

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Research Article

$Bismuth(III)-SiO_2$ catalyzed synthesis of polysubstituted imidazoles with the participation of azaaryl derivatives of aniline in four-component reactions

Zarrin GHASEMI*, Ziba ZAKERI, Maryam ALLAHVIRDINESBAT

Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Received: 08.02.2016 • Accepted/Published Online: 19.04.2016	•	Final Version: 02.11.2016
--	---	----------------------------------

Abstract: A series of novel polyaromatic derivatives of imidazole were synthesized by Bi(III) nitrate– SiO_2 catalyzed four-component reactions of benzil, ammonium acetate, aromatic aldehydes, and N-heterocyclic derivatives of aniline under solvent-free conditions.

Key words: Polysubstituted imidazoles, heterocyclic derivatives of aniline, four-component reactions, Bi(III)-catalyzed condensations, solvent-free reactions

1. Introduction

Tetrasubstituted imidazole scaffold is an essential part of numerous bioactive compounds, $^{1-6}$ conjugated and fluorescent materials, ^{7,8} and metal-coordinating ligands. ^{9,10} Condensation of 1,2-diketones, aryl aldehydes, primary amines, and ammonium acetate is one of the most common synthetic tools for the preparation of 1,2,4,5-tetrasubstituted imidazoles.¹¹⁻¹³ Commercial availability or easy preparation of the individual building blocks has resulted in the production of highly diverse molecules through this acid-catalyzed reaction.¹⁴⁻¹⁷ Continuing efforts and several modifications such as the use of green catalysts and solvent-free conditions indicate the special interest in this method.¹⁸⁻²⁰ Among the Lewis acids that promote multicomponent reactions, Bi³⁺based catalysts are popular due to being efficient, inexpensive, and insensitive to air.²¹⁻²³ In this work, we report the use of *N*-heterocyclic derivatives of aniline as a primary amine partner in four-component reactions in the presence of bismuth nitrate. Because of the multiple applications and interesting properties of the azole-enriched π -conjugated compounds, especially in terms of electrochemical, optical, and pharmacological behavior,²⁴⁻²⁷ and through our interest in the synthesis of polyaromatic heterocyclic frameworks²⁸⁻³⁰ and also multicomponent reactions,³¹ we decided to access such molecules.

2. Results and discussion

We recently reported the *tert*-BuOK/DMSO-promoted S_NAr reactions of azoles such as imidazole, benzimidazole, pyrazole, and 3-methypyrazole with 4-bromonitrobenzene to obtain N-(4-nitrophenyl) azoles **1a**-d.³² Reduction of the nitro group to amine with zinc powder in EtOH/AcOH afforded the required aniline derivatives **2a**-d (Scheme).

^{*}Correspondence: z.ghasemi@tabrizu.ac.ir

Scheme. Synthesis of heterocyclic derivatives of aniline.

Firstly, we used 4-(3-methyl-1*H*-pyrazol-1-yl)aniline **2d** (1 mmol) in four-component condensation with benzil (1 mmol), benzaldehyde (1 mmol), and ammonium acetate (1 mmol) to find the optimal reaction conditions. As shown in Table 1, in the absence of a catalyst, no product was obtained in the presence of solvent or without solvent, even after 48 h (Entries 1–6). Product formation was observed by using $Bi(NO_3)_3.5H_2O$

 Table 1. Optimization of four-component condensation of benzaldehyde, benzyl, ammonium acetate, and aniline 2d under various conditions.

	Lewis acid Catalyst					
Entry	/mol~(%)	$\operatorname{SiO}_{2}(\operatorname{gr})$	Conditions		Time a	Yield $(\%)^b$
1	-	-	Solvent-free	R.T	48 h	-
2	-	-	H ₂ O	R.T	48 h	-
3	-	-	EtOH	R.T	48 h	-
4	-	-	Solvent-free	110 °C	48 h	Trace
5	-	-	H ₂ O	110°C	48 h	-
6	-	-	EtOH	110 °C	48 h	-
7	$Bi(NO_3)_3.5H_2O(10)$	-	Solvent-free	110 °C	24 h	38
8	$Bi(NO_3)_3.5H_2O(10)$	-	H ₂ O	110 °C	48 h	28
9	$Bi(NO_3)_3.5H_2O(10)$	-	EtOH	110 °C	48 h	30
10	$Bi(NO_3)_3.5H_2O(15)$	-	Solvent-free	110 °C	24 h	58
11	$Bi(NO_3)_3.5H_2O(15)$	-	H ₂ O	110 °C	24 h	28
12	$Bi(NO_3)_3.5H_2O(15)$	-	EtOH	110 °C	24 h	35
13	$Bi(NO_3)_3.5H_2O(20)$	-	Solvent-free	110 °C	24 h	58
14	$Bi(NO_3)_3.5H_2O(15)$	0.5	Solvent-free	80 °C	48 h	60
15	$Bi(NO_3)_3.5H_2O(15)$	0.5	Solvent-free	110 °C	24 h	78
16	$Bi(NO_3)_3.5H_2O(15)$	-	ultrasound irradiation- H_2O	70 Hz^c	$30 \min$	Trace
17	$Bi(NO_3)_3.5H_2O(15)$	-	ultrasound irradiation-EtOH	70 Hz^c	$30 \min$	Trace
18	$Bi(NO_3)_3.5H_2O(15)$	0.5	ultrasound irradiation- H_2O	70 Hz^c	$30 \min$	20
19	$Bi(NO_3)_3.5H_2O(15)$	0.5	ultrasound irradiation-EtOH	70 Hz^c	$30 \min$	23
20	$Bi(NO_3)_3.5H_2O(15)$	0.5	MW irradiation	200-W	$30 \min$	25

^aReaction progress monitored by TLC. ^b Isolated yield. ^cFrequency of sonication

GHASEMI et al./Turk J Chem

(10 mol%) but with low yields (Entries 7–9). Relatively high efficiency was achieved with a larger amount of catalyst (15 mol%) in solvent-free conditions (Entry 10). By increasing the catalyst loading to 20 mol%, there was no considerable change in the yield of the reaction (Entry 13). To access better reactivity, we then mixed the bismuth catalyst with silica (0.5 g), which led to a more favorable outcome (Entry 14). Application of silica as cocatalyst has been reported in some metal-promoted reactions.^{33–36} Conventional heating of reactants with the mixed catalytic system at 110 °C for 24 h, resulted in the product **3a** in 78% yield (Entry 15). We also evaluated the effect of ultrasonic irradiation on the progress of this reaction. Sonication of the reactants at 70 Hz with different reaction media did not lead to a significant product (Entries 16–19).

Microwave irradiation under 200 W had no accelerator effect even when the microwave power was increased (Entry 20). We then synthesized various other derivatives of this type with amines $2\mathbf{a}-\mathbf{d}$ under the optimized conditions (Table 1, entry 15). Table 2 shows the yields and melting points of the corresponding products $3\mathbf{a}-\mathbf{k}$, which were produced in the presence of amines $2\mathbf{d}$ or 4-(1H-pyrazol-1-yl)aniline $2\mathbf{c}$. Treatment of $2\mathbf{d}$ with 2-thiophene carbaldehyde, benzil, and ammonium acetate also gave the product $3\mathbf{l}$ in 70% yield (Figure 1).

Table 2. Bismuth (III)-nitrate-SiO₂ catalyzed synthesis of highly substituted imidazoles (3a-k) with the participation of 4-(pyrazol-1-yl)anilines (2c,d).

The scope of these reactions was explored using 4-(1*H*-imidazol-1-yl)aniline **2a** (Table 3) and 4-(1*H*-benzimidazol-1-yl)aniline **2b** (Table 4) to afford the products **4a–f** and **5a–f**, respectively. The C-2 carbon peak values of compounds **5a–f** in their ¹³C NMR spectra were found to be similar to values reported in the literature.^{37,38} The imidazole **4g** was also obtained with the participation of amine **2a** and 2-thiophene carbaldehyde in 71% yield (Figure 1). Therefore, a variety of polyaromatic derivatives of imidazoles were obtained under simple workup and in good yields.

Figure 1. Highly substituted imidazoles possessing thiophene ring.

Table 3. Bismuth(III) nitrate-SiO₂ catalyzed synthesis of highly substituted imidazoles (4a–f) with the participation of 4-(imidazol-1-yl)aniline 2a.

Entry	R	Product	Yield (%)	$mp (^{\circ}C)$
1	Н	4a	70	250 - 252
2	CH_3	4b	71	262 - 264
3	$CH(CH_3)_2$	4c	73	266 - 268
4	Cl	4d	68	248 - 250
5	OMe	4 e	72	258 - 260
6	OH	4f	56	330-332

Regarding the above reactions, it should be mentioned that, in the presence of 4-nitrobenzaldehyde, 2,4,5-triarylimidazoles were produced through three-component cyclications without the involvement of the substituted aniline.

A probable mechanism for the catalytic participation of $Bi(NO_3)_3.5H_2O-SiO_2$ in the synthesis of target molecules is postulated in Figure 2. Because silica alone was not able to catalyze this reaction, it seems SiO₂coordinated Bi^{3+} activates the carbonyl group of an aldehyde to simplify the formation of diamine intermediate **A**. $Bi(NO_3)_3.5H_2O-SiO_2$ also activates the benzil to promote condensation with **A** to give the species **B**. Elimination of water from **B** transformed it into the desired imidazole derivatives (Figure 2).

3. Experimental

Melting points were determined on an Electrothermal MEL-TEMP apparatus (model 1202D) and are uncorrected. FT-IR spectra were obtained with a Bruker Tensor 27 spectrometer; ν in cm⁻¹. ¹H and ¹³C NMR spectra were recorded with a Bruker Spectrospin Avance 400 spectrometer operating at 400 MHz and 100 MHz, respectively, in DMSO-d₆; chemical shifts are given in parts per million (ppm, δ) relative to residual solvent peaks as standard at 298 K (2.50 ppm (¹H), 39.5 ppm (¹³C)); J in Hz. Elemental analyses were measured by Vario EL III apparatus (Elementar Co.). The microwave experiment was conducted in a Milestone MicroSYNTH apparatus. Ultrasonic mediated experiments were carried out by use of an ultrasonic processor

Table 4. Bismuth(III) nitrate-SiO₂ catalyzed synthesis of highly substituted imidazoles (5a–f) with the participation of 4-(benzimidazol-1-yl)aniline 2b.

Figure 2. Probable mechanism for the four-component reactions with the participation of azaaryl derivatives of aniline in the presence of $Bi(NO_3)_3.5H_2O-SiO_2$.

probe (SONOPULS Ultrasonic homogenizers). The used silica gel cocatalyst was Kieselgel 60 (0.040–0.063 mm, Merck: 9385).

3.1. Synthesis of substituted imidazoles (3–5)

A mixture of N-(4-aminophenyl) azoles **2a**-d (1 mmol), benzil (1 mmol, 0.21 g), aromatic aldehyde (1 mmol), and ammonium acetate (1 mmol, 0.077 g) was stirred vigorously. Bi(NO₃)₃.5H₂O (0.15 mmol, 0.073 g, 15 mol%) and SiO₂ (0.5 g) were mixed effectively and added to the mixed reactants. The resulting mixture was heated at 110 °C for 24 h. Acetone (50 mL) was then added and the mixture was stirred at 50 °C for 10 min.

Filtering the hot mixture and then concentration of the filtrate produced the crude product. Recrystallization of the crude products in 96% EtOH gave the desired product **3**–**5**.

3.1.1. 1-[4-(3-Methyl-1H-pyrazol-1-yl)phenyl]-2,4,5-triphenyl-1H-imidazole (3a)

Pale yellow solid; Yield 0.35 g (78%) mp 244–246 °C. FTIR (KBr): $\bar{\nu}$ 3054, 2925, 1517, 1475, 846, 693 cm⁻¹; ¹H NMR (DMSO- d_6): 2.23 (s, 3H, CH₃), 6.32 (d, J = 2.4 Hz, 1H, py-H4), 7.17–7.35 (m, 13H, Ar-H), 7.43–7.44 (m, 2H, Ar-H), 7.50 (d, J = 7.9 Hz, 2H, Ar-H), 7.72 (d, J = 8.8 Hz, 2H, Ar-H), 8.37 (d, J = 2.4 Hz, 1H, py-H5). ¹³C NMR (DMSO- d_6): $\delta = 13.4$, 108.3 (Py-C4), 117.9, 126.4, 126.5, 128.1, 128.2, 128.3, 128.4, 128.5, 128.52, 129.8, 130.3, 130.34, 131.1, 131.3, 133.7, 134.3, 136.8, 139.2, 146.1 (Im-C2), 150.2 (Py-C3). Anal. Calcd. For C₃₁H₂₄N₄: C, 82.27; H, 5.35; N, 12.38; Found: C, 81.98; H, 5.12; N, 12.55%.

3.1.2. 4,5-Diphenyl-1-[4-(3-methyl-1H-pyrazol-1-yl)phenyl]-2-(p-tolyl)-1H-imidazole (3b)

Yield: 0.32 g (70%); pale yellow solid; mp 212–214 °C; FTIR (KBr): $\bar{\nu}$ 3049, 2924, 1522, 1362, 1035 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.23 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 6.33 (s, 1H, Py-H4), 7.11–7.34 (m, 14H, Ar-H), 7.48 (d, J = 7.5 Hz, 2H, Ar-H), 7.71 (d, J = 8.6 Hz, 2H, Ar-H), 8.37 (s, 1H, py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 13.4, 20.8, 108.3 (Py-C4), 117.2, 126.3, 126.5, 127.5, 128.2, 128.3, 128.4, 128.6, 128.8, 129.9, 130.4, 131.2, 133.8, 134.4, 136.7, 137.9, 139.2, 150.2 (Py-C3). Anal. Calcd. For C₃₂H₂₆N₄: C 82.38, H 5.62, N 12.01; Found, C 82.15, H 5.39, N 12.34.

3.1.3. 2-(4-Isopropylphenyl)-1-[4-(3-methyl-1*H*-pyrazol-1-yl)phenyl]-4,5-Diphenyl-1*H*-imidazole (3c)

Yield: 0.34 g (69%); pale yellow solid; mp 218–219 °C; FTIR (KBr): $\bar{\nu}$ 3046, 2957, 1522, 1361, 840, 654 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 1.15 (d, J = 6.9 Hz, 6H, (CH₃)₂CH), 2.23 (s, 3H, CH₃), 2.82 (m, 1H, CH (Me)₂), 6.33 (d, J = 2.2 Hz, 1H, Py-H4), 7.17–7.37 (m, 14H, Ar-H), 7.49 (d, J = 7.3 Hz, 2H, Ar-H), 7.73 (d, J = 8.7 Hz, 2H, Ar-H), 8.37 (d, J = 2.3 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 13.4, 23.6, 33.1, 108.3 (Py-C4), 117.9, 126.2, 126.3, 126.4, 127.9, 128.1, 128.2, 128.4, 128.5, 129.9, 130.4, 131.1, 131.2, 133.8, 134.4, 136.7, 139.2, 146.1 (Im-C2), 148.6 (=C-^{*i*}Pr), 150.2 (Py-C3). Anal. Calcd. For C₃₄H₃₀N₄: C 82.56, H 6.11, N 11.33; Found, C 82.29, H 6.34, N 11.65.

3.1.4. 2-(4-methoxyphenyl)-1-[4-(3-methyl-1H-pyrazol-1-yl) phenyl]-4,5-diphenyl-1H-imidazole (3d)

Yield: 0.328 g (70%); pale yellow solid; mp 224–226 °C; FTIR (KBr): $\bar{\nu}$ 3048, 2929, 1607, 1523, 1248, 944 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 2.23$ (s, 3H, CH₃), 3.72 (s, 3H, OCH₃), 6.33 (s, 1H, Py-H4), 6.87 (d, J = 8.5 Hz, 2H, Ar-H), 7.15–7.37 (m, 12H, Ar-H), 7.49 (d, J = 7.9 Hz, 2H, Ar-H), 7.72 (d, J = 8.5 Hz, 2H, Ar-H), 8.37 (s, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 13.4, 55.1$ (OCH₃), 108.3 (Py-C4), 113.7, 117.9, 122.7, 126.3, 126.4, 128.2, 128.4, 128.5, 129.7, 129.9, 130.5, 130.9, 131.2, 133.9, 134.5, 136.6, 139.2, 146.1 (Im-C2), 150.2 (Py-C3), 159.3 (=C-OMe). Anal. Calcd. For C₃₂H₂₆N₄O: C 79.64, H 5.43, N 11.61; Found, C 79.32, H 5.19, N 11.87.

3.1.5. 2-(4-Chlorophenyl)-1-[4-(3-methyl-1*H*-pyrazol-1-yl) phenyl]-4,5-diphenyl-1*H*-imidazole (3e) Yield: 0.32 g (67%); pale yellow solid; mp 238–240 °C; FTIR (KBr): $\bar{\nu}$ 3051, 2957, 1611, 1516, 1312, 840 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 2.24$ (s, 3H, CH₃), 6.33 (d, J = 2.2 Hz, 1H, Py-H4), 7.18–7.51 (m, 16H, Ar-H), 7.74 (d, J = 8.7 Hz, 2H, Ar-H), 8.38 (d, J = 2.2 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 13.4$, 108.3 (Py-C4), 118.0, 126.3, 126.6, 128.2, 128.4, 128.6, 129.1, 129.8, 129.9, 130.2, 131.1, 131.6, 133.2, 133.5, 134.2, 137.0, 139.3, 144.9, 150.3 (Py-C3). Anal. Calcd. For C₃₁H₂₃ClN₄: C 76.46, H 4.76, N 11.50; Found, C 76.19, H 4.91, N 11.80.

3.1.6. 2-(3-Bromophenyl)-1-[4-(3-methyl-1*H*-pyrazol-1-yl) phenyl]-4,5-diphenyl-1*H*-imidazole (3f)

Yield: 0.33 g (63%); pale yellow solid; mp 228–229 °C; FTIR (KBr): $\bar{\nu}$ 3057, 2929, 1598, 1519, 1362, 691 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 2.24$ (s, 3H, CH₃), 6.34 (d, J = 2.1 Hz, 1H, Py-H4), 7.17–7.33 (m, 11H, Ar-H), 7.39 (d, J = 8.7 Hz, 2H, Ar-H), 7.50 (d, J = 7.1 Hz, 2H, Ar-H), 7.69 (s, 1H, Ar-H), 7.75 (d, J = 8.7 Hz, 2H, Ar-H), 8.39 (d, J = 2.1 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 13.5$, 108.4 (Py-C4), 117.9, 121.5, 126.4, 126.7, 126.9, 128.3, 128.6, 129.9, 130.1, 130.4, 130.8, 131.1, 131.9, 132.4, 133.4, 134.1, 137.1, 139.4, 144.4, 150.3 (Py-C3). Anal. Calcd. For C₃₁H₂₃BrN₄: C 70.06, H 4.36, N 10.54; Found, C 69.79, H 4.53, N 10.28.

3.1.7. 2-[4-(N,N-Dimethylamino)phenyl]-1-[4-(3-methyl-1H-pyrazol-1-yl) phenyl]-4,5-diphenyl-1H-imidazole (3g)

Yield: 0.28 g (56%); pale yellow solid; mp 240–242 °C; FTIR (KBr): $\bar{\nu}$ 3057, 2925, 1605, 1522, 1359, 825 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.24 (s, 3H, CH₃), 2.87 (s, 6H, N-CH₃), 6.33 (d, J = 1.9 Hz, 1H, Py-H4), 6.60 (d, J = 8.8 Hz, 2H, Ar-H), 7.14–7.39 (m, 12H, Ar-H), 7.48 (d, J = 7.8 Hz, 2H, Ar-H), 7.72 (d, J = 8.6 Hz, 2H, Ar-H), 8.37 (d, J = 1.9 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 13.4, 55.1 (N(CH₃)₂), 108.3 (Py-C4), 111.4, 11.9, 117.4, 117.9, 126.3, 126.7, 127.9, 128.1, 128.3, 128.5, 129.1, 129.9, 130.5, 130.6, 131.2, 134.2, 134.5, 139.1, 146.8 (Im-C2), 150.0 (Py-C3), 150.2 (=C-NMe₂). Anal. Calcd. For C₃₃ H₂₉N₅: C 79.97, H 5.90, N 14.13; Found, C 79.69, H 6.18, N 14.51.

3.1.8. 1-[4-(1H-pyrazol-1-yl)phenyl]-2,4,5-triphenyl-1H-imidazole (3h)

Yield: 0.31 g (71%); pale yellow solid; mp 250–252 °C; FTIR (KBr): $\bar{\nu}$ 3054, 1517, 1391, 846, 693 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 6.33 (d, J = 2.4 Hz, 1H, Py-H4), 7.18–7.36 (m, 14H, Ar-H), 7.43–7.44 (m, 2H, Ar-H), 7.50 (d, J = 7.9 Hz, 2H, Ar-H), 7.72 (d, J = 8.8 Hz, 2H, Ar-H), 8.37 (d, J = 2.4 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 108.3 (Py-C4), 117.9, 126.3, 126.5, 128.1, 128.2, 128.3, 128.4, 128.5, 129.9, 130.3, 130.34, 131.1, 131.3, 133.7, 134.3, 136.8, 139.2, 146.1 (Im-C2), 150.2 (Py-C3). Anal. Calcd. For C₃₀ H₂₂ N₄: C 82.17, H 5.06, N 12.78; Found, C 81.85, H 5.24, N 12.56.

3.1.9. 4,5-Diphenyl-1-[4-(1H-pyrazol-1-yl)phenyl]-2-(p-tolyl)-1H-imidazole (3i)

Yield: 0.29 g (65%); pale yellow solid; mp 242–244 °C; FTIR (KBr): $\bar{\nu}$ 3065, 2923, 1520, 1364, 839, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.26 (s, 3H, CH₃), 6.33 (d, J = 2.1 Hz, 1H, Py-H4), 7.11 (d, J = 7.9 Hz, 2H, Ar-H), 7.15–7.38 (m, 13H, Ar-H), 7.49 (d, J = 7.5 Hz, 2H, Ar-H), 7.71 (d, J = 8.6 Hz, 2H, Ar-H), 8.36 (d, J = 2.1 Hz, 1H, Py-H5). ¹³ C NMR (100 MHz, DMSO-d₆): δ 20.7, 108.2 (Py-C4), 117.9, 118.4, 126.3, 126.4, 127.5, 127.9, 128.1, 128.2, 128.4, 128.5, 128.8, 128.9, 130.0, 130.4, 131.1, 133.8, 134.4, 137.9, 139.2, 146.2 (Im-C2), 150.2 (Py-C3). Anal. Calcd. For C₃₁H₂₄N₄: C 82.27, H 5.35, N 12.38; Found, C 81.95, H 5.17, N 12.64.

3.1.10. 4,5-Diphenyl-2-(4-isopropylphenyl)-1-[4-(1H-pyrazol-1-yl)]phenyl]-1H-imidazole (3j)

Yield: 0.30 g (62%); pale yellow solid; mp 216–218 °C; FTIR (KBr): $\bar{\nu}$ 3047, 2956, 1616, 1530, 1362, 840 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 1.15 (d, J = 6.9 Hz, 6H, (CH₃)₂CH), 2.82–2.84 (m, 1H, CH (Me)₂), 6.33 (d, J = 1 Hz, 1H, Py-H4), 7.16–7.41 (m, 15H, Ar-H), 7.50 (d, J = 7.8 Hz, 2H, Ar-H), 7.73 (d, J = 8.5 Hz, 2H, Ar-H), 8.37 (d, J = 1 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 23.6, 33.1, 108.2 (Py-C4), 117.9, 118.4, 126.1, 126.3, 126.4, 127.9, 128.1, 128.2, 128.4, 128.5, 129.9, 130.0, 130.4, 131.1, 133.8, 134.4, 136.7, 139.2, 146.1 (Im-C2), 148.6 (=C-^{*i*}Pr), 150.2 (Py-C3). Anal. Calcd. For C₃₃H₂₈N₄: C 82.47, H 5.87, N 11.66; Found, C 82.16, H 5.65, N 11.89.

3.1.11. 4, 5-Diphenyl-2-(4-methoxyphenyl)-1-[4-(1H-pyrazol-1-yl)]phenyl]-1H-imidazole~(3k)

Yield: 0.30 g (65%); pale yellow solid; mp 236–238 °C; FTIR (KBr): $\bar{\nu}$ 3054, 2924, 1602, 1524, 1251, 843 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 3.72 (s, 3H, OCH₃), 6.33 (d, J = 2.2 Hz, 1H, Py-H4), 6.87 (d, J = 8.7 Hz, 2H, Ar-H), 7.15–7.37 (m, 13H, Ar-H), 7.49 (d, J = 7.4 Hz, 2H, Ar-H), 7.72 (d, J = 8.7 Hz, 2H, Ar-H), 8.37 (d, J = 2.2 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 55.1 (OCH₃), 108.3 (Py-C4), 113.7, 117.9, 122.7, 126.3, 126.4, 128.1, 128.4, 128.5, 129.7, 129.9, 130.5, 130.9, 131.2, 133.9, 134.5, 136.6, 139.2, 146.1 (Im-C2), 150.2 (Py-C3), 159.3 (=C–OMe). Anal. Calcd. For C₃₁H₂₄N₄O: C 79.46, H 5.16, N 11.96; Found, C 79.17, H 5.38, N 11.73.

3.1.12. 4,5-Diphenyl-1-[4-(3-methyl-1H-pyrazol-1-yl)phenyl]-2-(thiophen-2-yl)-1H-imidazole (3l)

Yield: 0.32 g (70%); pale yellow solid; mp 244–246 °C; FTIR (KBr): $\bar{\nu}$ 3056, 2926, 1615, 1515, 1359, 695 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.25 (s, 3H, CH₃), 6.35 (d, J = 2.1 Hz, 1H, Py-H4), 6.62 (d, J = 3.6 Hz, 1H, Th-H5), 6.93–7.95 (m, 1H, Th-H4), 7.18–7.30 (m, 8H, Ar-H), 7.47–7.53 (m, 5H, Ar-H), 7.83 (d, J = 8.7 Hz, 2H, Ar-H), 8.43 (d, J = 2.1 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 13.5, 108.4 (Py-C4), 118.2, 125.6, 126.3, 126.6, 127.2, 127.6, 128.2, 128.5, 128.6, 130.0, 130.4, 131.1, 131.4, 132.8, 133.1, 134.0, 136.8, 140.0, 141.5 (Th-C2), 150.4 (Py-C3). Anal. Calcd. For C₂₉H₂₂N₄S: C 75.95, H 4.84, N 12.22, S 6.99; Found, C 75.62, H 4.65, N 11.98, S 6.72.

3.1.13. 1-(4-(1*H*-imidazol-1-yl)phenyl)-2,4,5-triphenyl-1*H*-imidazole (4a)

Yield: 0.31 g (70%); pale yellow solid; mp 250–252 °C; FTIR (KBr): $\bar{\nu}$ 3056, 1524, 1443, 847, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.15–7.32 (m, 12H, Ar-H), 7.42–7.51 (m, 6H, Ar-H), 7.68 (d, J = 8.7 Hz, 2H, Ar-H), 7.84 (s, 1H, Im-H4), 8.39 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 120.3, 125.2, 126.3, 126.5, 127.1, 128.0, 128.2, 128.3, 128.4, 128.6, 128.7, 129.5, 129.9, 130.2, 130.3, 131.2, 131.3, 134.3, 135.1, 136.3, 136.9, 146.21 (N=CAr-N). Anal. Calcd. For C₃₀H₂₂N₄: C 82.17, H 5.06, N 12.78; Found, C 81.88, H 5.29, N 12.56.

GHASEMI et al./Turk J Chem

3.1.14. 4,5-Diphenyl-1-[4-(1H-imidazol-1-yl)phenyl]-2-(p-tolyl)-1H-imidazole~(4b)

Yield: 0.32 g (71%); pale yellow solid; mp 262–264 °C; FTIR (KBr): $\bar{\nu}$ 3058, 2919, 1605, 1525, 1376, 698 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.26 (s, 3H, CH₃), 7.11–7.33 (m, 13H, Ar-H), 7.42 (d, J = 8.7 Hz, 2H, Ar-H), 7.48 (d, J = 7.4 Hz, 2H, Ar-H), 7.66 (d, J = 8.7 Hz, 2H, Ar-H), 7.82 (s, 1H, Im-H5), 8.36 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 20.8$, 117.8, 120.2, 126.4, 126.5, 127.5, 128.2, 128.4, 128.6, 128.9, 129.6, 130.0, 130.4, 131.1, 131.2, 134.4, 135.1, 135.7, 136.4, 136.8, 138.0, 146.4 (N=CAr-N). Anal. Calcd. For C₃₁ H₂₄N₄: C 82.27, H 5.35, N 12.38; Found, C 81.98, H 5.54, N 12.65.

3.1.15. 4,5-Diphenyl-1-[4-(1*H*-imidazol-1-yl)phenyl]-2-(4-isopropylphenyl)-1*H*-imidazole (4c)

Yield: 0.35 g (73%); pale yellow solid; mp 266–268 °C; FTIR (KBr): $\bar{\nu}$ 3065, 2961, 1524, 1419, 1151 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 1.16 (d, J = 6.9 Hz, 6H, (C H_3)₂CH), 2.82–2.85 (m, 1H, (Me)₂CH), 7.15–7.36 (m, 13H, Ar-H), 7.46–7.49 (m, 4H, Ar-H), 7.70 (d, J = 8.7 Hz, 2H, Ar-H), 7.87 (s, 1H, Im-H5), 8.41 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 23.6, 33.1, 117.9, 120.3, 126.3, 126.4, 126.5, 127.9, 128.2, 128.3, 128.6, 129.8, 130.4, 130.5, 131.2, 131.24, 134.4, 135.3, 135.8, 136.3, 136.8, 146.3 (N=CAr-N), 148.7 (=C-Prⁱ). Anal. Calcd. For C₃₃H₂₈N₄: C 82.47, H 5.87, N 11.66; Found, C 82.19, H 5.63, N 11.87.

3.1.16. 2-(4-Chlorophenyl)-4,5-diphenyl-1-[4-(1*H*-imidazol-1-yl)phenyl]-1*H*-imidazole (4d)

Yield: 0.32 g (68%); pale yellow solid; mp 248–250 °C; FTIR (KBr): $\bar{\nu}$ 3065, 1524, 1396, 842, 699 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.11 (s, 1H, Im-H4), 7.18–7.50 (m, 16H, Ar-H), 7.68 (d, J = 8.7 Hz, 2H, Ar-H), 7.82 (s, 1H, Im-H5), 8.36 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 117.7, 120.2, 126.3, 126.6, 128.2, 128.4, 128.5, 128.6, 129.1, 129.9, 130.1, 130.2, 131.1, 131.3, 131.5, 133.2, 134.1, 134.6, 135.6, 136.6, 137.1, 145.0 (N=CAr–N). Anal. Calcd. For C₃₀H₂₁ClN₄: C 76.18, H 4.48, N 11.85; Found, C 76.47, H 4.26, N 11.59.

3.1.17. 4,5-Diphenyl-1-[4-(1H-imidazol-1-yl)phenyl]-2-(4-methoxyphenyl)-1 H-imidazole~(4e)

Yield: 0.34 g (72%); pale yellow solid; mp 258–260 °C; FTIR (KBr): $\bar{\nu}$ 3057, 2925, 1527, 1384, 843, 698 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 3.72 (s, 3H, OCH₃), 6.88 (d, J = 8.8 Hz, 2H, Ar-H), 7.15–7.50 (m, 15H, Ar-H), 7.70 (d, J = 8.7 Hz, 2H, Ar-H), 7.89 (s, 1H, Im-H5), 8.47 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 55.1 (OCH₃), 113.7, 120.5, 122.7, 126.3, 126.4, 128.0, 128.2, 128.5, 128.6, 129.5, 129.8, 130.4, 130.8, 131.2, 134.4, 135.5, 136.1, 136.7, 146.2 (N=CAr–N), 159.3 (=C–OMe). Anal. Calcd. For C₃₁H₂₄N₄O: C 79.46, H 5.16, N 11.96; Found, C 79.19, H 5.28, N 11.73.

3.1.18. $4-\{4,5-Diphenyl-1-[4-(1H-imidazol-1-yl)phenyl]-1H-imidazol-2-yl\}$ phenol (4f)

Yield: 0.25 g (56%); pale yellow solid; mp 330–332 °C; FTIR (KBr): $\bar{\nu}$ 3414, 1520, 1478, 840, 699 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 6.68–6.70 (m, 2H, Ar-H), 7.09 (s, 1H, Im-H4), 7.14–7.18 (m, 1H, Ar-H), 7.24–7.32 (m, 9H, Ar-H), 7.36–7.40 (m, 2H, Ar-H), 7.48 (d, J = 7.9 Hz, 2H, Ar-H), 7.63–7.66 (m, 2H, Ar-H), 7.78 (s, 1H, Im-H5), 8.32 (s, 1H, Im-H2), 9.70 (s, 1H, OH). ¹³C NMR (100 MHz, DMSO-d₆): δ 114.9, 115.0, 117.6, 120.0, 126.3, 128.1, 128.4, 128.5, 129.9, 130.1, 130.3, 130.5, 130.6, 131.2, 134.5, 135.0, 135.4, 136.3, 136.5, 146.6 (N=CAr–N), 157.5, 157.6 (=C-OH). Anal. Calcd. For C₃₀H₂₂N₄O: C 79.27, H 4.88, N 12.33; Found, C 78.94, H 4.62, N 12.54.

3.1.19. 4,5-Diphenyl-1-[4-(1*H*-imidazol-1-yl)phenyl]-2-(thiophen-2-yl)-1*H*-imidazole (4g)

Yield: 0.31 g (71%); pale yellow solid; mp 256–258 °C; FTIR (KBr): $\bar{\nu}$ 3065, 1517, 1296, 702 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ = 6.61 (d, J = 3.2 Hz, 1H, Im-H4), 6.93–6.96 (m, 1H, Th-H4), 7.12–7.22 (m, 9H, Ar-H), 7.47 (d, J = 7.4 Hz, 2H, Ar-H), 7.52 (d, J = 4.8 Hz, 1H, Th-H5), 7.61 (d, J = 8.6 Hz, 2H, Ar-H), 7.76 (d, J = 8.6 Hz, 2H, Ar-H), 7.85 (s, 1H, Im-H5), 8.38 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 117.7, 120.4, 125.7, 126.3, 126.6, 127.3, 127.6, 128.2, 128.6, 128.7, 129.9, 130.2, 130.8, 131.1, 131.3, 132.7, 134.0, 134.3, 135.6, 136.9, 137.2, 141.5 (Th-C2). Anal. Calcd. For C ₂₈H₂₀N₄S: C 75.65, H 4.53, N 12.60, S 7.21; Found, C 75.92, H 4.68, N 12.44, S 7.56.

3.1.20. 1-[4-(2,4,5-Triphenyl-1H-imidazol-1-yl)phenyl]-1H-benzo[d]imidazole (5a)

Yield: 0.32 g (68%); pale yellow solid; mp 260–262 °C; FTIR (KBr): $\bar{\nu}$ 3050, 1514, 1228, 693 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.19–7.20 (m, 1H, Benzim-H5), 7.25–7.37 (m, 11H, Ar-H), 7.46–7.56 (m, 8H, Ar-H), 7.66–7.69 (m, 2H, Ar-H), 7.75–7.77 (m, 1H, Ar-H), 8.59 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 110.6, 120.1, 122.7, 123.7, 123.9, 126.4, 126.6, 128.2, 128.3, 128.4, 128.5, 128.6, 130.2, 130.3, 130.5, 131.2, 131.3, 132.7, 134.3, 135.6, 135.9, 136.9, 143.2, 143.8 (Benzim-C2), 146.3 (Im-C2). Anal. Calcd. For C₃₄H₂₄N₄: C 83.58, H 4.95, N 11.47; Found, C 83.87, H 4.69, N 11.26.

3.1.21. 1-{4-[4,5-Diphenyl-2-(p-tolyl)-1H-imidazol-1-yl]phenyl} -1H-benzo[d] imidazole (5b)

Yield: 0.32 g (63%); pale yellow solid; mp 242–244 °C; FTIR (KBr): $\bar{\nu}$ 3056, 2923, 1517, 1455, 1023, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.27 (s, 3H, CH₃), 7.14 (d, J = 8.0 Hz, 2H, Ar-H), 7.19 (d, J = 7.1 Hz, 1H, Benzim-H7), 7.24–7.27 (m, 2H, Ar-H), 7.31–7.36 (m, 9H, Ar-H), 7.50–7.54 (m, 5H, Ar-H), 7.67 (d, J = 8.5 Hz, 2H, Ar-H), 7.77 (d, J = 7.6 Hz, 1H, Benzim-H4), 8.58 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 20.8, 110.6, 120.1, 122.7, 123.7, 123.9, 126.4, 126.5, 127.5, 128.2, 128.4, 128.5, 128.6, 128.9, 130.3, 130.5, 131.1, 131.2, 132.7, 134.4, 135.7, 135.9, 136.9, 138.0, 143.2, 143.8 (Benzim-C2), 146.4 (Im-C2). Anal. Calcd. For C₃₅H₂₆N₄: C 83.64, H 5.21, N 11.15; Found, C 83.95, H 5.09, N 11.37.

3.1.22. 1-{4-[4,5-Diphenyl-2-(4-isopropylphenyl)-1H-imidazol-1-yl]phenyl} -1H-benzo[d]imidazole (5c)

Yield: 0.37 g (70%); pale yellow solid; mp 240–242 °C; FTIR (KBr): $\bar{\nu}$ 3055, 2958, 1515, 1453, 841, 698 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 1.16 (d, J = 6.9 Hz, 6H, $(CH_3)_2$ CH), 2.82–2.89 (m, 1H, $CH(Me)_2$), 7.16–7.29 (m, 5H, Ar-H), 7.30–7.37 (m, 7H, Ar-H), 7.39 (d, J = 8.2 Hz, 2H, Ar-H), 7.50–7.52 (m, 3H, Ar-H), 7.55 (d, J = 8.6 Hz, 2H, Ar-H), 7.69 (d, J = 8.6 Hz, 2H, Ar-H), 7.76–7.78 (m, 1H, Benzim-H4), 8.60 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): $\delta = 23.6$, 33.1, 110.6, 120.1, 122.7, 123.7, 123.9, 126.3, 126.4, 126.5, 127.9, 128.2, 128.4, 128.5, 128.6, 130.3, 130.6, 131.1, 131.2, 132.7, 134.4, 135.7, 135.9, 136.9, 143.2, 143.8 (Benzim-C2), 146.3 (Im-C2), 148.7 (=C-Pr^{*i*}). Anal. Calcd. For C₃₇H₃₀N₄: C 83.74, H 5.70, N 10.56; Found, C 83.4I, H 5.55, N 11.34.

3.1.23. 1-{4-[2-(4-Chlorophenyl)-4,5-diphenyl-1*H*-imidazol-1-yl]phenyl} -1*H*-benzo [d]imidazole (5d)

Yield: 0.35 g (67%); pale yellow solid; mp 274–276 °C; FTIR (KBr): $\bar{\nu}$ 3057, 1511, 1227, 838, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.18–7.21 (m, 1H, Benzim-H5), 7.24–7.28 (m, 2H, Ar-H), 7.31–7.35 (m, 7H, Ar-H), 7.41–7.57 (m, 9H, Ar-H), 7.70 (d, J = 8.7 Hz, 2H, Ar-H), 7.77 (d, J = 7.8 Hz, 1H, Benzim-H4), 8.58 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 110.6, 120.1, 122.7, 123.7, 123.9, 126.4, 126.6, 128.2, 128.4, 128.6, 128.7, 129.1, 130.0, 130.1, 130.5, 131.2, 131.6, 132.7, 133.3, 134.1, 135.4, 136.1, 137.1, 143.2, 143.8 (Benzim-C2), 145.1 (Im-C2). Anal. Calcd. For C₃₄H₂₃ClN₄: C 78.08, H 4.43, N 10.71; Found, C 77.83, H 4.18, N 10.49.

3.1.24. 1-{4-[4,5-Diphenyl-2-(4-methoxyphenyl)-1H-imidazol-1-yl]phenyl} -1H-benzo[d]imidazole (5e)

Yield: 0.38 g (73%); pale yellow solid; mp 242–244 °C; FTIR (KBr): $\bar{\nu}$ 3057, 2996, 1606, 1515, 1485, 1251 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 3.73 (s, 3H, OCH₃), 6.89 (d, J = 8.8 Hz, 2H, Ar-H), 7.16–7.19 (m, 1H, Benzim-H5), 7.23–7.33 (m, 9H, Ar-H), 7.39 (d, J = 8.8 Hz, 2H, Ar-H), 7.50–7.54 (m, 5H, Ar-H), 7.68 (d, J = 8.5 Hz, 2H, Ar-H), 7.77 (d, J = 7.6 Hz, 1H, Benzim-H4), 8.56 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 55.1 (OCH₃), 110.6, 113.8, 120.1, 122.7, 123.7, 123.8, 126.4, 126.5, 128.2, 128.5, 128.6, 129.9, 130.4, 130.5, 130.9, 131.2, 132.7, 134.4, 135.8, 135.9, 136.7, 143.2, 143.9 (Benzim-C2), 146.3 (Im-C2), 159.3 (=C-OMe). Anal. Calcd. For C₃₅H₂₆N₄O: C 81.06, H 5.05, N 10.80; Found, C 81.35, H 5.28, N 10.51.

3.1.25. 1-{4-[2-(3-Bromophenyl)-4,5-diphenyl-1*H*-imidazol-1-yl]phenyl} -1*H*-benzo [d]imidazole (5f)

Yield: 0.39 g (70%); pale yellow solid; mp 240–242 °C; FTIR (KBr): $\bar{\nu}$ 3054, 1508, 1451, 1283, 703 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.18–7.36 (m, 11H, Ar-H), 7.42 (d, J = 7.8 Hz, 1H, Benzim-H7), 7.51–7.61 (m, 7H, Ar-H), 7.71 (d, J = 8.4 Hz, 2H, Ar-H), 7.77 (d, J = 7.8 Hz, 1H, Benzim-H4), 8.57 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 110.5, 120.1, 121.5, 122.7, 123.7, 124.2, 126.4, 126.7, 127.1, 128.2, 128.7, 128.8, 130.0, 130.5, 130.6, 130.8, 131.1, 131.2, 131.8, 132.4, 132.8, 134.1, 135.4, 136.2, 137.3, 143.1, 143.8 (Benzim-C2), 144.5 (Im-C2). Anal. Calcd. For C₃₄H₂₃BrN₄: C 71.96, H 4.09, N 9.87; Found, C 71.63, H 4.28, N 9.59.

4. Conclusion

We have described the synthesis of new 1,2,4,5-tetrasubstituted derivatives of imidazole possessing another azole ring in the presence of Bi(NO₃)₃.5H₂O-SiO₂ as a heterogeneous Lewis acid catalyst. One-pot four-component condensations of benzil, ammonium acetate, aromatic aldehydes and 4-azolyl-anilines under solvent-free conditions at 110 °C for 24 h afforded the desired products with easy workup and in good yields.

Acknowledgments

The authors gratefully acknowledge the Iran National Science Foundation (INSF) for financial support. The research work of the University of Tabriz is also gratefully appreciated.

Supplementary Material

IR, ¹H NMR, and ¹³C NMR spectra of imidazole derivatives **3–5** are given at the end of this paper.

References

- 1. Zhang, L.; Peng, X. M.; Damu, G. L. V.; Geng, R. X.; Zhou, C. H. Med. Res. Rev. 2014, 34, 340-437.
- 2. Laufer, S. A.; Hauser, D. R. J.; Domeyer, D. M.; Kinkel, K.; Liedtke, A. J. J. Med. Chem. 2008, 51, 4122-4149.
- Takle, A. K.; Brown, M. J. B.; Davies, S.; Dean, D. K.; Francis, G.; Gaiba, A.; Hird, A. W.; King, F. D.; Lovell, P. J.; Naylor, A. *Bioorg. Med. Chem. Lett.* 2006, 16, 378-381.
- Antolini, M.; Bozzoli, A.; Ghiron, C.; Kennedy, G.; Rossi, T.; Ursini, A. Bioorg. Med. Chem. Lett. 1999, 9, 1023-1028.
- Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y. H.; Marsh, K. J. Med. Chem. 2002, 45, 1697-1711.
- Callahan, J. F.; Burgess, J. L.; Fornwald, J. A.; Gaster, L. M.; Harling, J. D.; Harrington, F. P.; Heer, J.; Kwon, C.; Lehr, R.; Mathur, A. J. Med. Chem 2002, 45, 999-1001.
- 7. Jeżewski, A.; Hammann, T.; Cywiński, P. J.; Gryko, D. T.; J. Phys. Chem. B, 2015, 119, 2507-2514.
- 8. Dierschke, F.; Müllen, K. Macromol. Chem. Phys. 2007, 208, 37-43.
- Kounavi, K. A.; Papatriantafyllopoulou, C.; Tasiopoulos, A. J.; Perlepes, S. P.; Nastopoulos, V. Polyhedron 2009, 28, 3349-3355.
- 10. Hahn, F. E.; Jahnke, M. C. Angew. Chem. In. Ed. 2008, 47, 3122-3172.
- 11. Hasaninejad, A.; Zare, A.; Shekouhy, M. J. Comb. Chem. 2010, 12, 844-849.
- 12. Samai, S.; Nandi, G. C.; Singh, P.; Singh, M. S. Tetrahedron 2009, 65, 10155-10161.
- 13. Balalaie, S.; Arabanian, A. Green Chem. 2000, 2, 274-276.
- 14. Karimi, A. R.; Alimohammadi, Z.; Amini, M. M. Mol. Divers. 2010, 14, 635-641.
- 15. Das-Sharma, S.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216-2220.
- 16. Kantevari, S.; Vuppalapati, S. V. N.; Biradar, D. O.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 266, 109-113.
- Gelens, E.; De Kanter, F.; Schmitz, R.; Sliedregt, L.; Van Steen, B.; Kruse, C. G.; Leurs, R.; Groen, M.; Orru, R. Mol. Divers. 2006, 10, 17-22.
- 18. Khan, K.; Siddiqui, Z. N. Ind. Eng. Chem. Res, 2015, 54, 6611-6618.
- 19. Safa, K. D.; Allahvirdinesbat, M.; Namazi, H.; Nakhostin Panahi, P. C. R. Chimie 2015, 18, 883-890.
- 20. Aziizi, N.; Manochehri, Z.; Nahayi, A.; Torkashvand, S. J. Mol. Liq. 2014, 196, 153-158.
- 21. Bothwell, J. M.; Krabbe, S. W.; Mohan, R. S. Chem. Soc. Rev. 2011, 40, 4649-4707.
- 22. Bandyopadhyay, D.; Maldonado, S.; Banik, B. K. Molecules 2012, 17, 2643-2662.
- 23. Chari, M. A.; Shobha, D.; Kumar, T. K.; Dubey, P. K. ARKIVOC 2005, (xv), 74-80.
- 24. Jin, Z. Nat. Prod. Rep. 2006, 23, 464-496.
- 25. Kumar, D.; Thomas, K. R. J. J. Photochem. Photobiol A 2011, 218, 162-173.
- 26. Takagi, K.; Kusafuka, K.; Ito, Y.; Yamauchi, K.; Ito, K.; Fukuda, R.; Ehara, M. J. Org. Chem. 2015, 80, 7172-7183.
- 27. Kulhánek, J., Bureš, F., Pytela, O., Mikysek, T., Ludvík, J. Chem. Asian J. 2011, 6, 1604-1612.
- 28. Ghasemi, Z.; Kalantar-Esfangare, H. Heterocycl. Commun. 2015, 21, 37-41.
- Ghasemi, Z.; Golamhoseini Nazari, M.; Allahvirdinesbat, M.; Saraei, M.; Shahrisa, A. Lett. Org. Chem. 2012, 9, 677-682.
- 30. Shahrisa, A.; Ghasemi, Z.; Saraei, M. J. Heterocycl. Chem. 2009, 46, 273-277.

- Ghasemi, Z.; Farshbaf-Orafa, F.; Pirouzmand, M.; Zarrini, G.; Nikzad-Kojanag, B.; Salehi, R. Tetrahedron Lett. 2015, 56, 6393-6396.
- 32. Ghasemi, Z.; Shahi-Shahrak, N.; Jalali-Roomi, B.; Zakeri, Z. J. Chem. Res. 2015, 39, 73-75.
- 33. Safari, J.; Gandomi-Ravandi, S.; Naseh, S. J. Chem. Sci. 2013, 125, 827-833.
- 34. Hingane, D. G.; Shumaila, A. M. A.; Kusurkar, R. S. Indian J. Chem. 2013, 52B, 1161-1165.
- Aghapoor, K.; Ebadi-Nia, L.; Mohsenzadeh, F.; Mohebi-Morad, M.; Balavar, Y.; Darabi, H. R. J. Organomet. Chem. 2012, 708, 25-30.
- 36. Safari, J.; Dehghan-Khalili, S.; Banitaba, S. H. Synth. Commun. 2011, 41, 2359-2373.
- Küçükbay, H.; Şireci, N.; Yılmaz, Ü.; Akkurt, M.; Yalçın, S. P.; Tahir, M. N.; Ott, H. Appl. Organometal. Chem. 2011, 25, 255-261.
- 38. Küçükbay, H.; Yılmaz, Ü.; Akkurt, M.; Büyükgüngör, O. Turk. J. Chem. 2015, 39, 108-120.

Supporting Information

Bismuth (III)-SiO₂ catalyzed synthesis of polysubstituted imidazoles with the participation of azaaryl derivatives of aniline in four component reactions

Zarrin Ghasemi*, Ziba Zakeri and Maryam Allahvirdinesbat

Experimental section

General

Melting points were determined on a Electrothermal MEL-TEMP apparatus (model 1202D) and are uncorrected. FT-IR spectra were obtained with a Bruker Tensor 27 spectrometer; v in cm⁻¹. ¹H and ¹³C NMR spectra were recorded with a Bruker Spectrospin Avance 400 spectrometer operating at 400 MHz and 100 MHz respectively, in DMSO-d₆; chemical shifts are given in parts per million (ppm, δ) relative to residual solvent peaks as standard at 298 °K (2.50 ppm (¹H), 39.5 ppm (¹³C)); *J* in Hz. Elemental analyses were measured by Vario EL III apparatus (Elementar Co.). Microwave experiment was conducted in a Milestone MicroSYNTH apparatus. Ultrasonic mediated experiments were carried out by used of an ultrasonic processor probe (SONOPULS Ultrasonic homogenizers). The used silica gel cocatalyst was Kieselgel 60 (0.040-0.063 mm, Merk: 9385).

1- Synthesis of aniline derivatives 2a-d; General procedure: A mixture of nitrobenzene derivatives 1a-d (5 mmol), zinc powder (3.26 g, 50 mmol), acetic acid (4 mL) and ethanol (7 mL) was stirred at 70 °C for 1.5 h. The hot reaction mixture was then filtered and the solid was washed with hot EtOH (5 mL). The combined filtrate was concentrated, neutralized with aq. NaHCO₃ and then extracted with EtOAc (3×8 mL). The organic layers were combined, washed with water (20 mL), dried over Na₂SO₄ and concentrated to dryness. The residue yellow solid was used as amine partner in four component reactions.

For references about the other preparation methods and m.p. value of amine 2a see: (a) Yongbin,
W.; Yu, Z.; Beibei, Y.; Ao, Z.; Qizheng, Y. *Org. Biomol. Chem.* 2015, 13, 4101. (b) Ying-Lei, W.; Jun,
L.; Zu-Liang, L. *J. Chinese Chem. Soc.* 2013, 60, 1007. (c) Wen, C.; Yuanyuan, Z.; Liangbo, Z.; Jingbo,
L.; Rugang, X.; Jingsong, Y. *J. Am. Chem. Soc.* 2007, 129, 13879. (d) Engel-Andreasen, J.; Shimpukade,
B.; Ulven, T. *Green Chem.* 2013, 15, 336. (e) Hosseini-Sarvari, M.; Moeini, F. *RSC Adv.* 2014, 4, 7321.
(f) Cheung, C. W.; Surry, D. S.; Buchwald, S. L. *Org. Lett.* 2013, 15, 3734. (g) Zhang, Z.; Mao, J.; Zhu,
D.; Wu, F.; Chen, H.; Wan, B. *Tetrahedron* 2006, 62, 4435.

Figure S1. FTIR (KBr) spectrum of compound 2a.

For references about the other preparation methods and m.p. value of amine 2b see: (a) Smallheer, J. M.; Alexander, R. S.; Wang, J.; Wang, S.; Nakajima, S.; Rossi, K. A.; Smallwood, A.; Barbera, F.; Burdick, D.; Luettgen, J. M.; Knabb, R. M.; Wexler, R. R.; Jadhav, P. K. *Bioorg. Med. Chem. Lett.* **2004**, 14, 5263. (b) Jose, E.; Manuel, G.; Nerea, I.; Carmen, P.; Mar, R. *Appl. Spectroscopy* **1995**, 49, 1111. (c) Gale, D. J.; Wilshire, J. F. K. *Austr. J. Chem.* **1970**, 23, 1063.

Figure S2. FTIR (KBr) spectrum of compound 2b.

For references about the other preparation methods and m.p. value of amine 2c see: (a) De La Hoz, A.; Diaz-Ortiz, A.; Elguero, J.; Martinez, L. J.; Moreno, A.; Sanchez-Migallon, A. *Tetrahedron* 2001, 57, 4397. (b) Cristau, H. J; Cellier, P. P.; Spindler, J. F.; Taillefer, M. *Eur. J. Org. Chem.* 2004, 4, 695. (c) Taillefer, M.; Xia, N.; Ouali, A. *Angew. Chem. Int. Ed.* 2007, 46, 934. (d) Lee, H. W.; Chan, A. S. C.; Kwong, F. Y. *Tetrahedron Lett.* 2009, 50, 5868. (e) Huang, M.; Lin, X.; Zhu, X.; Peng, W.; Xie, J.; Wan, Y. *Eur. J. Org. Chem.* 2011, 24, 4523. (f) Jia, Z. J.; Wu, Y.; Huang, W.; Zhang, P.; Clizbe, L. A.; Goldman, E. A.; Sinha, U.; Arfsten, A. E.; Edwards, S. T.; Alphonso, M.; Hutchaleelaha, A.; Scarborough, R. M.; Zhu, B. Y. *Bioorg. Med. Chem. Lett.* 2004, 14, 1221.

Figure S3. FTIR (KBr) spectrum of compound 2c.

For references about the other preparation methods and m.p. value of amine 2d see: (a) Bouchet, P.; Coquelet, C.; Joncheray, G.; Elguero, J. *Synth. Commun.* **1974**, 4, 57. (b) Burness, D. M. *J. Org. Chem.* **1956**, 21, 102.

Figure S5: ¹H NMR (400 MHz) spectrum of compound 2d in DMSO-d₆.

Figure S6: Expanded ¹H NMR (400 MHz) spectrum of compound 2d in DMSO-d₆.

Figure S7: ¹³C NMR (100 MHz) spectrum of compound 2d in DMSO-d₆.

2- Synthesis of substituted imidazoles 3-5; General procedure: A mixture of *N*-(4-aminophenyl) azoles 2a-d (1 mmol), benzil (1 mmol, 0.21 g), aromatic aldehyde (1 mmol) and ammonium acetate (1 mmol, 0.077 g) was stirred vigorously. Bi(NO₃)₃.5H₂O (0.15 mmol, 0,073 g, 15 mol%) and SiO₂ (0.5 g) were mixed effectively and added to the mixed reactants. The resulting mixture was heated at 110 °C for 24 h. Acetone (50 mL) was then added and the mixture was stirred at 50 °C for 10 min. Filtering the hot mixture and then concentration of the filtrate, produced the crude product. Recrystallization of the crude products in EtOH 96% gave the desired product 3-5.

2-1- **1-[4-(3-Methyl-1***H***-pyrazol-1-yl)phenyl]-2,4,5-triphenyl-1***H***-imidazole (3a): Pale yellow solid; Yield 0.35 g (78%) mp 244-246 °C. FTIR (KBr): \bar{v} 3054, 2925, 1517, 1475, 846, 693 cm⁻¹; ¹H NMR (DMSO-***d***₆): 2.23 (s, 3H, CH₃), 6.32 (d,** *J***= 2.4 Hz, 1H, Py-H4), 7.17-7.35 (m, 13H, Ar-H), 7.43-7.44 (m, 2H, Ar-H), 7.50 (d,** *J***=7.9 Hz, 2H, Ar-H), 7.72 (d,** *J***= 8.8 Hz, 2H, Ar-H), 8.37 (d,** *J***= 2.4 Hz, 1H, Py-H5). ¹³C NMR (DMSO-***d***₆): \delta=13.4, 108.3 (Py-C4), 117.9, 126.4, 126.5, 128.1, 128.2, 128.3, 128.4, 128.5, 128.52, 129.8, 130.3, 130.34, 131.1, 131.3, 133.7, 134.3, 136.8, 139.2, 146.1 (Im-C2), 150.2 (Py-C3). Anal. Calcd. For C₃₁H₂₄N₄: C, 82.27; H, 5.35; N, 12.38; Found: C, 81.98; H, 5.12; N, 12.55%.**

Figure S8. FTIR (KBr) spectrum of compound 3a.

Figure S10: Expanded ¹H NMR (400 MHz) spectrum of compound 3a in DMSO-d₆.

Figure S12: Expanded ¹³C NMR (100 MHz) spectrum of compound **3a** in DMSO-d₆.

2-2- **4,5-Diphenyl-1-[4-(3-methyl-1***H***-pyrazol-1-yl)phenyl]-2-(***p***-tolyl)-1***H***-imidazole (3b): Yield: 0.32 g (70%); pale yellow solid; m.p. 212-214 °C; FTIR (KBr): υ 3049, 2924, 1522, 1362, 1035 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.23 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 6.33 (s, 1H, Py-H4), 7.11-7.34 (m, 14H, Ar-H), 7.48 (d,** *J***=7.5 Hz, 2H, Ar-H), 7.71 (d,** *J***=8.6 Hz, 2H, Ar-H), 8.37 (s, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 13.4, 20.8, 108.3 (Py-C4), 117.2, 126.3, 126.5, 127.5, 128.2, 128.3, 128.4, 128.6, 128.8, 129.9, 130.4, 131.2, 133.8, 134.4, 136.7, 137.9, 139.2, 150.2 (Py-C3). Anal. Calcd. For C₃₂H₂₆N₄: C 82.38, H 5.62, N 12.01; Found, C 82.15, H 5.39, N 12.34.**

Figure S13. FTIR (KBr) spectrum of compound 3b.

Figure S15: Expanded ¹H NMR (400 MHz) spectrum of compound **3b** in DMSO-d₆.

Figure S16: ¹³C NMR (100 MHz) spectrum of compound 3b in DMSO-d₆.

2-3- **2-(4-Isopropylphenyl)-1-[4-(3-methyl-1***H***-pyrazol-1-yl)phenyl]-4,5-Diphenyl-1***H***-imidazole (3c): Yield: 0.34 g (69%); pale yellow solid; m.p. 218-219 °C; FTIR (KBr): \bar{v} 3046, 2957, 1522, 1361, 840, 654 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 1.15 (d,** *J***=6.9 Hz, 6H, (C***H***₃)₂CH), 2.23 (s, 3H, CH₃), 2.82 (m, 1H, C***H***(Me)₂), 6.33 (d,** *J***=2.2 Hz, 1H, Py-H4), 7.17-7.37 (m, 14H, Ar-H), 7.49 (d,** *J***= 7.3 Hz, 2H, Ar-H), 7.73 (d,** *J***= 8.7 Hz, 2H, Ar-H), 8.37 (d,** *J***=2.3 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): \delta 13.4, 23.6, 33.1, 108.3 (Py-C4), 117.9, 126.2, 126.3, 126.4, 127.9, 128.1, 128.2, 128.4, 128.5, 129.9, 130.4, 131.1, 131.2, 133.8, 134.4, 136.7, 139.2, 146.1 (Im-C2), 148.6 (=C-^{***i***}Pr), 150.2 (Py-C3). Anal. Calcd. For C₃₄H₃₀N₄: C 82.56, H 6.11, N 11.33; Found, C 82.29, H 6.34, N 11.65.**

Figure S18: ¹H NMR (400 MHz) spectrum of compound 3c in DMSO-d₆.

Figure S19: Expanded ¹H NMR (400 MHz) spectrum of compound 3c in DMSO-d₆.

Figure S20: ¹³C NMR (100 MHz) spectrum of compound 3c in DMSO-d₆.

2-4- **2-(4-methoxyphenyl)-1-[4-(3-methyl-1***H***-pyrazol-1-yl) phenyl]-4,5-diphenyl-1***H***-imidazole (3d): Yield: 0.328 g (70%); pale yellow solid; mp 224-226 °C; FTIR (KBr): \bar{v} 3048, 2929, 1607, 1523, 1248, 944 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆): δ=2.23 (s, 3H, CH₃), 3.72 (s, 3H, OCH₃), 6.33 (s, 1H, Py-H4), 6.87 (d,** *J***=8.5 Hz, 2H, Ar-H), 7.15-7.37 (m, 12H, Ar-H), 7.49 (d,** *J***=7.9 Hz, 2H, Ar-H), 7.72 (d,** *J***=8.5 Hz, 2H, Ar-H), 8.37 (s, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ=13.4, 55.1 (OCH₃), 108.3 (Py-C4), 113.7, 117.9, 122.7, 126.3, 126.4, 128.2, 128.4, 128.5, 129.7, 129.9, 130.5, 130.9, 131.2, 133.9, 134.5, 136.6, 139.2, 146.1 (Im-C2), 150.2 (Py-C3), 159.3 (=C-OMe). Anal. Calcd. For C₃₂H₂₆N₄O: C 79.64, H 5.43, N 11.61; Found, C 79.32, H 5.19, N 11.87.**

Figure S21. FTIR (KBr) spectrum of compound 3d.

Figure S22: ¹H NMR (400 MHz) spectrum of compound 3d in DMSO-d₆.

Figure S23: Expanded ¹H NMR (400 MHz) spectrum of compound 3d in DMSO-d₆.

Figure S25: Expanded ¹³C NMR (100 MHz) spectrum of compound 3d in DMSO-d₆.

2-5- **2-(4-Chlorophenyl)-1-[4-(3-methyl-1***H***-pyrazol-1-yl) phenyl]-4,5-diphenyl-1***H***-imidazole (3e**): Yield: 0.32 g (67%); pale yellow solid; mp 238-240 °C; FTIR (KBr): \bar{v} 3051, 2957, 1611, 1516, 1312, 840 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆): δ =2.24 (s, 3H, CH₃), 6.33 (d, *J*=2.2 Hz, 1H, Py-H4), 7.18-7.51 (m, 16H, Ar-H), 7.74 (d, *J*=8.7 Hz, 2H, Ar-H), 8.38 (d, *J*=2.2 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ =13.4, 108.3 (Py-C4), 118.0, 126.3, 126.6, 128.2, 128.4, 128.6, 129.1, 129.8, 129.9, 130.2, 131.1, 131.6, 133.2, 133.5, 134.2, 137.0, 139.3, 144.9, 150.3 (Py-C3). Anal. Calcd. For C₃₁H₂₃ClN₄: C 76.46, H 4.76, N 11.50; Found, C 76.19, H 4.91, N 11.80.

Figure S26. FTIR (KBr) spectrum of compound 3e.

Figure S28: Expanded ¹H NMR (400 MHz) spectrum of compound 3e in DMSO-d₆.

Figure S29: ¹³C NMR (100 MHz) spectrum of compound 3e in DMSO-d₆.

2-6- **2-(3-Bromophenyl)-1-[4-(3-methyl-1***H***-pyrazol-1-yl) phenyl]-4,5-diphenyl-1***H***-imidazole (3f**): Yield: 0.33 g (63%); pale yellow solid; mp 228-229 °C; FTIR (KBr): \bar{v} 3057, 2929, 1598, 1519, 1362, 691 cm⁻¹. ¹H NMR (400 MHz, DMSO-d₆): δ =2.24 (s, 3H, CH₃), 6.34 (d, *J*=2.1 Hz, 1H, Py-H4), 7.17-7.33 (m, 11H, Ar-H), 7.39 (d, *J*=8.7 Hz, 2H, Ar-H), 7.50 (d, *J*=7.1 Hz, 2H, Ar-H), 7.69 (s, 1H, Ar-H), 7.75 (d, *J*=8.7 Hz, 2H, Ar-H), 8.39 (d, *J*=2.1 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ =13.5, 108.4 (Py-C4), 117.9, 121.5, 126.4, 126.7, 126.9, 128.3, 128.6, 129.9, 130.1, 130.4, 130.8, 131.1, 131.9, 132.4, 133.4, 134.1, 137.1, 139.4, 144.4, 150.3 (Py-C3). Anal. Calcd. For C₃₁H₂₃BrN₄: C 70.06, H 4.36, N 10.54; Found, C 69.79, H 4.53, N 10.28.

Figure S30. FTIR (KBr) spectrum of compound 3f.

Figure S31: ¹H NMR (400 MHz) spectrum of compound 3f in DMSO-d₆

Figure S32: Expanded ¹H NMR (400 MHz) spectrum of compound 3f in DMSO-d₆.

Figure S33: ¹³C NMR (100 MHz) spectrum of compound 3f in DMSO-d₆.

Figure S34: Expanded ¹³C NMR (100 MHz) spectrum of compound 3f in DMSO-d₆.

2-7- **2-[4-(***N*,*N*-**Dimethylamino**)**phenyl]-1-[4-(3-methyl-1***H***-pyrazol-1-yl**) **phenyl]-4,5-diphenyl-**1*H*-**imidazole (3g):** Yield: 0.28 g (56%); pale yellow solid; mp 240-242 °C; FTIR (KBr): \bar{v} 3057, 2925, 1605, 1522, 1359, 825 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.24 (s, 3H, CH₃), 2.87 (s, 6H, N-CH₃), 6.33 (d, *J*= 1.9 Hz, 1H, Py-H4), 6.60 (d, *J*= 8.8 Hz, 2H, Ar-H), 7.14-7.39 (m, 12H, Ar-H), 7.48 (d, *J*=7.8 Hz, 2H, Ar-H), 7.72 (d, *J*= 8.6 Hz, 2H, Ar-H), 8.37 (d, *J*=1.9 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 13.4, 55.1 (N(CH₃)₂), 108.3 (Py-C4), 111.4, 11.9, 117.4, 117.9, 126.3, 126.7, 127.9, 128.1, 128.3, 128.5, 129.1, 129.9, 130.5, 130.6, 131.2, 134.2, 134.5, 139.1, 146.8 (Im-C2), 150.0 (Py-C3), 150.2 (=C-NMe₂). Anal. Calcd. For C₃₃H₂₉N₅: C 79.97, H 5.90, N 14.13; Found, C 79.69, H 6.18, N 14.51.

Figure S36: ¹H NMR (400 MHz) spectrum of compound 3g in DMSO-d₆

Figure S38: ¹³C NMR (100 MHz) spectrum of compound 3g in DMSO-d₆.

2-8- **1-[4-(1***H***-pyrazol-1-yl)phenyl]-2,4,5-triphenyl-1***H***-imidazole (3h): Yield: 0.31 g (71%); pale yellow solid; mp 250-252 °C; FTIR (KBr): \bar{v} 3054, 1517, 1391, 846, 693 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 6.33 (d,** *J***= 2.4 Hz, 1H, Py-H4), 7.18-7.36 (m, 14H, Ar-H), 7.43-7.44 (m, 2H, Ar-H), 7.50 (d,** *J***=7.9 Hz, 2H, Ar-H), 7.72 (d,** *J***= 8.8 Hz, 2H, Ar-H), 8.37 (d,** *J***= 2.4 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): \delta 108.3 (Py-C4), 117.9, 126.3, 126.5, 128.1, 128.2, 128.3, 128.4, 128.5, 129.9, 130.3, 130.34, 131.1, 131.3, 133.7, 134.3, 136.8, 139.2, 146.1 (Im-C2), 150.2 (Py-C3). Anal. Calcd. For C₃₀H₂₂N₄: C 82.17, H 5.06, N 12.78; Found, C 81.85, H 5.24, N 12.56.**

Figure S40. FTIR (KBr) spectrum of compound 3h.

Figure S41: ¹H NMR (400 MHz) spectrum of compound 3h in DMSO-d₆

Figure S42: Expanded ¹H NMR (400 MHz) spectrum of compound 3h in DMSO-d₆.

Figure S44: Expanded ¹³C NMR (100 MHz) spectrum of compound 3h in DMSO-d₆.

2-9- **4,5-Diphenyl-1-[4-(1***H***-pyrazol-1-yl)phenyl]-2-(***p***-tolyl)-1***H***-imidazole (3i): Yield: 0.29 g (65%); pale yellow solid; mp 242-244 °C; FTIR (KBr): \bar{v} 3065, 2923, 1520, 1364, 839, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 2.26 (s, 3H, CH₃), 6.33 (d,** *J***= 2.1 Hz, 1H, Py-H4), 7.11 (d,** *J***= 7.9 Hz, 2H, Ar-H), 7.15-7.38 (m, 13H, Ar-H), 7.49 (d,** *J***= 7.5 Hz, 2H, Ar-H), 7.71 (d,** *J***= 8.6 Hz, 2H, Ar-H), 8.36 (d,** *J***= 2.1 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): \delta 20.7, 108.2 (Py-C4), 117.9, 118.4, 126.3, 126.4, 127.5, 127.9, 128.1, 128.2, 128.4, 128.5, 128.8, 128.9, 130.0, 130.4, 131.1, 133.8, 134.4, 137.9, 139.2, 146.2 (Im-C2), 150.2 (Py-C3). Anal. Calcd. For C₃₁H₂₄N₄: C 82.27, H 5.35, N 12.38; Found, C 81.95, H 5.17, N 12.64.**

Figure S45. FTIR (KBr) spectrum of compound 3i.

Figure S46: Expanded ¹H NMR (400 MHz) spectrum of compound 3i in DMSO-d₆

Figure S47: ¹³C NMR (100 MHz) spectrum of compound 3i in DMSO-d₆.

2-10 **4,5-Diphenyl-2-(4-isopropylphenyl)-1-[4-(1***H***-pyrazol-1-yl)]phenyl]-1***H***-imidazole (3j).**

Yield: 0.30 g (62%); pale yellow solid; mp 216-218 °C; FTIR (KBr): \bar{v} 3047, 2956, 1616, 1530, 1362, 840 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 1.15 (d, *J*= 6.9 Hz, 6H, (C*H*₃)₂CH), 2.82-2.84 (m, 1H, C*H* (Me)₂), 6.33 (d, *J*=1 Hz, 1H, Py-H4), 7.16-7.41 (m, 15H, Ar-H), 7.50 (d, *J*=7.8 Hz, 2H, Ar-H), 7.73 (d, *J*=8.5 Hz, 2H, Ar-H), 8.37 (d, *J*=1 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): δ 23.6, 33.1, 108.2 (Py-C4), 117.9, 118.4, 126.1, 126.3, 126.4, 127.9, 128.1, 128.2, 128.4, 128.5, 129.9, 130.0, 130.4, 131.1, 133.8, 134.4, 136.7, 139.2, 146.1 (Im-C2), 148.6 (=C-^{*i*}Pr), 150.2 (Py-C3). Anal. Calcd. For C₃₃H₂₈N₄: C 82.47, H 5.87, N 11.66; Found, C 82.16, H 5.65, N 11.89.

Figure S48. FTIR (KBr) spectrum of compound 3j.

Figure S49: ¹H NMR (400 MHz) spectrum of compound 3j in DMSO-d₆.

Figure S51: ¹³C NMR (100 MHz) spectrum of compound 3j in DMSO-d₆.

2-11 **4,5-Diphenyl-2-(4-methoxyphenyl)-1-[4-(1***H***-pyrazol-1-yl)]phenyl]-1***H***-imidazole (3k). Yield: 0.30 g (65%); pale yellow solid; mp 236-238 °C; FTIR (KBr): \bar{v} 3054, 2924, 1602, 1524, 1251, 843 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 3.72 (s, 3H, OCH₃), 6.33 (d,** *J***= 2.2 Hz, 1H, Py-H4), 6.87 (d,** *J***= 8.7 Hz, 2H, Ar-H), 7.15-7.37 (m, 13H, Ar-H), 7.49 (d,** *J***= 7.4 Hz, 2H, Ar-H), 7.72 (d,** *J***= 8.7 Hz, 2H, Ar-H), 8.37 (d,** *J***= 2.2 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): \delta 55.1 (OCH₃), 108.3 (Py-C4), 113.7, 117.9, 122.7, 126.3, 126.4, 128.1, 128.4, 128.5, 129.7, 129.9, 130.5, 130.9, 131.2, 133.9, 134.5, 136.6, 139.2, 146.1 (Im-C2), 150.2 (Py-C3), 159.3 (=C-OMe). Anal. Calcd. For C₃₁H₂₄N₄O: C 79.46, H 5.16, N 11.96; Found, C 79.17, H 5.38, N 11.73.**

Figure S52. FTIR (KBr) spectrum of compound 3k.

Figure S53: ¹H NMR (400 MHz) spectrum of compound 3k in DMSO-d₆.

Figure S54: Expanded ¹H NMR (400 MHz) spectrum of compound 3k in DMSO-d₆.

2-12 **4,5-Diphenyl-1-[4-(3-methyl-1***H***-pyrazol-1-yl)phenyl]- 2-(thiophen-2-yl)-1***H***-imidazole (3l). Yield: 0.32 g (70 %); pale yellow solid; mp 244-246 °C; FTIR (KBr): \bar{v} 3056, 2926, 1615, 1515, 1359, 695 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 2.25 (s, 3H, CH₃), 6.35 (d,** *J***= 2.1 Hz, 1H, Py-H4), 6.62 (d,** *J***= 3.6 Hz, 1H, Th-H5), 6.93-7.95 (m, 1H, Th-H4), 7.18-7.30 (m, 8H, Ar-H), 7.47-7.53 (m, 5H, Ar-H), 7.83 (d,** *J***= 8.7 Hz, 2H, Ar-H), 8.43 (d,** *J***=2.1 Hz, 1H, Py-H5). ¹³C NMR (100 MHz, DMSO-d₆): \delta 13.5, 108.4 (Py-C4), 118.2, 125.6, 126.3, 126.6, 127.2, 127.6, 128.2, 128.5, 128.6, 130.0, 130.4, 131.1, 131.4, 132.8, 133.1, 134.0, 136.8, 140.0, 141.5 (Th-C2), 150.4 (Py-C3). Anal. Calcd. For C₂₉H₂₂N₄S: C 75.95, H 4.84, N 12.22, S 6.99; Found, C 75.62, H 4.65, N 11.98, S 6.72.**

Figure S56. FTIR (KBr) spectrum of compound 3l.

Figure S57: ¹H NMR (400 MHz) spectrum of compound 3l in DMSO-d₆.

Figure S58: Expanded ¹H NMR (400 MHz) spectrum of compound 31 in DMSO-d₆.

Figure S59: ¹³C NMR (100 MHz) spectrum of compound 31 in DMSO-d₆.

2-13 **1-(4-(1***H***-imidazol-1-yl)phenyl)-2,4,5-triphenyl-1***H***-imidazole (4a): Yield: 0.31 g (70%); pale yellow solid; mp 250-252 °C; FTIR (KBr): \bar{v} 3056, 1524, 1443, 847, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 7.15-7.32 (m, 12H, Ar-H), 7.42-7.51 (m, 6H, Ar-H), 7.68 (d,** *J***= 8.7 Hz, 2H, Ar-H), 7.84 (s, 1H, Im-H4), 8.39 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): \delta 120.3, 125.2, 126.3, 126.5, 127.1, 128.0, 128.2, 128.3, 128.4, 128.6, 128.7, 129.5, 129.9, 130.2, 130.3, 131.2, 131.3, 134.3, 135.1, 136.3, 136.9, 146.21 (N=CAr-N). Anal. Calcd. For C₃₀H₂₂N₄: C 82.17, H 5.06, N 12.78; Found, C 81.88, H 5.29, N 12.56.**

Figure S60. FTIR (KBr) spectrum of compound 4a.

Figure S61: Expanded ¹H NMR (400 MHz) spectrum of compound 4a in DMSO-d₆.

Figure S62: ¹³C NMR (100 MHz) spectrum of compound 4a in DMSO-d₆.

Figure S63: Expanded ¹³C NMR (100 MHz) spectrum of compound 4a in DMSO-d₆.

2-14 **4,5-Diphenyl-1-[4-(1***H***-imidazol-1-yl)phenyl]-2-(***p***-tolyl)-1***H***-imidazole (4b): Yield: 0.32 g (71%); pale yellow solid; mp 262-264 °C; FTIR (KBr): \bar{v} 3058, 2919, 1605, 1525, 1376, 698 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 2.26 (s, 3H, CH₃), 7.11-7.33 (m, 13H, Ar-H), 7.42 (d,** *J***=8.7 Hz, 2H, Ar-H), 7.48 (d,** *J***=7.4 Hz, 2H, Ar-H), 7.66 (d,** *J***=8.7 Hz, 2H, Ar-H), 7.82 (s, 1H, Im-H5), 8.36 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): \delta= 20.8, 117.8, 120.2, 126.4, 126.5, 127.5, 128.2, 128.4, 128.6, 128.9, 129.6, 130.0, 130.4, 131.1, 131.2, 134.4, 135.1, 135.7, 136.4, 136.8, 138.0, 146.4 (N=CAr-N). Anal. Calcd. For C₃₁H₂₄N₄: C 82.27, H 5.35, N 12.38; Found, C 81.98, H 5.54, N 12.65.**

Figure S65: ¹H NMR (400 MHz) spectrum of compound 4b in DMSO-d₆.

Figure S66: Expanded ¹H NMR (400 MHz) spectrum of compound 4b in DMSO-d₆.

Figure S68: Expanded ¹³C NMR (100 MHz) spectrum of compound 4b in DMSO-d₆.

2-15 **4,5-Diphenyl-1-[4-(1***H***-imidazol-1-yl)phenyl]-2-(4-isopropylphenyl)-1***H***-imidazole (4c): Yield: 0.35 g (73%); pale yellow solid; mp 266-268 °C; FTIR (KBr): \bar{v} 3065, 2961, 1524, 1419, 1151 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 1.16 (d,** *J***= 6.9 Hz, 6H, (C***H***₃)₂CH), 2.82-2.85 (m, 1H, (Me)₂C***H***), 7.15-7.36 (m, 13H, Ar-H), 7.46-7.49 (m, 4H, Ar-H), 7.70 (d,** *J***= 8.7 Hz, 2H, Ar-H), 7.87 (s, 1H, Im-H5), 8.41 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): \delta 23.6, 33.1, 117.9, 120.3, 126.3, 126.4, 126.5, 127.9, 128.2, 128.3, 128.6, 129.8, 130.4, 130.5, 131.2, 131.24, 134.4, 135.3, 135.8, 136.3, 136.8, 146.3 (N=CAr-N), 148.7 (=C-Prⁱ). Anal. Calcd. For C₃₃H₂₈N₄: C 82.47, H 5.87, N 11.66; Found, C 82.19, H 5.63, N 11.87.**

Figure S70: ¹H NMR (400 MHz) spectrum of compound 4c in DMSO-d₆.

Figure S71: Expanded ¹H NMR (400 MHz) spectrum of compound 4c in DMSO-d₆.

Figure S72: ¹³C NMR (100 MHz) spectrum of compound 4c in DMSO-d₆.

Figure S73: Expanded ¹³C NMR (100 MHz) spectrum of compound 4c in DMSO-d₆.

2-16 **4,5-Diphenyl-1-[4-(1***H***-imidazol-1-yl)phenyl]-2-(4-isopropylphenyl)-1***H***-imidazole (4d): Yield: 0.32 g (68%); pale yellow solid; mp 248-250 °C; FTIR (KBr): \bar{v} 3065, 1524, 1396, 842, 699 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 7.11 (s, 1H, Im-H4), 7.18-7.50 (m, 16H, Ar-H), 7.68 (d,** *J***= 8.7 Hz, 2H, Ar-H), 7.82 (s, 1H, Im-H5), 8.36 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): \delta 117.7, 120.2, 126.3, 126.6, 128.2, 128.4, 128.5, 128.6, 129.1, 129.9, 130.1, 130.2, 131.1, 131.3, 131.5, 133.2, 134.1, 134.6, 135.6, 136.6, 137.1, 145.0 (N=CAr-N). Anal. Calcd. For C₃₀H₂₁ClN₄: C 76.18, H 4.48, N 11.85; Found, C 76.47, H 4.26, N 11.59.**

Figure S74. FTIR (KBr) spectrum of compound 4d.

Figure S75: ¹H NMR (400 MHz) spectrum of compound 4d in DMSO-d₆.

Figure S76: Expanded ¹H NMR (400 MHz) spectrum of compound 4d in DMSO-d₆.

Figure S77: ¹³C NMR (100 MHz) spectrum of compound 4d in DMSO-d₆.

Figure S78: Expanded ¹³C NMR (100 MHz) spectrum of compound 4d in DMSO-d₆.

2-17 **4,5-Diphenyl-1-[4-(1***H***-imidazol-1-yl)phenyl]-2-(4-methoxyphenyl)-1***H***-imidazole (4e): Yield: 0.34 g (72%); pale yellow solid; mp 258-260 °C; FTIR (KBr): \bar{v} 3057, 2925, 1527, 1384, 843, 698 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 3.72 (s, 3H, OCH₃), 6.88 (d,** *J***= 8.8 Hz, 2H, Ar-H), 7.15-7.50 (m, 15H, Ar-H), 7.70 (d,** *J***= 8.7 Hz, 2H, Ar-H), 7.89 (s, 1H, Im-H5), 8.47 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): \delta 55.1 (OCH₃), 113.7, 120.5, 122.7, 126.3, 126.4, 128.0, 128.2, 128.5, 128.6, 129.5, 129.6, 129.8, 130.4, 130.8, 131.2, 134.4, 135.5, 136.1, 136.7, 146.2 (N=CAr-N), 159.3 (=C-OMe). Anal. Calcd. For C₃₁H₂₄N₄O: C 79.46, H 5.16, N 11.96; Found, C 79.19, H 5.28, N 11.73.**

Figure S79. FTIR (KBr) spectrum of compound 4e.

Figure S80: ¹H NMR (400 MHz) spectrum of compound 4e in DMSO-d₆.

Figure S81: Expanded ¹H NMR (400 MHz) spectrum of compound 4e in DMSO-d₆.

Figure S82: ¹³C NMR (100 MHz) spectrum of compound 4e in DMSO-d₆.

2-18 **4-{4,5-Diphenyl-1-[4-(1***H***-imidazol-1-yl)phenyl]-1***H***-imidazol-2-yl}phenol (4f): Yield: 0.25 g (56%); pale yellow solid; mp 330-332 °C; FTIR (KBr): \bar{v} 3414, 1520, 1478, 840, 699 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 6.68-6.70 (m, 2H, Ar-H), 7.09 (s, 1H, Im-H4), 7.14-7.18 (m, 1H, Ar-H), 7.24-7.32 (m, 9H, Ar-H), 7.36-7.40 (m, 2H, Ar-H), 7.48 (d,** *J***=7.9 Hz, 2H, Ar-H), 7.63-7.66 (m, 2H, Ar-H), 7.78 (s, 1H, Im-H5), 8.32 (s, 1H, Im-H2), 9.70 (s, 1H, OH). ¹³C NMR (100 MHz, DMSO-d₆): δ 114.9, 115.0, 117.6, 120.0, 126.3, 128.1, 128.4, 128.5, 129.9, 130.1, 130.3, 130.5, 130.6, 131.2, 134.5, 135.0, 135.4, 136.3, 136.5, 146.6 (N=CAr-N), 157.5, 157.6 (=C-OH). Anal. Calcd. For C₃₀H₂₂N₄O: C 79.27, H 4.88, N 12.33; Found, C 78.94, H 4.62, N 12.54.**

Figure S83. FTIR (KBr) spectrum of compound 4f.

Figure S84: ¹H NMR (400 MHz) spectrum of compound 4f in DMSO-d₆.

Figure S85: Expanded ¹H NMR (400 MHz) spectrum of compound 4f in DMSO-d₆.

Figure S86: ¹³C NMR (100 MHz) spectrum of compound 4f in DMSO-d₆.

2-19 4,5-Diphenyl-1-[4-(1*H***-imidazol-1-yl)phenyl]-2-(thiophen-2-yl)-1***H***-imidazole (4g): Yield: 0.31 g (71%); pale yellow solid; mp 256-258 °C; FTIR (KBr): \bar{v} 3065, 1517, 1296, 702 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta= 6.61 (d,** *J***= 3.2 Hz, 1H, Im-H4), 6.93-6.96 (m, 1H, Th-H4), 7.12-7.22 (m, 9H, Ar-H), 7.47 (d,** *J***= 7.4 Hz, 2H, Ar-H), 7.52 (d,** *J***= 4.8 Hz, 1H, Th-H5), 7.61 (d,** *J***= 8.6 Hz, 2H, Ar-H), 7.76 (d,** *J***= 8.6 Hz, 2H, Ar-H), 7.85 (s, 1H, Im-H5), 8.38 (s, 1H, Im-H2). ¹³C NMR (100 MHz, DMSO-d₆): \delta 117.7, 120.4, 125.7, 126.3, 126.6, 127.3, 127.6, 128.2, 128.6, 128.7, 129.9, 130.2, 130.8, 131.1, 131.3, 132.7, 134.0, 134.3, 135.6, 136.9, 137.2, 141.5 (Th-C2). Anal. Calcd. For C₂₈H₂₀N₄S: C 75.65, H 4.53, N 12.60, S 7.21; Found, C 75.92, H 4.68, N 12.44, S 7.56.**

Figure S87. FTIR (KBr) spectrum of compound 4g.

Figure S90: ¹³C NMR (100 MHz) spectrum of compound 4g in DMSO-d₆.

Figure S91: ¹³C NMR (100 MHz) spectrum of compound 4g in DMSO-d₆.

2-20 **1-[4-(2,4,5-Triphenyl-1***H***-imidazol-1-yl)phenyl]-1***H***-benzo[***d***]imidazole (5a): Yield: 0.32 g (68%); pale yellow solid; mp 260-262 °C; FTIR (KBr): \bar{v} 3050, 1514, 1228, 693 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): \delta 7.19-7.20 (m, 1H, Benzim-H5), 7.25-7.37 (m, 11H, Ar-H), 7.46-7.56 (m, 8H, Ar-H), 7.66-7.69 (m, 2H, Ar-H), 7.75-7.77 (m, 1H, Ar-H), 8.59 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): \delta 110.6, 120.1, 122.7, 123.7, 123.9, 126.4, 126.6, 128.2, 128.3, 128.4, 128.5, 128.6, 130.2, 130.3, 130.5, 131.2, 131.3, 132.7, 134.3, 135.6, 135.9, 136.9, 143.2, 143.8 (Benzim-C2), 146.3 (Im-C2). Anal. Calcd. For C₃₄H₂₄N₄: C 83.58, H 4.95, N 11.47; Found, C 83.87, H 4.69, N 11.26**

Figure S92. FTIR (KBr) spectrum of compound 5a.

Figure S95: ¹³C NMR (100 MHz) spectrum of compound 5a in DMSO-d₆.

Figure S96: Expanded ¹³C NMR (100 MHz) spectrum of compound 5a in DMSO-d₆.

2-21 **1-{4-[4,5-Diphenyl-2-**(*p*-tolyl)-1*H*-imidazol-1-yl]phenyl}-1*H*-benzo[*d*]imidazole (5b): Yield: 0.32 g (63%); pale yellow solid; mp 242-244 °C; FTIR (KBr): \bar{v} 3056, 2923, 1517, 1455, 1023, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 2.27 (s, 3H, CH₃), 7.14 (d, *J*= 8.0 Hz, 2H, Ar-H), 7.19 (d, *J*= 7.1 Hz, 1H, Benzim-H7), 7.24-7.27 (m, 2H, Ar-H), 7.31-7.36 (m, 9H, Ar-H), 7.50-7.54 (m, 5H, Ar-H), 7.67 (d, *J*= 8.5 Hz, 2H, Ar-H), 7.77 (d, *J*=7.6 Hz, 1H, Benzim-H4), 8.58 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 20.8, 110.6, 120.1, 122.7, 123.7, 123.9, 126.4, 126.5, 127.5, 128.2, 128.4, 128.5, 128.6, 128.9, 130.3, 130.5, 131.1, 131.2, 132.7, 134.4, 135.7, 135.9, 136.9, 138.0, 143.2, 143.8 (Benzim-C2), 146.4 (Im-C2). Anal. Calcd. For C₃₅H₂₆N₄: C 83.64, H 5.21, N 11.15; Found, C 83.95, H 5.09, N 11.37.

Figure S98: ¹H NMR (400 MHz) spectrum of compound 5b in DMSO-d₆.

Figure S99: Expanded ¹H NMR (400 MHz) spectrum of compound 5b in DMSO-d₆.

Figure S100: ¹³C NMR (100 MHz) spectrum of compound 5b in DMSO-d₆.

Figure S101: Expanded ¹³C NMR (100 MHz) spectrum of compound 5b in DMSO-d₆.

2-22 **1-{4-[4,5-Diphenyl-2-(4-isopropylphenyl)-1***H***-imidazol-1-yl]phenyl}-1***H***-benzo[***d***]imidazole (5c**): Yield: 0.37 g (70%); pale yellow solid; mp 240-242 °C; FTIR (KBr): \bar{v} 3055, 2958, 1515, 1453, 841, 698 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 1.16 (d, *J*= 6.9 Hz, 6H, (C*H*₃)₂CH), 2.82-2.89 (m, 1H, C*H*(Me)₂), 7.16-7.29 (m, 5H, Ar-H), 7.30-7.37 (m, 7H, Ar-H), 7.39 (d, *J*= 8.2 Hz, 2H, Ar-H), 7.50-7.52 (m, 3H, Ar-H), 7.55 (d, *J*= 8.6 Hz, 2H, Ar-H), 7.69 (d, *J*= 8.6 Hz, 2H, Ar-H), 7.76-7.78 (m, 1H, Benzim-H4), 8.60 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ = 23.6, 33.1, 110.6, 120.1, 122.7, 123.7, 123.9, 126.3, 126.4, 126.5, 127.9, 128.2, 128.4, 128.5, 128.6, 130.3, 130.6, 131.1, 131.2, 132.7, 134.4, 135.7, 135.9, 136.9, 143.2, 143.8 (Benzim-C2), 146.3 (Im-C2), 148.7 (=C-Prⁱ)</sup>. Anal. Calcd. For C₃₇H₃₀N₄: C 83.74, H 5.70, N 10.56; Found, C 83.4I, H 5.55, N 11.34.

Figure S102. FTIR (KBr) spectrum of compound 5c.

Figure S103: ¹H NMR (400 MHz) spectrum of compound 5c in DMSO-d₆.

Figure S104: Expanded ¹H NMR (400 MHz) spectrum of compound 5c in DMSO-d₆.

Figure S105: ¹³C NMR (100 MHz) spectrum of compound 5c in DMSO-d₆.

Figure S106: Expanded ¹³C NMR (100 MHz) spectrum of compound 5c in DMSO-d₆.

2-23 1-{4-[2-(4-Chlorophenyl)-4,5-diphenyl-1*H*-imidazol-1-yl]phenyl}-1*H*-benzo[d]imidazole

(**5d**): Yield: 0.35 g (67%); pale yellow solid; mp 274-276 °C; FTIR (KBr): υ 3057, 1511, 1227, 838, 696 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.18-7.21 (m, 1H, Benzim-H5), 7.24-7.28 (m, 2H, Ar-H), 7.31-7.35 (m, 7H, Ar-H), 7.41-7.57 (m, 9H, Ar-H), 7.70 (d, *J*= 8.7 Hz, 2H, Ar-H), 7.77 (d, *J*=7.8 Hz, 1H, Benzim-H4), 8.58 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 110.6, 120.1, 122.7, 123.7, 123.9, 126.4, 126.6, 128.2, 128.4, 128.6, 128.7, 129.1, 130.0, 130.1, 130.5, 131.2, 131.6, 132.7, 133.3, 134.1, 135.4, 136.1, 137.1, 143.2, 143.8 (Benzim-C2), 145.1 (Im-C2). Anal. Calcd. For C₃₄H₂₃ClN₄: C 78.08, H 4.43, N 10.71; Found, C 77.83, H 4.18, N 10.49.

Figure S107. FTIR (KBr) spectrum of compound 5d.

Figure S108: ¹H NMR (400 MHz) spectrum of compound 5d in DMSO-d₆.

Figure S109: Expanded ¹H NMR (400 MHz) spectrum of compound 5d in DMSO-d₆.

Figure S110: ¹³C NMR (100 MHz) spectrum of compound 5d in DMSO-d₆.

Figure S111: Expanded ¹³C NMR (100 MHz) spectrum of compound 5d in DMSO-d₆.

2-24 **1-{4-[4,5-Diphenyl-2-(4-methoxyphenyl)-** 1*H*-imidazol-1-yl]phenyl}-1*H*-benzo[d]imidazole (5e): Yield: 0.38 g (73%); pale yellow solid; mp 242-244 °C; FTIR (KBr): \bar{v} 3057, 2996, 1606, 1515, 1485, 1251 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 3.73 (s, 3H, OCH₃), 6.89 (d, *J*= 8.8 Hz, 2H, Ar-H), 7.16-7.19 (m, 1H, Benzim-H5), 7.23-7.33 (m, 9H, Ar-H), 7.39 (d, *J*= 8.8 Hz, 2H, Ar-H), 7.50-7.54 (m, 5H, Ar-H), 7.68 (d, *J*= 8.5 Hz, 2H, Ar-H), 7.77 (d, *J*= 7.6 Hz, 1H, Benzim-H4), 8.56 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 55.1 (OCH₃), 110.6, 113.8, 120.1, 122.7, 123.7, 123.8, 126.4, 126.5, 128.2, 128.5, 128.6, 129.9, 130.4, 130.5, 130.9, 131.2, 132.7, 134.4, 135.8, 135.9, 136.7, 143.2, 143.9 (Benzim-C2), 146.3 (Im-C2), 159.3 (=C-OMe). Anal. Calcd. For C₃₅H₂₆N₄O: C 81.06, H 5.05, N 10.80; Found, C 81.35, H 5.28, N 10.51.

Figure S113: ¹H NMR (400 MHz) spectrum of compound 5e in DMSO-d₆.

Figure S115: ¹³C NMR (100 MHz) spectrum of compound 5e in DMSO-d₆.

Figure S116: Expanded ¹³C NMR (100 MHz) spectrum of compound 5e in DMSO-d₆.

2-25 **1-{4-[2-(3-Bromophenyl)-4,5-diphenyl-1***H*-imidazol-1-yl]phenyl}-1*H*-benzo[d]imidazole (5f): Yield: 0.39 g (70%); pale yellow solid; mp 240-242 °C; FTIR (KBr): \bar{v} 3054, 1508, 1451, 1283, 703 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 7.18-7.36 (m, 11H, Ar-H), 7.42 (d, *J*= 7.8 Hz, 1H, Benzim-H7), 7.51-7.61 (m, 7H, Ar-H), 7.71 (d, *J*= 8.4 Hz, 2H, Ar-H), 7.77 (d, *J*= 7.8 Hz, 1H, Benzim-H4), 8.57 (s, 1H, Benzim-H2). ¹³C NMR (100 MHz, DMSO-d₆): δ 110.5, 120.1, 121.5, 122.7, 123.7, 124.2, 126.4, 126.7, 127.1, 128.2, 128.7, 128.8, 130.0, 130.5, 130.6, 130.8, 131.1, 131.2, 131.8, 132.4, 132.8, 134.1, 135.4, 136.2, 137.3, 143.1, 143.8 (Benzim-C2), 144.5 (Im-C2). Anal. Calcd. For C₃₄H₂₃BrN₄: C 71.96, H 4.09, N 9.87; Found, C 71.63, H 4.28, N 9.59.

Figure S117. FTIR (KBr) spectrum of compound 5f.

Figure S118: ¹H NMR (400 MHz) spectrum of compound 5f in DMSO-d₆.

Figure S120: ¹³C NMR (100 MHz) spectrum of compound 5f in DMSO-d₆.

Figure S121: Expanded ¹³C NMR (100 MHz) spectrum of compound 5f in DMSO-d₆.