.
27. Abdou, W. M.; Kamel, A. A.; Shaddy, A. A. Eur. J. Med. Chem. 2010, 45, 5217-5224.
28. Abdou, W. M.; Khidre, M.D. Kamel, A. A.; Awad, G. E. A. Monatsh. Chem. 2014, 145, 675-682.
29. Khusainova, N. G.; Irtuganova, E. A.; Pudovik A. N. Russ. J. Gen. Chem. 2001, 71, 337-338.
30. Abdou, W. M.; Khidre, M. D.; Khidre, R. E. Eur. J. Med. Chem. 2009, 44, 526-532.
31. Chen, H.; Qian, D.; Xu, G.; Liu, Y.; Chen, X.; Shi, X.; Cao, R.; Liu, L. Synth. Commun. 1999, 29, 4025-4033.
32. Akacha, A. B.; Ayed, N.; Baccar, B.; Charrier, C. Phosphorus, Sulfur, Silicon Relat. Elem. 1988, 40, 63-68.
33. Hassen, Z.; Akacha, A. B.; Hajjem, B. Phosphorus, Sulfur, Silicon Relat. Elem. 2003, 178, 2349-2356.
34. Barghash, R. F.; Ganoub, N. A.; Abdou, W. M. Monatsh. Chem. 2014, 145, 1621-1630.
35. Armstrong, S. K.; Warren, S.; Collington, E. W.; Nayler, A. Tetrahedron Lett. 1991, 32, 4171-4174.
36. Armstrong, S. K.; Collington, E. W.; Knight, J. G.; Naylorb, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1993, 13, 1433-1447.
37. Abdou, W. M.; Sediek, A. A.; Khidre, M. D. Monatsh. Chem. 2008, 139, 617-623.
38. Abdou, W. M.; Salem, M. A. I.; El-Khoshnieh, Y. O.; Barghash, R. F. Synlett. 2002, 9, 1417-1422.
39. Abdou, W. M.; Salem, M. A. I.; Barghash, R. F. Arkivoc 2007, xv, 45-60.
40. Abdou, W. M.; Khidre, M. D. Phosphorus, Sulfur and Silicon 2004, 179, 1307-1322.
41. Liu, F.; Palmer, D. C.; Sorgi, K. L. Tetrahedron Lett. 2004, 45, 1877-1880.
42. Mohamed, N. R.; El-Saidi, M. M. T.; Hassaneen, H. M.; Erian, A. W. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 521-528.
43. Abdou, W. M.; Ganoub, N. A.; Sabry, E. Acta Pharm. 2014, 64, 267-284.
44. Koldobskii, A. B.; Solodova, E. V.; Godovikov, I. A.; Verteletskii, P. V.; Kalinin, V. N. J. Fluorine Chem. 2010, 131, 873-878.
45. Arimitsu, S.; Konno, T.; Gupton, J. T.; Ishihara, T.; Yamanaka, H. J. Fluorine Chem. 2006, 127, 1235-1241.
46. Arsanious, M. N.; Maigali, S. S.; Boulos, L. S. Int. J. Chem. Tech. Res. 2013, 5, 2003-2010.
47. Guillaume, M.; Janousek, Z.; Viehe, H. G. Synthesis 1995, 8, 920-922.
48. Palacios, F.; Ochoa de Retana, A. M.; Pascual, S.; López de Munain, R.; Oyarzabal, J.; Ezpeleta, J. M. Tetrahedron 2005, 61, 1087-1094.

[^0]: *Correspondence: rizkkhidre@yahoo.com

