

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Research Article

Activity of γ -Al₂O₃-based Mn, Cu, and Co oxide nanocatalysts for selective catalytic reduction of nitric oxide with ammonia

Parvaneh NAKHOSTIN PANAHI^{1,*}, Gérard DELAHAY², Seyed Mahdi MOUSAVI³

¹Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran

²Charles Gerhardt Institute, UMR 5253 CNRS/UM2/ENSCM/UM1, Advanced Materials for Catalysis and Health Group, Higher National School of Chemistry of Montpellier, Montpellier, France

³Faculty of Chemistry, University of Kashan, Kashan, Iran

Received: 23.05.2016	•	Accepted/Published Online: 11.10.2016	•	Final Version: 19.04.2017
		1 /		

Abstract: Our studies on the selective catalytic reduction of NO (SCR-deNO) properties of M/γ -Al₂O₃ (M = Mn, Co, Cu) nanocatalysts are presented. All catalysts were prepared by homogeneous deposition precipitation using urea as the precursor for the precipitating agent. The SCR activity followed the order Mn/ γ -Al₂O₃ > Cu/ γ -Al₂O₃ > Co/ γ -Al₂O₃. The nanocatalysts were characterized with respect to their texture (N₂-BET), particle size (TEM), reducibility (H₂-TPR), and acidity (NH₃-TPD). The TEM analysis revealed that the metal species have superior dispersion with less agglomeration and sintering on γ -Al₂O₃ support. The H₂-TPR results confirmed that the Mn/ γ -Al₂O₃ nanocatalyst contains various oxidation states of manganese, which is useful for the catalyst to maintain the DeNO activities. The NH₃-TPD studies indicated that the addition of transition metal can significantly increase the surface acidity and Mn/ γ -Al₂O₃ showed the most adsorbed sites of NH₃. Characterization results indicated that the acidity and the redox properties of the catalyst play important roles in the final catalytic activity in the SCR-NO process.

Key words: NO, NH₃-SCR, transition metals, γ -Al₂O₃, nanocatalyst

1. Introduction

Nitrogen oxides (NO_x = NO + NO₂) are among the main atmospheric pollutants. They are reported to contribute to a variety of environmental problems including acid rain and acidification of aquatic systems, ground level ozone (smog), ozone depletion, visibility degradation and greenhouse effects^{1,2} Increasingly stringent limits for exhaust emissions, particularly for nitrogen oxides from lean-burn combustion such as diesel engines, have driven many researchers to look for suitable methods. The selective catalytic reduction (SCR) of NO with ammonia as reductant is the most common method to catalytically reduce NO in flue gases from stationary sources. A number of catalysts consisting of various transition metals on different supporters have been studied for the SCR of NO reaction. Transition metals such as Cu,³ Co,⁴ Fe,⁵ and Mn^{6,7} have been reported to exhibit high activity. γ -Al₂O₃ has been extensively used as a support in many catalyst formulations, mainly due to its low cost, particular texture, and good thermal stability⁸ Torikai et al.⁹ studied the performance of alumina catalysts in NH₃-SCR reactions. They reported that the activity improves greatly with the loading of copper and also the addition of copper results in lowering the active temperature region, the higher maximum activity, and the enhancement of the reaction rate. Hamada et al.¹⁰ also investigated the SCR behavior of

^{*}Correspondence: panahi@znu.ac.ir

metal-alumina catalysts and concluded that these catalysts show excellent activity at low temperatures and under high space velocity conditions.

Despite the number of investigations carried out on γ -Al₂O₃-supported transition metal catalysts, there is, to the best of our knowledge, no available study that compares the activity of different transition metals supported on γ -Al₂O₃. Therefore, the goal of this work was the comparison of three catalyst activities (Co/ γ -Al₂O₃, Cu/ γ -Al₂O₃, and Mn/ γ -Al₂O₃) under a common experimental set up and understanding the effect of metal characteristics on NO conversion. Hence, in the present work, metals of cobalt, copper, and manganese were supported on γ -Al₂O₃ by deposition precipitation method and studied for the SCR of NO by ammonia. The effects of transition metals' modification on the microstructure and physiochemical properties were systematically investigated by BET, NH₃-TPD, H₂-TPR, and TEM in combination with the activity evaluation of NO catalytic removal.

2. Results and discussion

2.1. Characterization of catalysts

2.1.1. Analysis of the metal species particle sizes by TEM

The TEM images of the γ -Al₂O₃ and M/ γ -Al₂O₃ nanocatalysts are shown in Figures 1a–1d. TEM analysis detected the presence of metal species particles on the γ -Al₂O₃ support. Dark spots are mainly attributed to metal species. For all the nanocatalysts, we can observe the presence of metal species nanoparticles dispersed homogeneously. The coprecipitation method is definitely beneficial for the homogeneous dispersion of metal species deposited at high contents¹¹ The TEM images also confirmed the nanoscale size of the M/ γ -Al₂O₃ catalysts (<100 nm).

2.1.2. BET surface area

The BET surface area, pore volume, and pore size of the γ -Al₂O₃ and synthesized M/ γ -Al₂O₃ nanocatalysts are summarized in Table 1. The BET surface areas and the pore volume of γ -Al₂O₃ slightly decreased after metal loading, suggesting that the introduction of metal does not obviously affect the textural properties of the support. However, this slight decrease of the BET surface area can be attributed to the partial pore blockage by the metal species.¹² Note, however, that an apparent reduction of the BET surface area may also be caused by the increasing density of the catalysts due to the loading of the support with metal¹³ The mean pore diameter has increased with M/ γ -Al₂O₃ catalysts in comparison to γ -Al₂O₃. This might be due to dissociation of some bonds in γ -Al₂O₃ because of the urea alkaline environment and consequently the pore diameter is high for M/ γ -Al₂O₃ catalysts.

Table 1. BET surface area, pore volume, and average pore diameter of γ -Al₂O₃ and M/ γ -Al₂O₃ (M = Cu, Mn, Co) nanocatalysts.

Catalyst	$\gamma - Al_2O_3$	Cu/γ -Al ₂ O ₃	Mn/γ -Al ₂ O ₃	Co/γ -Al ₂ O ₃
BET surface area (m^2/g)	137	124	127	127
Total pore volume (cm^3/g)	0.246	0.237	0.252	0.261
Average pore diameter (Å)	5.6	5.8	6.1	6.2

The overall results by BET analysis of the M/γ -Al₂O₃ nanocatalysts indicated that the introduction of metal species has little effect on the textural properties of γ -Al₂O₃.

Figure 1. TEM images of (a) γ -Al₂O₃, (b) Cu/ γ -Al₂O₃, (c) Mn/ γ -Al₂O₃, (d) Co/ γ -Al₂O₃.

2.1.3. XRD

The X-ray diffraction patterns of γ -Al₂O₃ and M/ γ -Al₂O₃ nanocatalysts are shown in Figure 2. All diffraction peaks corresponding to the γ -Al₂O₃ structure could be clearly observed for all M/ γ -Al₂O₃ catalysts,

suggesting that neither the metal loading nor the calcination process significantly affected the γ -Al₂O₃ structure. There were no other peaks in XRD patterns of M/ γ -Al₂O₃ nanocatalysts, demonstrating that metal species (e.g., oxides, cations) were well dispersed throughout the γ -Al₂O₃ structure.

Figure 2. XRD patterns of γ -Al₂O₃ and M/ γ -Al₂O₃ nanocatalysts.

2.1.4. Temperature-programmed reduction in H_2 (H_2 -TPR)

The reduction property of M/γ -Al₂O₃ nanocatalysts was investigated using H₂-TPR and the results are presented in Figure 3 and Table 2. The Cu/ γ -Al₂O₃ catalyst showed one reduction peak around 220 °C. According to results from the literature,¹⁴ this peak can be assigned to the reduction of isolated Cu²⁺ ions to Cu⁺ and possibly also the reduction of nanosized CuO. Three distinct reduction peaks were observed for the Mn/ γ -Al₂O₃ catalyst. According to previous studies,¹⁵⁻¹⁷ the low temperature peak at 310 °C is attributed to the reduction of highly dispersed and easily reducible MnO₂ species, the broad middle temperature peak at 430 °C is due to the reduction of Mn₂O₃/Mn₃O₄ or the bulk MnO_x phase, and the high temperature peak with less intensity at 500 °C is due to the reduction of Mn₃O₄ \rightarrow Mn₃O₄ \rightarrow MnO¹⁸ Further reduction of MnO to Mn metal is impossible below 800 °C due to its large negative value of reduction potential, which was reported in many studies.¹⁹⁻²¹

Figure 3. H₂-TPR profiles of M/γ -Al₂O₃ (M = Cu, Mn, Co) nanocatalysts.

Table 2. H₂ consumption during H₂-TPR and acidity obtained from NH₃-TPD in M/ γ -Al₂O₃ (M = Cu, Mn, Co) nanocatalysts.

Catalyst	$\gamma - Al_2O_3$	Cu/γ - $\mathrm{Al}_2\mathrm{O}_3$	Mn/γ - Al_2O_3	Co/γ -Al ₂ O ₃
Total amount H_2 consumed (μ mol/g)	-	432	453	355
Acidity $(\mu mol/g)$	151	289	339	247

The Co/ γ -Al₂O₃ catalyst showed one main reduction peak at 650 °C, which can be ascribed to the reduction of isolated Co²⁺ ions²² In addition to the main peak, a small peak at about 450 °C was also observed. This peak corresponds to reduction of cobalt oxo species, such as CoO or Co₃O₄.²³

A comparison of TPR profiles of M/γ -Al₂O₃ nanocatalysts shows that the Mn/ γ -Al₂O₃ catalyst contains various oxidation states of manganese, due to the existence of several reduction peaks. The reduction temperature of copper species in the Cu/ γ -Al₂O₃ catalyst (220 °C) was found to be lower than that of cobalt species in the Co/ γ -Al₂O₃ catalyst (650 °C), indicating higher reducibility of copper species in Cu/ γ -Al₂O₃. The copper species are more easily reducible than cobalt species. The main reduction peak of Co/ γ -Al₂O₃ is at a higher temperature in comparison to Mn/ γ -Al₂O₃ and Cu/ γ -Al₂O₃, implying that the redox activity of the Co/ γ -Al₂O₃ catalyst is low. The decrease in the redox property leads to the low activity.

Meanwhile, according to Table 2, the amount of H_2 consumed of Mn/γ -Al₂O₃ (453 μ mol/g) is greater than that of Cu/ γ -Al₂O₃ (432 μ mol/g) and Co/ γ -Al₂O₃ (355 μ mol/g), implying that the reducing potential of Mn/ γ -Al₂O₃ is higher than that of Cu/ γ -Al₂O₃ and Co/ γ -Al₂O₃.

2.1.5. NH₃ temperature-programmed desorption (TPD) study

To elucidate the role of catalyst acidity, NH₃-TPD was performed on the M/γ -Al₂O₃ catalysts and the γ -Al₂O₃ substrate (Figure 4). γ -Al₂O₃ displayed a broad peak at 100–380 °C. This peak is ascribed to the desorption of weakly bound NH₃, which arises from the physisorbed NH₃ or ammonium species and

also corresponds to the medium-strength acid sites, which is due to the desorption of NH_3 on the Lewis or strong Brønsted acid sites ²⁴ The NH₃-TPD profile of urea-treated γ -Al₂O₃ is similar to γ -Al₂O₃ and it shows that urea does not affect the acidity of alumina. In the case of the M/γ -Al₂O₃ catalysts, the broadened desorption peak and enhanced chemisorbed NH_3 amount suggest that the addition of metal species has remarkably enhanced the concentration and acidity of acid sites²¹ Indeed, the addition and high dispersion of metal species increase the acid sites distinctly because metal species generate new Lewis acid sites for NH₃ chemisorption. Additionally, a new distinct NH₃ desorption peak centered at 440 $^{\circ}$ C emerged for Mn/ γ -Al₂O₃, which should be due to the strong Lewis acid sites originating from the high dispersion of the manganese oxide phase²⁴ The total amount of adsorbed ammonia, which is determined from the area under the TPD curve, is shown in Table 2. For all of the catalysts, the acid site density has increased upon loading with the metal, indicating that new acid sites have been created by metal species. The Mn-containing catalyst exhibited the highest overall density of acid sites (339 μ mol/g) among all the catalysts. According to the TPD profiles, the introduction of manganese influences the formation of strong acidic sites in this catalyst. The presence of acid sites is considered to favor NO conversion due to the preferential adsorption of NH_3 on these sites, thus initiating the reaction.²⁵ Accordingly, one would expect a correlation of the SCR activity with the amount of total acidity (Lewis and Brønsted acidity) and acidic strength $(T_{max}$ of ammonia desorption)²⁶

Figure 4. NH₃-TPD profiles of γ -Al₂O₃ and M/ γ -Al₂O₃ (M = Cu, Mn, Co) nanocatalysts.

2.2. Catalytic performance

2.2.1. Activity of M/ γ -Al₂O₃ nanocatalysts

The M/γ -Al₂O₃ nanocatalysts were tested as catalysts for the SCR of NO with NH₃. N₂ and N₂O were the only detected N-containing products in the NH₃-SCR process. Figure 5 presents the results of the catalytic studies. The N₂O yield is not addressed here due to its minor value. Moreover, N₂ selectivity was always above 90% for all tested catalysts. As is shown in Figure 5, the NO conversion increases with increasing temperature and reaches nearly 85% at 300 °C for the Mn/ γ -Al₂O₃ nanocatalyst.

Figure 5. Catalytic performance of M/γ -Al₂O₃ (M = Cu, Mn, Co) nanocatalysts in the NH₃-SCR process.

2.2.2. Correlation between physicochemical properties and catalytic performance

Based on the above results, an attempt to correlate the catalytic performance of metal-promoted γ -Al₂O₃ nanocatalysts in NO catalytic reduction with the physicochemical property of these catalysts was made. According to Figure 5, the Mn/ γ -Al₂O₃ catalyst showed better activity and the Co/ γ -Al₂O₃ catalyst exhibited the lowest catalytic activity. The TPR results revealed that manganese oxide undergoes the consecutive reduction of MnO₂ \rightarrow Mn₂O₃ \rightarrow Mn₃O₄ \rightarrow MnO. The high activity of the Mn/ γ -Al₂O₃ catalyst can be attributed to its ability to form variable oxidation states of manganese (MnO₂, Mn₂O₃, Mn₃O₄, and MnO) and its oxygen storage capacity,²⁷ which is in agreement with the study by Pavani et al²⁸ Under NH₃-SCR conditions with an excess of O₂, manganese oxides can convert into each other. This works like an electron pump (between NO and NH₃ molecules), enabling a redox cycle to be completed. In order to initiate and continue such a cycle, variable oxidation states of metal seem to be necessary²⁹

It is remarkable that Cu/γ -Al₂O₃ exhibited higher activity than Co/γ -Al₂O₃ in the studied temperature range, as shown in Figure 5. This might be related to facile reduction of the copper species as supported by the TPR profiles (see Figure 3)¹³ The copper species are more easily reducible than cobalt species. In order to understand the relationship between the number of reducible metal species and the catalytic activity, the peak areas of the TPR profiles were integrated (shown in Table 2). The Mn/ γ -Al₂O₃ catalyst showed the most quantitative H₂ consumption, suggesting that this catalyst has the most quantitative available reducibility metal species. The Co/ γ -Al₂O₃ catalyst, which exhibited the lowest catalytic activity, showed the least quantitative H₂ consumption.

The chemisorption of NH_3 on acid sites is an important factor for NH_3 -SCR reaction. According to NH_3 -TPD results, the modification of γ -Al₂O₃ with transition metals caused an increase in the Lewis acid sites. This effect can be related to the electron acceptor behavior of the transition metals, which give rise to additional Lewis acid centers³⁰ The NH_3 -TPD results of catalysts coincide with their catalytic activity. The acid site density of M/γ -Al₂O₃ catalysts (Table 2) matches the changing trend of the NO conversion very well (Figure 5), which means that the more NH_3 molecules the sample adsorbs, the higher the NO conversion of the catalyst is. The Mn-containing catalyst with the highest overall density of acid sites showed the highest NO

conversion. The Cu/ γ -Al₂O₃ catalyst also has higher acid site density than the Co/ γ -Al₂O₃ catalyst, as a result of which Cu/ γ -Al₂O₃ exhibited higher catalytic activity than Co/ γ -Al₂O₃. Suprun et al.³¹ announced that the activity increases with the acid site density for mesoporous materials. Another reason for the highest efficiency of the Mn/ γ -Al₂O₃ nanocatalyst could be the availability of more and stronger NH₃ adsorption sites, which are deduced to correlate with the catalytically active sites. The results of NH₃-TPD can also explain the low NO conversion exhibited by the Co/ γ -Al₂O₃ catalyst. With investigation of the reports on the topic, it can be concluded that Mn/ γ -Al₂O₃ prepared by the homogeneous deposition precipitation (HDP) method has better low temperature activity than some manganese supporting other materials for SCR of NO in the literature^{26,32}

In conclusion, cobalt, copper, and manganese oxide nanocatalysts supported on γ -Al₂O₃ were prepared by the HDP method and activity of these catalysts was investigated in NH₃-SCR of the NO process. The experimental results showed that Mn/ γ -Al₂O₃ has the best catalytic activity, which was above 60% at the temperature range between 200 and 300 °C. The nanocatalysts were characterized by BET, TEM, H₂-TPR, and NH₃-TPD. The TEM images indicated that metal species as nanoparticles with homogeneous dispersion were present on the γ -Al₂O₃ support. The NH₃-TPD analysis indicated that introduction of transition metals generated additional strong Lewis centers for ammonia adsorption with M/ γ -Al₂O₃ catalysts. From both the NH₃-TPD and H₂-TPR results, it was concluded that the Mn/ γ -Al₂O₃ nanocatalyst offered the most and strongest adsorbed sites of NH₃ species and variable oxidation states of manganese; consequently, it had the best catalytic activity among the catalysts. Furthermore, the Co/ γ -Al₂O₃ catalyst exhibited the lowest activity because the redox activity of this catalyst is low and also it has fewer acid sites.

3. Experimental

3.1. Nanocatalyst preparation

According to a previous study,³³ the preparation method of HDP using urea enables the even deposition of metal species. Therefore, metal-based alumina catalysts were prepared by HDP using urea as the precursor for the precipitating agent. Cu(NO₃)₂.3H₂O, Co(NO₃)₂.6H₂O, and Mn(NO₃)₂.4H₂O were used as precursors. Typically, an appropriate amount of metal nitrate was dissolved in distilled water, and 1 g of γ -Al₂O₃ support was added to the solution with stirring. The amount of metal in the solution corresponds to metal loading of 5 wt.% on γ -Al₂O₃. To this mixture solution, urea was added under vigorous stirring, and the temperature was gradually increased to 95 °C and maintained for 5 h until the hydroxide precipitate was completed. The resulting mixture was aged for 14 h at room temperature and then was filtered, followed by several washings with distilled water to attain a neutral pH. The resulting precipitate was dried in an oven for 12 h and subsequently calcined at 550 °C for 4 h in air.³⁴

3.2. Nanocatalyst characterization

The nature, reducibility, and amount of metal species were estimated by H_2 -TPR. The experiments were carried out with a Micromeritics 2910 apparatus using H_2/Ar (3/97, v/v) gas at a total flowrate of 15 cm³ min⁻¹ and by heating the samples from 50 to 900 °C (10 °C min⁻¹). In each case, 0.051 g of the catalyst was previously activated at 500 °C for 30 min under air, and then cooled to 50 °C under 20% O₂ in He. TPR with H_2/Ar (3/97, v/v) was then started and the thermal conductivity detector continuously monitored the H_2 consumption. The acidity of the catalysts was measured by NH_3 -TPD technique. Before NH_3 adsorption, the samples were pretreated at 500 °C for 30 min in air and then cooled to 100 °C under 20% O₂ in He, followed by ammonia adsorption with 5% NH_3 /He mixture (flowrate: 40 cm³ min⁻¹) at 100 °C for 30 min. Subsequently, the sample was subjected to He flow (flowrate: 25 cm³ min⁻¹) for 30 min at 100 °C to remove physically adsorbed ammonia. Ammonia desorption was carried out by raising the temperature to 550 °C with a heating rate of 10 °C min⁻¹.

The textural properties of the catalysts were obtained from nitrogen adsorption–desorption isotherms measured at -196 °C with a Micromeritics ASAP 2000 Analyzer. Before the nitrogen adsorption measurement, the samples were outgassed at 250 °C until a static vacuum of 3×10^{-5} bar was reached. The BET method was used to calculate the specific surface area, whereas the pore size and volume were estimated using the T-plot method.

TEM images of the catalysts were obtained to give an indication of the metal species' size and their dispersion on the support. The samples were ground with a mortar, and then about 1 mg of solid was dispersed in ethanol (about 3 mL) by sonication. A drop of the dispersion was then deposited on a copper grid covered with a Formvar carbon film.

X-ray diffraction (XRD, D 500 Siemens diffractometer, Cu K α radiation) was utilized to determine the crystal phase and dispersion of the metal species on the γ -Al₂O₃ support. The powdered samples were pressed onto suitable holders and scanned within the 2? range of 5° to 75° with a scanning rate of 0.016 s⁻¹.

3.3. Catalytic conversion of NO with NH₃

The de-NO activity measurements of prepared nanocatalysts were carried out at atmospheric pressure in a fixed bed reactor. In each run, a measured amount of powdered catalyst (0.2 g) was spread between quartz wool in the reactor, and then the reactor was placed inside in a furnace that is electrically heated. Before the catalytic tests, the catalysts were heated up 200 °C and kept at this temperature for 1 h in flowing Ar (100 cm³ min⁻¹) in order to eliminate possible compounds adsorbed on the catalyst surface. Subsequently, a gaseous reactant feed consisting of 1000 ppm NO, 1000 ppm NH₃, and 5 vol.% O₂ in Ar as the carrier gas was directed over the catalyst. The overall gas flowrate was 150 cm³ min⁻¹ (GHSV = 12,000 h⁻¹) and the experiments were performed at 200–300 °C. Effluent gases after reaching a steady state were analyzed by gas chromatography (Shimadzu model 2010 Plus, TCD detector) equipped with a Molecular Sieve 5A column to separate N₂ (as the selective product) and N₂O (as the nonselective product). The catalytic activity for NO removal was evaluated by the extent of NO conversion into N₂ using the following equation:

NO Conversion to
$$N_2\% = \frac{[N_2]_{out}}{[NO]_{in}} \times 100$$

The subscripts in and out indicate the inlet and outlet concentrations at steady state, respectively.

Acknowledgment

The authors would like to acknowledge the financial support from the University of Tabriz, University of Zanjan, and the Iranian Nanotechnology Initiative.

References

- 1. Bosch, H., Janssen, F. Catal. Today 1988, 2, 369-379.
- 2. Skalska, K.; Miller, J. S.; Ledakowicz, S. Sci. Total Environ. 2010, 408, 3976-3989.
- Amanpour, J.; Salari, D.; Niaei, A.; Mousavi, S. M.; Nakhostin Panahi, P. J. Environ. Sci. Heal. A 2013, 48, 879-886.
- Nakhostin Panahi, P.; Niaei, A.; Tseng, H. H.; Salari, D.; Mousavi, S. M. Neural Comput. Appl. 2015, 26, 1515-1523.
- Mousavi, S. M.; Niaei, A.; Illán Gómez, M. J.; Salari, D.; Nakhostin Panahi, P.; Abaladejo-Fuentes, V. Mater. Chem. Phys. 2014, 143, 921-928.
- 6. Mousavi, S. M.; Niaei, A.; Salari, D.; Panahi, P. N.; Samandari, M. Environ. Technol. 2013, 34, 1377-1384.
- 7. Mousavi, S. M.; Salari, D.; Niaei, A.; Nakhostin Panahi, P.; Shafiei, S. Environ. Technol. 2014, 35, 581-589.
- 8. Ayari, F.; Mhamdi, M.; Delahay, G.; Ghorbel, A. J. Porous Mater. 2010, 17, 265-274.
- 9. Torikai, Y.; Yahiro, H.; Mizuno, N.; Iwamoto, M. Catal. Lett. 1991, 9, 91-95.
- 10. Hamada, H.; Kintaichi, Y.; Sasaki, M.; Ito, T.; Tabata, M. Appl. Catal. 1991, 75, L1-L8.
- 11. Zhang, F.; Zhang, S.; Guan, N.; Schreier, E.; Richter, M.; Eckelt, R.; Fricke, R. Appl. Catal. B. 2007, 73, 209-219.
- Pereda-Ayo, B.; De La Torre, U.; Illán-Gómez, M. J.; Bueno-López, A.; González-Velasco, J. R. Appl. Catal. B 2014, 147, 420-428.
- 13. Worch, D.; Suprun, W.; Gläser, R. Catal. Today 2011, 176, 309-313.
- Wijayanti, K.; Andonova, S.; Kumar, A.; Li, J.; Kamasamudram, K.; Currier, N. W.; Yezerets, A.; Olsson, L. Appl. Catal. B 2015, 166-167, 568-579.
- 15. Zhang, Q.; Qiu, C.; Xu, H.; Lin, T.; Lin, Z.; Gong, M.; Chen, Y. Catal. Today 2011, 175, 171-176.
- 16. Ettireddy, P. R.; Ettireddy, N.; Mamedov, S.; Boolchand, P.; Smirniotis, P. G. Appl. Catal. B 2007, 76, 123-134.
- 17. Liu, F.; He, H.; Ding, Y.; Zhang, C. Appl. Catal. B 2009, 93, 194-204.
- 18. Cao, F.; Su, S.; Xiang, J.; Wang, P.; Hu, S.; Sun, L.; Zhang, A. Fuel 2015, 139, 232-239.
- 19. Tang, X.; Li, Y.; Huang, X.; Xu, Y.; Zhu, H.; Wang, J.; Shen, W. Appl. Catal. B 2006, 62, 265-273.
- 20. Trawczyński, J.; Bielak, B.; Miśta, W. Appl. Catal. B 2005, 55, 277-285.
- 21. Wan, Y.; Zhao, W.; Tang, Y.; Li, L.; Wang, H.; Cui, Y.; Gu, J.; Li, Y.; Shi, J. Appl. Catal. B 2014, 148-149, 114-122.
- 22. Lónyi, F.; Solt, H. E.; Valyon, J.; Boix, A.; Gutierrez, L. B. Appl. Catal. B 2012, 117-118, 212-223.
- 23. Horiuchi, T. F., Chen, L.; Suzuki, K.; Mori, T. Catal. Lett. 2002, 78, 319-323.
- 24. Cao, F.; Xiang, J.; Su, S.; Wang, P.; Hu, S.; Sun, L. Fuel Process. Technol. 2015, 135, 66-72.
- 25. Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Appl. Catal. B 2011, 110, 71-80.
- 26. Putluru, S. S. R.; Schill, L.; Jensen, A. D.; Siret, B.; Tabaries, F.; Fehrmann, R. Appl. Catal. B 2015, 165, 628-635.
- 27. Craciun, R.; Nentwick, B.; Hadjiivanov, K.; Knözinger, H. Appl. Catal. A 2003, 243, 67-79.
- 28. Sreekanth, P. M.; Smirniotis, P. G. Catal. Lett. 2007, 122, 37-42.
- Ochońska, J.; McClymont, D.; Jodłowski, P. J.; Knapik, A.; Gil, B.; Makowski, W.; Łasocha, W.; Kołodziej, A.; Kołaczkowski, S. T.; Łojewska, J. Catal. Today 2012, 191, 6-11.
- 30. Chmielarz, L.; Kuśtrowski, P.; Dziembaj, R.; Cool, P.; Vansant, E. F. Catal. Today 2007, 119, 181-186.
- 31. Suprun, W.; Schaedlich, K.; Papp, H. Chem. Eng. Technol. 2005, 28, 199-203.
- 32. De Lucas, A.; Valverde, J.; Dorado, F.; Romero, A.; Asencio, I. J. Mol. Catal. A-Chem. 2005, 225, 47-58.
- 33. Nakhostin Panahi, P.; Salari, D.; Tseng, H. H.; Niaei, A.; Mousavi, S. M. Environ. Technol. (in press).
- 34. Choudhary, V. R.; Dumbre, D. K.: Catal. Commun. 2009, 10, 1738-1742.