

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Turk J Chem (2016) 40: 296 – 304 © TÜBİTAK doi:10.3906/kim-1506-15

Research Article

The role of N-heterocyclic carbene substituents on ruthenium(II) complexes in the catalytic transfer hydrogenation of acetophenone

Muhammet Emin GÜNAY*, Gülcan GENÇAY ÇOĞAŞLIOĞLU

Department of Chemistry, Faculty of Arts and Science, Adnan Menderes University, Aydın, Turkey

Received: 05.06.2015	•	Accepted/Published Online: 27.08.2015	•	Final Version: 02.03.2016

Abstract: The novel ruthenium(II) complexes $[RuCl_2(NHC)(p-cymene)]$, **3a**–e, containing 1-alkyl-3-benzylimidazol-2-ylidene ligands were prepared. All synthesized compounds were characterized by NMR spectroscopy and elemental analyses. Ru(II)-NHC complexes were tested as catalysts for the transfer hydrogenation of acetophenone, showing modest to high activity in this reaction. The results revealed that efficiencies depend on the substituents of the benzene ring of the benzyl on the N atom of the NHC ring.

Key words: N-heterocyclic carbene ligands, substituent effect, transfer hydrogenation, ruthenium complexes, silver-N-heterocyclic carbene complexes

1. Introduction

N-heterocyclic carbenes (NHCs), which have already been employed as supporting ligands for various metalcatalyzed reactions, are viewed as promising alternatives to phosphines^{1,2} due to their strong σ -donating ability, and thermal and oxidative stability as well as electronic and steric tenability.³⁻⁵ Recently, NHC ligands have been used in metal complex catalysts for both direct and transfer hydrogenation.⁶ Transfer hydrogenation of unsaturated compounds is an important catalytic reduction for preparing the corresponding saturated products. This method is often more convenient and frequently less hazardous than direct hydrogenation with H₂ gas.^{7,8} The first application on NHC complexes for the transfer hydrogenation reaction was reported by Nolan in 2001.⁹ Moreover, transfer hydrogenation and different carbene or carbene-phosphine systems containing Rh,¹⁰ Ir,⁸ Ru,^{11,12} and Ni¹³ have been reported.

The transition metal complexes of NHC ligands bearing alkylated benzyl substituents on the N atom(s) of hetero rings are found to be more efficient catalysts than the simple benzyl substituted ones in C–C bond formation reactions.^{14–16} Therefore, the main objective of this study was to investigate the influence of alkylated benzyl substituent while keeping the other N-substituent constant.

While we were doing this study, Yaşar and co-workers reported unsaturated Ru-NHC complexes containing alkylated benzyl substituent.¹⁷ They focused on the synthesis, characterization, and catalytic application of these complexes.

In the present paper, a series of easily prepared new imidazol-2-ylidene ruthenium(II) complexes and their catalytic application in transfer hydrogenation reaction of acetophenone are reported. The characterization of the complexes was accomplished by analytical and spectral methods.

^{*}Correspondence: megunay@adu.edu.tr

2. Results and discussion

2.1. Preparation of imidazolium salts (1a-e)

Unsymmetric dialkylimidazolium salts 1a-e were prepared according to known methods^{18,19} as conventional NHC precursors, starting from commercially available N-methylimidazole or N-buthylimidazole.

2.2. Preparation of silver-carbene complexes (2a-e)

All silver complexes were prepared by deprotonation of imidazolium salts (1a-e) with the mild base Ag₂O in dichloromethane at room temperature.¹⁹ For complexes **2a**–e, a stoichiometry of one half equivalent of Ag₂O for one equivalent of ligand precursor was used (Scheme 1). The formation of the silver(I) complexes (2a-e) was confirmed by the absence of the ¹H NMR resonance of the acidic imidazolium C2 proton. The silver(I) bound carbene carbon is identified in the ¹³C NMR spectra of the complexes at the typically high-frequency shift at around 180 ppm, indicating the successful formation of the desired complexes.²⁰ However, resonances for benzylic protons were observed at around 5.22–5.36 ppm in all spectra.

Scheme 1. Synthesis of [RuCl₂(NHC)(*p*-cymene)] complexes, 3.

2.3. Preparation of ruthenium carbene complexes (3a-e)

The ruthenium(II)-carbene complexes $(3\mathbf{a}-\mathbf{e})$ were synthesized in quantitative yields at a milder condition by transmetallation using Ag(I) complexes $(2\mathbf{a}-\mathbf{e})$ as a carbene transfer reagent (Scheme 1). Compounds **1a–e** were first reacted with silver(I) oxide to form silver carbene complexes **2a–e** and then treatment of **2a–e** with $[\operatorname{RuCl}_2(p\text{-cymene})]_2$ in CH₂Cl₂ led to formation of a precipitate (AgBr), affording the Ru(II)-NHC complexes. After 24 h stirring, the mixtures were filtered through Celite and the crude products were purified by flash column chromatography and recrystallized from CH₂Cl₂/Et₂O as orange solids. It is also possible to synthesize these ruthenium(II) complexes via in situ transmetallation with Ag(I)-NHCs. The successful carbene transfer is confirmed by analytical methods. The most indicative result is shown by a typical carbene carbon signal at around 171.9–174.4 ppm in ¹³C NMR spectroscopy.

There is a possibility that the *p*-cymene ligand can be displaced by an aryl group of the benzyl to generate a bidentate ligand.^{21,22} In order to eliminate the existence of such species in catalytic media, we have the complex **3d** under catalytic conditions. The control experiment (heating a solution of **3d** in ^{*i*} PrOH for 2 h at 82 °C) indicated essentially no change in ¹H NMR. This shows that the imidazole moiety is more resistant than the saturated analogue (imidazolidin moiety).

2.4. Catalytic studies

Complexes **3a**–**e** were tested as catalysts for transfer hydrogenation of acetophenone to 1-phenylethanol using 2-propanol in the presence of KOH (Scheme 2). The catalytic experiments were carried out using 4 mmol of acetophenone, 0.02 mmol (0.5 mol%) of NHC-ruthenium complexes (**3a**–**e**), 0.2 mmol of KOH, and 5 mL of 2-propanol. The catalyst was added to a solution of 2-propanol containing KOH, which was kept at 82 °C for 30 min and acetophenone was added to this solution.

Scheme 2. Transfer hydrogenation of acetophenone.

The results in Table 1 (entries 1–6) show that the role of base affects the transfer hydrogenation reaction. In contrast to KOH, other bases such as Na_2CO_3 , NaOAc, triethylamine, pyridine, and K_2CO_3 showed less conversion and the completion of the reaction was much longer than that achieved with KOH. This revealed that, among the bases, KOH is the most suitable for the transfer hydrogenation reaction. The role of Ru-NHC complex was screened and a control experiment (Table 2) produced only a trace amount of alcohol in the absence of Ru-NHC complex.

The activity of complexes $3\mathbf{a}$ -e largely depends on the nature of N-substituents and decreases in the order $3\mathbf{d} > 3\mathbf{c} \sim 3\mathbf{e} > 3\mathbf{b} > 3\mathbf{a}$, indicating that $3\mathbf{d}$ shows the most noticeable activity and a maximum yield of 93% was achieved after 4 h (Table 2; Figure). The essential features for efficient transfer hydrogenation with Ru-NHC catalysts appear to include a flexible and sterically demanding benzyl substituent on the N atom of NHC. The successful introduction of alkylated benzyl substituent to the nitrogen of imidazole ligand offers additional options for fine-tuning [RuCl₂(NHC)(*p*-cymene)] catalyst precursors. Comparing the values observed here with literature values,²³ it is shown that the turnover-frequency (TOF) values were low due to the reduction of the activity of these catalysts. With the same catalytic conditions, acetophenone substrate was

catalyzed by $[\operatorname{RuCl}_2(p\text{-cymene})]_2$ metal complex (Table 2, entry 6). However, the $[\operatorname{RuCl}_2(p\text{-cymene})]_2$ gave very low conversion in 240 min. On the other hand, electronic properties of the substituents on the phenyl ring of the ketone caused the changes in the reduction rate. A *para*-substituted acetophenone with an electrondonor substituent, i.e. 4-methyl, is reduced more slowly than acetophenone (Table 2, entry 7).²⁴ In addition, the introduction of electron-withdrawing substituents, such as Cl, to the *para*-position of the aryl ring of the ketone decreased the electron density of the C=O bond so that the activity was improved, giving rise to easier hydrogenation (Table 2, entry 8).^{25,26}

Table 1. Performance of the 3d catalyst in the transfer hydrogenation of acetophenone in the presence of different bases (temperature = 80 ° C).

Entry	Base used	Solvent	Reaction time	Product yield (%)
1	КОН	IPA	4	93
2	Na ₂ CO ₃	IPA	15	45
3	NaOAc	IPA	15	40
4	Triethlyamine	IPA	15	20
5	Pyridine	IPA	15	30
6	K ₂ CO ₃	IPA	15	40

Table 2. Catalytic activity of Ru(II)-NHC complexes for transfer hydrogenation^{*a*} of acetophenone.

Entry	Catalyst	R	cat. (%)	$t \pmod{t}$	Conv. $(\%)^{b,c}$	TOF $(h^{-1})^d$
1	3a	Η	0.5	240	34	17.0
2	3b	Η	0.5	240	45	22.5
3	3c	Η	0.5	240	85	42.5
4	3d	Η	0.5	240	93	46.5
5	3 e	Η	0.5	240	81	40.5
6	$[\operatorname{RuCl}_2(p ext{-cymene})]_2$	Η	0.5	240	14	7.0
7	3d	CH_3	0.5	240	27	13.5
8	3d	Cl	0.5	240	56	28.0
9	—	Н	—	240	5^e	—

^{*a*}Reactions were carried out at 82 $^{\circ}$ C using a 0.1 M acetophenone solution in 2-propanol and KOH. ^{*b*}Determined by GC analysis with an HP-5 capillary column. Yields are based on aryl ketone.

^cInternal standard was not used.

^{*d*}Referred to the reaction time indicated in column; $TOF = (mol \text{ product/mol Ru(II) cat.}) \times h^{-1}$. ^{*e*}No catalyst.

Herein, we report the synthesis and catalytic application of Ru-NHC complexes, which have different steric and electronic properties. Although catalytic activities of complexes bearing similar groups were quite close to each other, **3d** containing a NHC with a small methyl group exhibited better catalytic performance than the others.

3. Conclusions

From readily available N-methylimidazole or N-butylimidazole, $[RuCl_2(NHC)(p-cymene)]$ complexes (**3a**–e) were readily prepared by transmetallation from Ag-NHC complexes and their catalytic activity was investigated in the transfer hydrogenation reaction of acetophenone. The best catalyst among the examined compounds was $[RuCl_2(NHC)(p-cymene)]$ (**3d**) for transfer hydrogenation reactions. It is clear that the introduction of the

alkylated benzyl group to the nitrogen atom increased transfer hydrogenation performance. Presumably, the flexible character of N-benzyl systems might be electronically more sensitive and tunable to the need of the substrates to enhance the transfer hydrogenation performance,²⁷ and the Ar group of the alkylated benzyl substituent may protect the active center via π -interactions.²⁸

Figure. Time dependence of the catalytic transfer hydrogenation of acetophenone.

4. Experimental

4.1. General methods and materials

All reactions were performed under Ar using standard Schlenk techniques. Solvents were dried prior to use. All chemicals were obtained from commercial sources and were used as received. Benzyl bromides²⁹ and $1a^{30}$ $(1b-d)^{31}$ were synthesized according to the literature. ¹H and ¹³C NMR measurements were performed using a Varian AS 400 spectrometer operating at 400 and 100 MHz, respectively. Chemical shifts were reported in ppm relative to TMS for ¹H and ¹³C NMR spectra. All catalytic reactions were monitored on an Agilent 6890N GC system by GC-flame ionization detection with an HP-5 column of 30 m length, 0.32 mm diameter, and 0.25 μ m film thickness. The GC parameters for transfer hydrogenation of ketone were as follows: initial temperature, 60 °C; temperature ramp, 10 °C/min; final temperature, 280 °C; final time 15.00 min; injector port temperature, 110 °C; detector temperature, 300 °C; injection volume, 1.0 μ L. Melting points were measured in open capillary tubes with a Stuart SMP 30 melting point apparatus. Elemental analyses were performed by ODTÜ Microlab (Ankara, Turkey).

4.2. Synthesis of imidazolium salt, 1e

To a solution of N-butylimidazole (10 mmol) in toluene (10 mL) was added slowly 2,3,4,5,6-pentamethylbenzyl bromide (10 mmol) at 25 °C over 24 h. Diethyl ether (15 mL) was added to obtain a white crystalline solid, which was filtered off. The solid was washed with diethyl ether (3 × 15 mL) and dried under vacuum. The crude product was recrystallized from EtOH/Et₂O.

1e: Yield: 3.25 g (89%), mp 117–118 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.86$ (t, 3H, J = 7.4 Hz, CH₃CH₂CH₂CH₂N); 1.29 (m, 2H, CH₃CH₂CH₂CH₂N); 1.83 (m, 2H, CH₃CH₂CH₂CH₂N); 2.13 (s, 6H, C₆(CH₃)₅-o-CH₃); 2.14 (s, 6H, C₆(CH₃)₅-m-CH₃); 2.17 (s, 3H, C₆(CH₃)₅-p-CH₃); 4.29 (t, 2H, J = 7.2

Hz, CH₃ CH₂ CH₂ CH₂ CH₂N); 5.57 (s, 2H, NC H_2 C₆ (CH₃)₅); 6.83 (t, 1H, J = 1.7 Hz, NC H CHN); 7.54 (t, 1H, J = 1.7 Hz, NCHC HN); 10.14 (s, 1H, NC HN). ¹³ C NMR (100 MHz, CDCl₃): $\delta = 13.4$ (CH₃ CH₂ CH₂ CH₂ CH₂ CH₂); 16.8 (CH₃CH₂ CH₂ CH₂ CH₂); 16.9 (C₆ (CH₃)₅-o-CH₃); 17.2 (C₆ (CH₃)₅-m-CH₃); 19.4 (C₆ (CH₃)₅-p-CH₃); 32.1 (CH₃ CH₂ CH₂ CH₂ N); 49.0 (CH₃ CH₂ CH₂ CH₂ N); 50.0 (NC H₂ C₆ (CH₃)₅); 120.8 (NC HCHN); 122.2 (NC HC HN); 125.3 (C₆ (CH₃)₅); 133.5 (C₆ (CH₃)₅); 133.7 (C₆ (CH₃)₅); 136.4 (C₆ (CH₃)₅); 137.2 (NC HN).

4.3. General procedure for the synthesis of silver-NHC complexes (2a-e)

A solution of imidazolium salt (1a–e, 1 mmol) and Ag₂O (0.5 mmol) in dichloromethane was stirred at room temperature for 8 h in the dark. The color of the suspension gradually changed from black to colorless. The reaction mixture was filtered through Celite and the solvent removed under reduced pressure to give a white solid. The crude product was recrystallized from CH_2Cl_2/Et_2O at room temperature.

2a: Yield: 0.282 g (70%), mp 165–166 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.83$ (s, 6H, NC H_3); 5.28 (s, 4H, NC H_2 C₆H₅); 6.93 (d, J = 2.0 Hz, 2H, NCHCHN); 6.98 (d, J = 2.0 Hz, 2H, NCHCHN); 7.22–7.24 (dd, J = 7.0 Hz, J = 2.0 Hz, 4H, C₆H₅); 7.30–7.33 (m, 6H, C₆H₅). ¹³C NMR (100 MHz, CDCl₃): $\delta = 38.9$ (NCH₃); 55.6 (NCH₂C₆H₅); 121.2 (NCHCHN); 122.6 (NCHCHN); 127.8 (C₆H₅); 128.6 (C₆H₅); 129.1 (C₆H₅); 135.6 (C₆H₅); 181.9 (Ag-C_{carbene}).

2b: Yield: 0.282 g (70%), mp 168–169 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.18$ (s, 12H, C₆H₂ (CH₃)₃o-CH₃); 2.22 (s, 6H, C₆H₂ (CH₃)₃-p-CH₃); 3.79 (s, 6H, NCH₃); 5.22 (s, 4H, NCH₂C₆H₂ (CH₃)₃); 6.47 (d, 2H, J = 4.0 Hz, NCHCHN); 6.84 (d, 2H, J = 4.0 Hz, NCHCHN); 6.85 (s, 4H, C₆H₂ (CH₃)₃). ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.1$ (C₆H₂ (CH₃)₃-o-CH₃); 21.2 (C₆H₂ (CH₃)₃-p-CH₃); 39.2 (NCH₃); 49.7 (NCH₂C₆H₂ (CH₃)₃); 120.1 (NCHCHN); 122.0 (NCHCHN); 127.8 (C₆H₂ (CH₃)₃); 129.9 (C₆H₂ (CH₃)₃); 138.0 (C₆H₂ (CH₃)₃); 139.2 (C₆H₂ (CH₃)₃); 181.8 (Ag-C_{carbene}). Elemental analyses (%) calc. for C₂₈H₃₆Ag₂ Br₂N₄: C, 41.82; H, 4.51; N, 6.97; found: C, 42.27; H, 5.02; N, 6.81.

2c: Yield: 0.271 g (65%), mp 185–186 °C. ¹ H NMR (400 MHz, CDCl₃): $\delta = 2.17$ (s, 12H, C₆H(CH₃)₄o-CH₃); 2.25 (s, 12H, C₆H(CH₃)₄-m-CH₃); 3.86 (s, 6H, NCH₃); 5.36 (s, 4H, NCH₂C₆H(CH₃)₄); 6.57 (d, 2H, J = 4.0 Hz, NCHCHN); 6.90 (d, 2H, J = 4.0 Hz, NCHCHN); 7.04 (s, 2H, C₆H(CH₃)₄). ¹³C NMR (100 MHz, CDCl₃): $\delta = 16.1$ (C₆H(CH₃)₄-o-CH₃); 20.7 (C₆H(CH₃)₄-m-CH₃); 39.3 (NCH₃); 50.4 (NCH₂C₆H(CH₃)₄); 120.4 (NCHCHN); 121.8 (NCHCHN); 130.6 (C₆H(CH₃)₄); 132.9 (C₆H(CH₃)₄); 134.0 (C₆H(CH₃)₄); 134.9 (C₆H(CH₃)₄); 182.2 (Ag-C_{carbene}). Elemental analyses (%) calc. for C₃₀H₄₀Ag₂Br₂N₄: C, 43.30; H, 4.84; N, 6.73; found: C, 42.71; H, 5.00; N, 6.87.

2d: Yield: 0.323 g (75%), mp 215–216 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.14$ (s, 12H, C₆ (CH₃)₅o-CH₃); 2.16 (s, 12H, C₆ (CH₃)₅-m-CH₃); 2.20 (s, 6H, C₆ (CH₃)₅-p-CH₃); 3.78 (s, 6H, NCH₃); 5.28 (s, 4H, NCH₂C₆ (CH₃)₅); 6.52 (d, 2H, J = 4.0 Hz, NCHCHN); 6.83 (d, 2H, J = 4.0 Hz, NCHCHN). ¹³C NMR (100 MHz, CDCl₃): $\delta = 17.0$ (C₆ (CH₃)₅-o-CH₃); 17.1 (C₆ (CH₃)₅-m-CH₃); 17.4 (C₆ (CH₃)₅-p-CH₃); 39.3 (NCH₃); 50.8 (NCH₂C₆ (CH₃)₅); 120.5 (NCHCHN); 121.8 (NCHCHN); 127.8 (C₆ (CH₃)₅); 133.6 (C₆ (CH₃)₅); 133.7 (C₆ (CH₃)₅); 136.7 (C₆ (CH₃)₅); 181.4 (Ag-C_{carbene}). Elemental analyses (%) calc. for C₃₂H₄₄Ag₂Br₂N₄: C, 44.68; H, 5.16; N, 6.51; found: C, 43.95; H, 5.27; N, 6.48.

2e: Yield: 0.364 g (77%), mp 120–121 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, 6H, J = 7.2 Hz, $CH_3CH_2CH_2CH_2N$); 1.31 (m, 4H, $CH_3CH_2CH_2CH_2N$); 1.77 (m, 4H, $CH_3CH_2CH_2CH_2N$); 2.18 (s, 12H, $C_6(CH_3)_5$ -o-CH₃); 2.21 (s, 12H, $C_6(CH_3)_5$ -m-CH₃); 2.24 (s, 6H, $C_6(CH_3)_5$ -p-CH₃); 4.08 (t, 4H,

 $J = 7.2 \text{ Hz}, \text{ CH}_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{N}; 5.33 \text{ (s, 4H, NC}H_{2}\text{C}_{6}(\text{CH}_{3})_{5}); 6.56 \text{ (d, 2H, } J = 2.0 \text{ Hz}, \text{ NC}H\text{CHN}); 6.88 \text{ (d, 2H, } J = 2.0 \text{ Hz}, \text{ NCHC}H\text{N}). {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_{3}): \delta = 13.5 (CH_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{N}); 16.7 (CH_{3}CH_{2}\text{CH}_{2}\text{CH}_{2}\text{N}); 16.8 (C_{6}(\text{CH}_{3})_{5} - o - CH_{3}); 17.1 (C_{6}(\text{CH}_{3})_{5} - m - CH_{3}); 20.0 (C_{6}(\text{CH}_{3})_{5} - p - CH_{3}); 33.4 (CH_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{N}); 50.6 (CH_{3}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{N}); 52.0 (NCH_{2}C_{6}(\text{CH}_{3})_{5}); 120.0 (NCHCHN); 127.6 (C_{6}(\text{CH}_{3})_{5}); 133.2 (C_{6}(\text{CH}_{3})_{5}); 133.4 (C_{6}(\text{CH}_{3})_{5}); 136.3 (C_{6}(\text{CH}_{3})_{5}); 180.1 (Ag-C_{carbene}). Elemental analyses (\%) calc. for C_{38}H_{56}Ag_{2}Br_{2}N_{4}: C, 48.33; H, 5.98; N, 5.93\%. Found: C, 48.12; H, 5.94; N, 6.00\%.$

4.4. General procedure for the synthesis of ruthenium-NHC complexes (3a-e)

The ruthenium complexes were prepared by means of the Ag-carbene transfer method developed by Wang and Lin.^{32,33} The silver carbene complexes, which should subsequently serve as a carbene-transfer agent, were synthesized by the reaction of Ag₂O with 2 equiv. of salts (1a-e) in CH₂Cl₂ at ambient temperature. We conveniently reacted Ag-NHC with [RuCl₂(*p*-cymene)]₂ in the dark and the mixture was allowed to stir for 12 h at room temperature. The solution was filtered through Celite, and the solvent was removed under vacuum to afford the product as a red-brown powder. The crude product was recrystallized from CH₂Cl₂/Et₂O at room temperature.

3a: Yield: 0.276 g (90%), mp 165–166 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.23$ (d, J = 4.0 Hz, 6H, (*p*-cymene)-CH(CH₃)₂); 2.04 (s, 3H, (*p*-cymene)-CH₃); 2.16 (NCH₃); 2.90 (m, 1H, (*p*-cymene)-CH(CH₃)₂); 4.02 (s, 2H, NCH₂C₆H₅); 4.99 (m, 1H, (*p*-cymene-CH); 5.32 (m, 1H, (*p*-cymene-CH); 5.65 (s, 2H, (*p*-cymene-CH)); 6.84 (d, J = 4.0 Hz, 1H, NCHCHN), 6.98 (d, J = 4.0 Hz, 1H, NCHCHN); 7.24 (m, 1H, C₆H₅), 7.33 (m, 4H, C₆H₅). ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.6$ (*p*-cymene-CH(CH₃)₂); 30.7 (*p*-cymene-CH(CH₃)₂); 39.7 (NCH₃); 54.8 (CH₂C₆H₄); 99.0 (*p*-cymene-C); 108.5 (*p*-cymene-CH), 123.0 (NCHCHN); 123.9 (NCHCHN); 127.6 (C₆H₅); 127.9 (C₆H₅); 128.8 (C₆H₅); 137.7 (C₆H₅); 174.4 (Ru-C_{carbene}). Elemental analyses (%) calc. for C₂₁H₂₆Cl₂N₂Ru: C, 52.72; H, 5.48; N, 5.86; found: C, 52.57; H, 5.53; N, 5.96.

3b: Yield: 0.233 g (90%), mp 210–211 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.26$ (d, J = 4.0 Hz, 6H, $(p\text{-cymene})\text{-CH}(CH_3)_2$); 2.14 (s, 6H, $C_6H_2(CH_3)_3$ - $p\text{-C}H_3$, $(p\text{-cymene})\text{-C}H_3$); 2.23 (s, 6H, $C_6H_2(CH_3)_3$ - $o\text{-C}H_3$); 2.28 (NCH₃); 2.95 (m, 1H, $(p\text{-cymene})\text{-C}H(CH_3)_2$); 4.01 (s, 2H, NCH₂C₆H₂(CH₃)₃); 5.23 (m, 2H, (p-cymene-CH)); 5.57 (d, J = 4.0 Hz, 2H, (p-cymene-CH)); 6.33 (s, 1H, NCHCHN); 6.81 (s, 1H, NCHCHN); 6.90 (s, 2H, $C_6H_2(CH_3)_3$). ¹³C NMR (100 MHz, CDCl₃): $\delta = 18.8$ ($p\text{-cymene-CH}(CH_3)_2$); 20.1 ($C_6H_2(CH_3)$ - $o\text{-C}H_3$, $C_6H_2(CH_3)$ - $p\text{-C}H_3$); 21.0 ($p\text{-cymene-C}H_3$); 30.9 (NCH₃); 39.8 ((p-cymene-C); CH(CH₃)₂); 49.5 (NCH₂C₆H₂(CH₃)₃); 84.6 (p-cymene-C); 99.6 (p-cymene-CH); 107.9 (p-cymene-C); 120.5 (NCHCHN); 122.6 (NCHCHN); 128.5 ($C_6H_2(CH_3)_3$); 129.4 ($C_6H_2(CH_3)_3$); 138.5 ($C_6H_2(CH_3)_3$), 172.4 (Ru- $C_{carbene}$). Elemental analyses (%) calc. for $C_{24}H_{32}Cl_2N_2Ru$: C, 55.38; H, 6.20; N, 5.38; found: C, 55.70; H, 6.65; N, 5.65.

3c: Yield: 0.212 g (80%), mp 225–226 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.29$ (d, J = 4.0 Hz, 6H, (*p*-cymene)-CH(CH₃)₂); 2.15 (s, 6H, C₆H(CH₃)₄-*o*-CH₃); 2.17 ((*p*-cymene)-CH₃); 2.25 (s, 9H, C₆H(CH₃)₄-*m*-CH₃, NCH₃); 2.98 (m, 1H, (*p*-cymene)-CH(CH₃)₂); 4.04 (s, 2H, NCH₂C₆H(CH₃)₄); 5.25 (d, J = 4.0 Hz, 2H, (*p*-cymene-CH)); 5.50 (d, J = 4.0 Hz, 2H, (*p*-cymene-CH)); 6.35 (s, 1H, NCHCHN); 6.81 (s, 1H, NCHCHN); 7.01 (s, 2H, C₆H(CH₃)₄). ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.9$ (C₆H(CH₃)₄-*o*-CH₃); 18.8 (*p*-cymene-CH(CH₃)₂); 20.4 (C₆H(CH₃)₄-*m*-CH₃, *p*-cymene-CH₃); 30.9 (NCH₃); 39.8 ((*p*-cymene)-CH(CH₃)₂); 50.2 (NCH₂C₆H(CH₃)₄); 84.5 (*p*-cymene-C); 99.5 (*p*-cymene-C); 107.7 (*p*-cymene-CH); 120.9

(NCHCHN); 122.5 (NCHCHN); 131.3 $(C_6 H(CH_3)_4)$; 132.2 $(C_6 H(CH_3)_4)$; 134.3 $(C_6 H(CH_3)_4)$; 172.1 (Ru- $C_{carbene}$). Elemental analyses (%) calc. for C₂₅H₃₄Cl₂N₂Ru: C, 56.17; H, 6.41; N, 5.24; found: C, 56.49; H, 5.88; N, 5.27.

3d: Yield: 0.232 g (85%), mp 235–236 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.29$ (d, J = 4.0 Hz, 6H, (p-cymene)-CH(CH₃)₂); 2.17 (s, 3H, (p-cymene)-CH₃); 2.20 (s, 6H, C₆ (CH₃)₅-o-CH₃); 2.23 (s, 6H, C₆ (CH₃)₅-m-CH₃); 2.27 (s, 6H, C₆ (CH₃)₅-p-CH₃, NCH₃); 2.97 (m, 1H, (p-cymene)-CH(CH₃)₂); 4.03 (s, 2H, NCH₂C₆ (CH₃)₅); 5.26 (d, J = 4.0 Hz, 2H, (p-cymene-CH)); 5.48 (d, J = 4.0 Hz, 2H, (p-cymene-CH)); 6.40 (s, 1H, NCHCHN); 6.80 (s, 1H, NCHCHN). ¹³C NMR (100 MHz, CDCl₃): $\delta = 16.8$ (C₆ (CH₃)₅-o-CH₃, p-cymene-CH₃); 17.0 (C₆ (CH₃)₅-m-CH₃); 17.1 (C₆ (CH₃)₅-p-CH₃); 18.8 (p-cymene-CH(CH₃)₂); 30.9 (NCH₃); 39.8 ((p-cymene)-CH(CH₃)₂); 50.7 (NCH₂C₆ (CH₃)₅); 84.4 (p-cymene-CH); 99.3 (p-cymene-CH); 107.7 (p-cymene-C); 121.0 (NCHCHN); 122.4 (NCHCHN); 128.7 (C₆ (CH₃)₅); 133.1 (C₆ (CH₃)₅); 135.7 (C₆ (CH₃)₅); 171.9 (Ru-C_{carbene}). Elemental analyses (%) calc. for C₂₆H₃₆Cl₂N₂Ru: C, 56.93; H, 6.61; N, 5.11; found: C, 57.24; H, 6.10; N, 5.14.

3e: Yield: 0.196 g (76%), mp 125–127 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.96$ (t, J = 7.20 Hz, 3H, NCH₂CH₂CH₂CH₃); 1.28 (d, J = 6.65 Hz, 6H, (p-cymene)-CH(CH₃)₂); 1.42 (m, 2H, NCH₂CH₂CH₂CH₂CH₃); 2.15 (s, 3H, (p-cymene)-CH₃); 2.19 (s, 6H, C₆(CH₃)₅-o-CH₃); 2.23 (s, 6H, C₆(CH₃)₅-m-CH₃); 2.27 (s, 6H, C₆(CH₃)₅-p-CH₃); 2.35 (s, 2H, NCH₂CH₂CH₂CH₂CH₃); 2.94 (m, 1H, (p-cymene)-CH(CH₃)₂); 4.78 (m, 2H, NCH₂C₆(CH₃)₅); 5.24 (br, 2H, (p-cymene-CH)); 5.49 (br, 2H, (p-cymene-CH)); 6.41 (d, J = 1.96 Hz, 1H, NCHCHN); 6.87 (d, J = 1.96 Hz, 1H, NCHCHN). ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.9$ (NCH₂CH₂CH₂CH₂CH₃); 16.8 (C₆(CH₃)₅-o-CH₃, p-cymene-CH₃); 17.0 (C₆(CH₃)₅-p-CH₃); 33.8 ((p-cymene)-CH(CH₃)₂); 50.7 (NCH₂C₆(CH₃)₅); 51.5 (NCH₂CH₂CH₂CH₃); 60.1 (NCH₂CH₂CH₂CH₃); 84.6 (p-cymene-CH); 99.2 (p-cymene-CH); 107.0 (p-cymene-C); 120.0 (NCHCHN); 121.2 (NCHCHN); 128.8 (C_6 (CH₃)₅); 132.8 (C_6 (CH₃)₅); 135.7 (C_6 (CH₃)₅); 171.9 (Ru-C_{carbene}). Elemental analyses (%) calc. for C₂₉H₄₂Cl₂N₂Ru: C, 58.97; H, 7.17; N, 4.74; found: C, 58.74; H, 7.53; N, 4.96.

4.5. General procedure for transfer hydrogenation experiments

NHC-Ru(II) complex (0.02 mmol-0.5 mol%, **3a**–e) and KOH (0.2 mmol) were introduced into a Schlenk tube under argon. Then 2-propanol (5 mL) was added to the reaction vessel. After stirring at 82 °C for 30 min under argon, acetophenone (4 mmol) was added. After the desired reaction time the solution was allowed to cool and quenched with 1 M HCl, extracted with diethyl ether, and the organic phase separated. The resulting organic phase was filtered to remove insoluble inorganic material and the reaction progress was monitored by GC. The product yield was determined by GC. The results for each experiment are averages over two runs.

Acknowledgement

This work was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No: 110T765) and the Scientific Research Unit (BAP; Project No: FEF-12026) of Adnan Menderes University.

GÜNAY and GENÇAY ÇOĞAŞLIOĞLU/Turk J Chem

References

- 1. Simon, M. O.; Li, C. J. Chem. Soc. Rev. 2012, 41, 1415–1427.
- 2. Li, C. J. Chem. Rev. 2005, 105, 3095-3166.
- 3. de Frémont, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009, 253, 862-892.
- 4. Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248, 2247-2273.
- 5. Dröge, T.; Glorius, F. Angew. Chem. Int. Ed. 2010, 49, 6940–6952.
- 6. DePasquale, J.; Kumar, M.; Zeller, M.; Papish, E. T. Organometallics 2013, 32, 966–979.
- 7. Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–102.
- 8. Malacea, R.; Poli, R.; Manoury, E. Coord. Chem. Rev. 2010, 254, 729-752.
- 9. Hillier, A. C.; Lee, H. M.; Stevens, E. D.; Nolan, S. P. Organometallics 2001, 20, 4246-4252.
- Akıncı, P. A.; Gülcemal, S.; Kazheva, O. N.; Alexandrov, G. G.; Dyachenko, O. A.; Çetinkaya, E.; Çetinkaya, B. J. Organomet. Chem. 2014, 765, 23–30.
- 11. Zhu, X.; Cai, L.; Wang, C.; Wang, Y.; Guo, X.; Hou, X. J. Mol. Catal. A 2014, 393, 134–141.
- Humphries, M. E.; Pecak, W. H.; Hohenboken, S. A.; Alvarado, S. R.; Swenson, D. C.; Domski, G. J. Inorg. Chem. Commun. 2013, 37, 138–143.
- 13. Kuhl, S.; Schneider, R.; Fort, Y. Organometallics 2003, 22, 4184–4186.
- 14. Özdemir, I.; Demir, S.; Çetinkaya, B. J. Mol. Cat. A 2004, 215, 45–48.
- 15. Yiğit, M.; Özdemir, I.; Çetinkaya, E.; Çetinkaya, B. J. Mol. Cat. A 2005, 241, 88-92.
- 16. Özdemir, I.; Yiğit, M.; Çetinkaya, E.; Çetinkaya, B. Heterocycles 2006, 68, 1371–1379.
- Yaşar, S.; Karaca, E. Ö.; Şahin, Ç.; Özdemir, İ.; Şahin, O.; Büyükgüngör, O. J. Organomet. Chem. 2015, 789–790, 1–7.
- 18. Benhamou, L.; Chardon, E.; Lavigne, G.; Bellemin-Laponnaz, S.; César, V. Chem. Rev. 2011, 111, 2705–2733.
- Hirtenlehner, C.; Krims, C.; Hölbling, J.; List, M.; Zabel, M.; Fleck, M.; Berger, R. J. F.; Schoefberger, W.; Monkowius, U. Dalton Trans. 2011, 40, 9899–9910.
- 20. Wang, H. M. J.; Lin, I. J. B. Organometallics 1998, 17, 972–975.
- Qetinkaya, B.; Demir, S.; Özdemir, I.; Toupet, L.; Semeril, D.; Bruneau, C.; Dixneuf, P. H. Chem. Eur. J. 2003, 9, 2323–2330.
- 22. Demir, S.; Özdemir, I.; Çetinkaya, B. J. Organomet. Chem. 2009, 694, 4025–4031.
- Sun, J.; Chen, F.; Dougan, B. A.; Xu, H.; Cheng, Y.; Li, Y.; Chen, X.; Xue, Z. J. Organomet. Chem. 2009, 694, 2096–2105.
- 24. Guo, R.; Chen. X.; Elpelt, C.; Song, D.; Morris, R. H. Org. Lett. 2005, 7, 1757–1759.
- Pelagatti, P.; Carcelli, M.; Calbiani, F.; Cassi, C.; Elviri, L.; Pelizzi, C.; Rizzotti, U.; Rogolino, D. Organometallics 2005, 24, 5836–5844.
- 26. Faller, J. W.; Lavoie, A. R. Organometallics 2001, 20, 5245–5247.
- 27. Gülcemal, S. Appl. Organometal. Chem. 2012, 26, 246–251.
- 28. Therrien, B. Coord. Chem. Rev. 2009, 253, 493-519.
- 29. van der Made, A. W.; van der Made, R. H. J. Org. Chem. 1993, 58, 1262-1263.
- 30. Patil, S.; Deally, A.; Gleeson, B.; Helge, M.; Paradisi, F.; Tacke, M. Appl. Organometal. Chem. 2010, 24, 781–793.
- 31. Günay, M. E.; Gümüşada, R.; Özdemir, N.; Dinçer, M.; Çetinkaya, B. J. Organomet. Chem. 2009, 694, 2343–2349.
- 32. Lee, K. M.; Wang, H. M. J.; Lin, I. J. B. J. Chem. Soc., Dalton Trans. 2002, 2852–2856.
- 33. Lin, I. J. B.; Vasam, C. S. Coord. Chem. Rev. 2007, 251, 642–670.