

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Research Article

Turk J Chem (2017) 41: 548 – 558 © TÜBİTAK doi:10.3906/kim-1701-28

Synchrotron X-ray diffraction studies of β -Ca_{2-x} M_x SiO₄ (M = Mg and Sr)

Anti PRODJOSANTOSO^{1,*}, Brendan KENNEDY²

¹Department of Chemistry, Yogyakarta State University, Yogyakarta, Indonesia ²Department of Inorganic Chemistry, University of Sydney, Sydney, Australia

Received: 12.01.2017	•	Accepted/Published Online: 03.03.2017	•	Final Version: 05.09.2017
----------------------	---	---------------------------------------	---	---------------------------

Abstract: The structures of Mg- and Sr-doped β -Ca₂SiO₄ have been established from high-resolution synchrotron X-ray powder diffraction. These silicates are all isostructural and the structures have been refined in the monoclinic space group, $P2_1/n$. As expected based on size arguments, the cell parameters increase as the amount of Sr increases and likewise decrease as the amount of Mg increases due the size effects of the dopant cation. In all cases the SiO₄ tetrahedra are essentially regular.

Key words: Portland cement, larnite, cation doping, X-ray diffraction, ceramics

1. Introduction

Dicalcium silicate $Ca_2 SiO_4$ is a component of Portland cement clinker and is under study for use as a host in inorganic phosphors.^{1,2} It has been proposed that it may be a suitable host to contain heavy metals from industrial waste.³ $Ca_2 SiO_4$ has complex crystal chemistry with five phases described in the literature (α , α'_H , α'_L , β , and γ phases).^{4,5} Two of these phases occur naturally as the minerals larnite (β -Ca₂SiO₄ monoclinic space group $P2_1/n$) and calcio-olivine (γ -Ca₂SiO₄ orthorhombic space group Pbnm). Synthetic Ca₂SiO₄ is usually prepared by the solid-state reaction of CaO or CaCO₃ and SiO₂ at temperatures over 1450 °C.⁶ Cooling from 1450 °C to room temperature typically yields γ -Ca₂SiO₄, ^{4,7} whereas annealing γ -Ca₂SiO₄ at lower temperatures can induce a transition to β -Ca₂SiO₄, although the conversion is often incomplete.

There have been numerous attempts to prepare phase-pure β -Ca₂SiO₄ but the results are inconsistent. Efforts include dehydration of calcium silicate hydrate at low temperatures (~800 °C),^{6,8} or the use of more reactive starting materials such as Ca(NO₃)₂ and colloidal silica at 750 °C.^{9,10} Although it is generally accepted that β -Ca₂SiO₄ does not form during heating but rather appears as a metastable phase in the stability field of the γ -Ca₂SiO₄ during cooling,¹¹ it has been reported that reacting CaC₂O₄ with amorphous SiO₂ at 950 °C under a CO₂ atmosphere produces pure β -Ca₂SiO₄ powders.¹² A more promising means of preparing singlephase samples with the orthorhombic β structure is by the addition of dopant cations including Na, K, Fe, Cr, and B. To date, the role of impurity cations in stabilizing β -Ca₂SiO₄ has not been fully established.^{13,14}

Natural larnite was first reported by Tilley¹⁵ in 1929 and the structure of β -Ca₂SiO₄ has been of interest since.^{7,16-20} The structure consists of a framework of interconnected Ca polyhedra and isolated [SiO₄] tetrahedra.²¹ Early studies by Midgley¹⁸ and Cruickshank¹⁶ suggested there was a large distortion in the SiO₄ tetrahedra, a conclusion disproven in more recent studies. Jost et al.¹⁷ studied the structure of β -Ca₂SiO₄

*Correspondence: prodjosantoso@uny.ac.id

using single-crystal X-ray methods and showed that the SiO₄ tetrahedra were, as expected, regular. Mumme et al.^{19,20} and Berliner et al.²² refined the structure of β -Ca₂SiO₄ using synchrotron X-ray and neutron powder diffraction data. In that work, the β -Ca₂SiO₄ structure was stabilized by the addition of 0.5 wt.% of Cr₂O₃ or 0.4 wt.% of B₂O₃.

Orthorhombic and monoclinic forms of Mg₂SiO₄ have also been reported.^{23,24} While orthorhombic Mg₂SiO₄ is isostructural with γ -Ca₂SiO₄, the two monoclinic structures are not isostructural with monoclinic β -Mg₂SiO₄ described in space group C2/m. It is possible that Mg-doped β -Ca₂SiO₄ is formed during the production of Portland cement. This is expected to be a minor phase since the temperature employed in the manufacturing of the clinker is usually limited to around 1400 °C.

Carlson²⁵ and Bickle²⁶ postulated that Sr-doped β - or α'_L -Ca₂SiO₄ may be formed in cement, if Sr is present in the raw materials. The crystal structure of β -Sr₂SiO₄ has been reported and it is closely related to β -Ca₂SiO₄.^{27,28} A comprehensive experimental study of the binary β -Ca_xSr_{2-x}SiO₄ system does not appear to have been undertaken to date, although the solid solutions with the α' -structure have been investigated.²⁹ Recent first-principle calculations of Sr doped β -Ca₂SiO₄ have been reported.³⁰ In this system, the α' -phase of Ca_xSr_{2-x}SiO₄ shows two stability fields for $0 \le x \le 0.03$ and for $0.90 \le x \le 0.96$. Presumably the α' -structure also exists for contents up to x = 1. In all cases a small amount of γ -phase is also observed.^{9,10}

 β -Ca₂SiO₄ is believed to be a desirable component in many types of cement, and consequently its production has gained considerable attention. One method used to increase the amount of β -Ca₂SiO₄ present in cement has been to add trace amounts of secondary cations.³¹ The present work describes the synthesis of a series of Mg- and Sr-doped β -Ca₂SiO₄ oxides prepared at a low temperature (950 °C)¹² using MgCO₃ or SrCO₃, CaCO₃, and SiO₂ as raw materials, and aspects of their crystal chemistry.

2. Results and discussion

2.1. Electron microscopy

Scanning electron micrographs of selected β -Ca_{2-x} M_x SiO₄ (M = Mg or Sr) samples (Figures 1a–1c) show that the materials consist of particles of a wide range of sizes without any dominant features. The homogeneity of the samples was checked using the energy dispersive analysis (EDA) technique. These measurements revealed that the bulk compositions of the materials are as expected (Table 1). The small discrepancies in the Sr:Si ratios for the Sr-doped samples are probably due to the overlap of the Sr and Si lines in the EDA.

2.2. X-ray diffraction studies

The powder X-ray diffraction patterns for β -Ca_{2-x}Mg_xSiO₄, x = 0, 0.01, 0.025, 0.04, 0.05, 0.1, and 0.25, recorded using the wavelength of the X-ray CuK $\alpha = 1.54178$ Å on a Bragg–Brentano diffractometer, are shown in Figures 2a–2g, respectively. The patterns indicate the presence of SiO₂, α'_L -Ca₂SiO₄, and MgO at Mg contents greater than 0.05. The 200 Bragg reflection of MgO at $2\theta = 42.92^{\circ}$ is the most sensitive indication of the solubility limit.

In the case of the Sr-doped samples, there is no evidence for any unreacted Sr or SiO₂ in the x = 0.1sample (Figure 3e); rather, at this level, excess Sr results in the formation of α'_L -Sr_x Ca_{2-x}SiO₄ as seen by the strongest 260 Bragg reflection at $2\theta = 33.42^{\circ}$. Since the β -phase is the phase present in Portland cement, we have limited our studies to compositions with $x \leq 0.1$, as that is where the samples contain only the β -phase. In both series increasing amounts of Mg or Sr resulted in shifts in the Bragg reflections, indicating contraction

Figure 1. Scanning electron micrographs for (a) β -Ca_{1.975} Mg_{0.025} SiO₄, (b) β -Ca₂ SiO₄, and (c) β -Ca_{1.975} Sr_{0.025} SiO₄. The arrows show the area used for EDA.

Table 1. Observed Ca, Mg, and Si atomic ratios in β -Ca_{2-x} M_x SiO₄, M = Mg and Sr, obtained using EDA measurements (e.s.d. ± 0.005).

Cao M SiO r –	Atomic ratio				
$\bigcup_{x = 1}^{\infty} \bigcup_{x = 1}^{\infty} $	Ca	M	Si		
M = Mg					
0.01	1.97	0.02	1.01		
0.025	1.97	0.04	0.99		
0.05	1.94	0.05	1.01		
0.1	1.92	0.10	0.98		
M = Sr					
0	2.03	0	0.97		
0.01	1.98	0.05	0.97		
0.025	1.96	0.07	0.97		
0.05	1.93	0.08	0.99		

Figure 2. Powder X-ray diffraction patterns of β -Ca_{2-x}Mg_xSiO₄ with x = (a) 0, (b) 0.01, (c) 0.025, (d) 0.04, (e) 0.05, (f) 0.1, and (g) 0.25. + indicates the second phase of SiO₂ crystallites, while * indicates MgO and $^{\circ}\alpha'_{L}$ -Ca₂SiO₄.

Figure 3. Powder X-ray diffraction patterns of β -Ca_{2-x} Sr_x SiO₄, with x = (a) 0, (b) 0.01, (c) 0.025, (d) 0.05, and (e) 0.1. *indicates α'_L -phase of β -Ca_{2-x} Sr_x SiO₄.

or expansion of the lattice, respectively, demonstrating that the dopant cation has been incorporated into the lattice.

2.3. Structural refinements

The high-resolution synchrotron X-ray diffraction data for β -Ca_{2-x} M_x SiO₄, x = 0, 0.01, and 0.025 did not show any evidence of the presence of additional phases. The final refined parameters for all the samples studied are given in Table 2 and representative Rietveld profiles are illustrated in Figures 4a–4c. The Ca cations occupy two crystallographically distinct sites in the monoclinic β -Ca₂SiO₄ structure. The Ca(2) atoms are positioned alternately above and below the SiO₄ tetrahedra in the *b* direction. The structure may therefore be regarded as strings of alternating Ca ions and SiO₄ tetrahedra. The strings are linked by the Ca(1) atoms, which are accommodated in the holes between the SiO₄ tetrahedra. The structural refinements demonstrate that the Sr preferentially occupies the 7-coordinate M(1) sites. This is consistent with recent first-principle calculations that concluded doping at the Ca(1) site will be favored.³⁰

Figure 4. Observed, calculated, and difference synchrotron X-ray diffraction profiles for (a) β -Ca_{1.975} Mg_{0.025} SiO₄, (b) β -Ca₂ SiO₄, and (c) β -Ca_{1.975} Sr_{0.025} SiO₄. The discontinuity in the profile at ~45° in each pattern is due to the image plates.

Table 2. Refined structural parameters for β -Ca_{2-x} M_x SiO₄, M =Mg and Sr.

	v	$a(\hat{A})$	$h(\hat{A})$	c(Å)	B (°)	Vol $(Å^3)$	$n^{\#}$ values for M		B (%)	B (%)
	л		0(A)			VOI (II)	M(1)	M(2)	$\mathbf{n}_p(70)$	\mathbf{u}_{wp} (70)
0. C. M. C:O	0.01	5.5084(1)	6.7552(1)	9.3110(1)	94.489(1)	345.40(1)	0.23(4)	-	4.82	5.62
$\rho = 0a_{2-x} \operatorname{wig}_x \operatorname{siO}_4$	0.025	5.5076(1)	6.7539(1)	9.3095(2)	94.505(1)	345.23(1)	0.24(3)	-	4.60	5.54
$\beta - \operatorname{Ca}_{2-x}\operatorname{Sr}_x\operatorname{SiO}_4$	0	5.5053(3)	6.7516(3)	9.3064(4)	94.487(1)	344.86(3)	-	-	7.38	9.17
	0.01	5.5083(2)	6.7569(2)	9.3121(3)	94.450(1)	345.54(2)	-	0.17(9)	7.08	8.84
	0.025	5.5107(1)	6.7621(2)	9.3161(3)	94.421(1)	346.12(2)	-	0.28(8)	7.53	9.41

[#]If fully occupied n = 4.

The refined value for occupancy by the Mg of the 4a site in Ca_{1.99} Mg_{0.01} SiO₄ corresponds to an x value of 0.028. This is higher than the actual stoichiometry and possibly reflects problems in detecting trace amounts of the very light Mg in these compounds. Despite the problems with obtaining an accurate value for the Mg

occupancy, this value implies that all the Mg has occupied the M(1) site. For the Sr-containing compounds, the refined occupancy factors correspond to $x = 0.02 \pm 0.01$ for the x = 0.01 sample, which is reasonable. The refined atomic coordinates, selected interatomic distances, and bond angles are given in Tables 3–5, respectively.

	$\beta - Ca_{1.975}$	$Mg_{0.025}SiO_4$			β -Ca _{1.99} Mg _{0.01} SiO ₄			
Atoms	x/a	y/b	z/c	$B (Å^2)$	x/a	y/b	z/c	$B(Å^2)$
M(1)	0.2719(2)	0.3423(1)	0.5693(1)	0.36(3)	0.2719(2)	0.3423(1)	0.5693(1)	0.39(3)
M(2)	0.2782(2)	0.9981(2)	0.2982(1)	0.53(3)	0.2784(2)	0.9980(2)	0.2984(1)	0.59(3)
Si	0.2321(3)	0.7818(2)	0.5815(2)	0.45(4)	0.2321(3)	0.7818(2)	0.5815(2)	0.54(5)
O(1)	0.2856(5)	0.0111(4)	0.5575(3)	0.72(7)	0.2844(5)	0.0119(4)	0.5577(3)	0.78(7)
O(2)	0.0187(6)	0.7475(4)	0.6916(3)	0.71(7)	0.0185(6)	0.7484(4)	0.6912(3)	0.89(7)
O(3)	0.4822(6)	0.6691(5)	0.6367(3)	0.97(7)	0.4825(6)	0.6700(5)	0.6370(3)	1.08(7)
O(4)	0.1556(5)	0.6735(5)	0.4277(3)	0.91(7)	0.1556(5)	0.6727(5)	0.4278(3)	0.94(7)

Table 3. Refined positional and atomic displacement parameters for β -Ca_{2-x}M_xSiO₄.

As noted above, the β -Ca_{2-x}M_xSiO₄ structure (Figure 5) is built up of isolated SiO₄ tetrahedra and two crystallographically distinct Ca ions. It is considered that all the oxygen atoms within 2.9 Å of a Ca/Sr cation are assumed to belong to its coordination sphere. Oxygen atoms outside this sphere are at distances greater than 3.15 Å from the cation. The coordination of the M(1) cation site is irregular with seven nearest neighbors contributed by four surrounding SiO₄ tetrahedra at distances ranging between 2.236(6) Å and 2.870(6) Å. The second type of cation, M(2), has a SiO₄ tetrahedron positioned immediately above and below it in the *b* direction, and it is surrounded by three more SiO₄ tetrahedra at approximately the same displacement along *b*. The coordination of the M(2) site is again irregular, with eight nearest oxygen atoms at distances between 2.375(3) Å and 2.666(6) Å. It is worth mentioning that the mean M(1)–O distances are slightly longer, ~0.02 Å, than that of M(2)–O (Table 4). This is consistent with the lower coordination number of Ca(1).

The values found here for the Si–O distances in undoped β -Ca₂SiO₄ are slightly shorter than those obtained by Jost et al.¹⁷ However, as found by Jost et al., they demonstrate the SiO_4 tetrahedra to be essentially regular with only minimal distortion and this agrees with the observation by Mumme et al.^{19,20} that the Si–O distances vary over a small range, between 1.61 and 1.66 Å. In contrast, the refined lattice parameters for β -Ca₂SiO₄ are slightly, but not significantly, larger than those reported by Jost et al.¹⁷ and they are marginally smaller than those reported by Mumme et al.^{19,20} (Table 2). The interatomic distances and angles within the SiO₄ tetrahedra in the β -Ca_{2-x} M_x SiO₄ series are given in Tables 4 and 5. The Si–O(1) distance is slightly shorter than the other three Si–O distances. This can be explained due to the weaker interactions of O(1) in the $(Ca/M)O_x$ polyhedra. In contrast, the Si–O(4) distances in all series are longer than the other three Si–O distances. The O(1) atoms are coordinated by four nearest neighbors, i.e. Ca(1), Ca(2), Ca(2)', and Si, with three oxygen atoms, O(2), O(3), and O(4), nearby, while O(4) bonds to one Si and four Ca atoms, Ca(1), Ca(2), Ca(2)', and Si, with three close oxygen contacts to O(1), O(2), and O(3). The distances are shown in Table 4. As expected, the mean Si–O distances are considerably shorter than the mean Ca–O distances due to the smaller size and lower coordination number of the Si. Considering all the compounds then it is unclear if the dopant cation influences the strength of the Si–O bonds. The means of Si–O distances in all the compounds are scattered over the narrow range of 1.613(5) Å to 1.624(5) Å, with the Mg-doped compounds having slightly smaller average Si–O distances. The mean O–O distances in the SiO $_4$ tetrahedra are $\sim\!2.64(2)$ Å, and like the values of the mean O–Si–O angles, $\sim 109(1)^{\circ}$ (Table 5), are independent of the dopant cation.

PRODJOSANTOSO and KENNEDY/Turk J Chem

	β -Ca ₂ SiO ₄					
Atoms	x/a	y/b	z/c	$B (Å^2)$		
M(1)	0.2717(4)	0.3421(3)	0.5692(2)	0.39(6)		
M(2)	0.2775(4)	0.9977(3)	0.2982(2)	0.29(6)		
Si	0.2327(5)	0.7815(3)	0.5821(3)	0.21(7)		
O(1)	0.2870(9)	0.0118(8)	0.5568(5)	0.5(1)		
O(2)	0.021(1)	0.7488(8)	0.6912(6)	0.8(1)		
O(3)	0.483(1)	0.6688(8)	0.6365(6)	0.9(1)		
O(4)	0.1556(9)	0.6737(8)	0.4300(6)	0.6(1)		

Table 4. Selected interatomic distances (Å) in β -Ca_{2-x} M_xSiO₄, M = Mg and Sr.

	β -Ca _{1.99} S	$r_{0.01}SiO_4$			$\beta - Ca_{1.975}Sr_{0.025}SiO_4$			
Atoms	x/a	y/b	z/c	$B(Å^2)$	x/a	y/b	z/c	$B(Å^2)$
M(1)	0.2723(3)	0.3418(3)	0.5694(2)	0.23(6)	0.2709(4)	0.3419(3)	0.5694(2)	0.20(7)
M(2)	0.2775(3)	0.9974(3)	0.2980(2)	0.27(6)	0.2769(4)	0.9473(3)	0.2985(2)	0.32(7)
Si	0.2330(5)	0.7813(3)	0.5822(3)	0.15(7)	0.2333(6)	0.7810(4)	0.5821(4)	0.18(8)
O(1)	0.2879(9)	0.0105(8)	0.5574(5)	0.4(1)	0.287(1)	0.0115(9)	0.5563(6)	0.6(1)
O(2)	0.020(1)	0.7496(8)	0.6907(6)	0.9(1)	0.021(1)	0.7488(9)	0.6890(7)	0.8(2)
O(3)	0.4829(1)	0.6695(8)	0.6368(6)	0.6(1)	0.481(1)	0.6698(9)	0.6368(7)	1.1(2)
O(4)	0.1555(9)	0.6730(8)	0.4290(6)	0.7(1)	0.156(1)	0.6733(9)	0.4289(6)	0.5(5)

	$\beta - \operatorname{Ca}_{2-x} \operatorname{Mg}_x \operatorname{SiO}_4, x =$		$\beta - \operatorname{Ca}_{2-x}\operatorname{Sr}_x\operatorname{SiO}_4, x =$		
	0.025	0.01	0	0.01	0.025
M(1)-O(1)	2.241(3)	2.236(3)	2.236(6)	2.244(5)	2.239(6)
M(1)-O(2)	2.508(3)	2.511(3)	2.504(6)	2.508(6)	2.526(7)
M(1)-O(3)	2.435(3)	2.436(3)	2.430(7)	2.432(6)	2.444(7)
M(1)-O(4)	2.359(3)	2.359(3)	2.355(6)	2.359(5)	2.359(6)
M(1)-O(2)'	2.867(3)	2.866(3)	2.870(6)	2.870(6)	2.857(7)
M(1)-O(3)'	2.548(3)	2.553(3)	2.548(6)	2.555(6)	2.546(7)
M(1)-O(4)'	2.649(3)	2.645(3)	2.640(5)	2.646(5)	2.643(6)
Mean M(1)-O	2.52(8)	2.52(8)	2.51(8)	2.52(8)	2.52(8)
M(2)-O(1)	2.413(3)	2.414(3)	2.405(5)	2.413(5)	2.400(6)
M(2) - O(2)	2.379(3)	2.375(3)	2.381(6)	2.377(6)	2.384(7)
M(2)-O(3)	2.410(3)	2.411(3)	2.405(6)	2.405(6)	2.414(6)
M(2) - O(4)	2.466(3)	2.466(3)	2.485(6)	2.477(6)	2.482(6)
M(2)-O(1)''	2.660(3)	2.663(3)	2.659(5)	2.654(5)	2.666(6)
M(2)-O(2)''	2.387(3)	2.392(3)	2.402(6)	2.404(6)	2.414(7)
M(2)-O(3)''	2.652(3)	2.648(3)	2.657(6)	2.656(6)	2.663(7)
M(2)-O(4)''	2.616(2)	2.620(3)	2.621(6)	2.621(6)	2.615(6)
Mean M(2)-O	2.50(4)	2.50(4)	2.50(4)	2.50(4)	2.50(4)
Si-O(1)	1.596(3)	1.599(3)	1.604(6)	1.589(6)	1.608(6)
Si-O(2)	1.635(4)	1.633(4)	1.619(7)	1.620(7)	1.609(7)
Si-O(3)	1.622(3)	1.627(3)	1.618(6)	1.617(6)	1.607(6)
Si-O(4)	1.633(3)	1.636(3)	1.619(6)	1.631(6)	1.629(6)
Mean Si–O	1.622(9)	1.624(5)	1.614(9)	1.614(5)	1.613(5)
O(1)-O(2)	2.678(4)	2.688(6)	2.674(7)	2.666(7)	2.676(8)
O(1)-O(3)	2.632(4)	2.637(4)	2.636(7)	2.624(7)	2.630(8)
O(1)-O(4)	2.652(4)	2.612(4)	2.644(8)	2.651(8)	2.656(8)
O(2)-O(3)	2.695(4)	2.697(4)	2.685(8)	2.691(7)	2.659(9)
O(2)-O(4)	2.674(4)	2.672(4)	2.645(7)	2.654(7)	2.648(8)
O(3) - O(4)	2.544(4)	2.548(4)	2.529(7)	2.541(7)	2.526(8)
Mean O–O	2.65(2)	2.64(2)	2.64(2)	2.64(2)	2.63(2)

PRODJOSANTOSO and KENNEDY/Turk J Chem

	β -Ca _{2-x}	$Mg_x SiO_4, x =$	$\beta - \operatorname{Ca}_{2-x}\operatorname{Sr}_{x}\operatorname{SiO}_{4}, \mathbf{x} =$			
	0.025	0.01	0	0.01	0.025	
O(1)–Si– $O(2)$	111.6(2)	112.0(2)	112.1(3)	111.9(3)	112.2(3)	
O(1)–Si– $O(3)$	109.9(2)	109.8(2)	109.8(3)	109.4(3)	110.1(3)	
O(1)–Si– $O(4)$	110.7(2)	110.5(2)	110.3(3)	110.4(3)	110.1(3)	
O(2)-Si- $O(3)$	111.9(2)	111.7(4)	112.1(3)	112.5(3)	111.7(4)	
O(2)-Si- $O(4)$	109.7(2)	109.7(2)	109.6(3)	109.5(3)	109.5(3)	
O(3)-Si- $O(4)$	102.9(2)	102.8(2)	102.8(3)	102.9(3)	103.0(4)	
Mean O–Si–O	109(1)	109(1)	109(1)	109(1)	109(1)	

Table 5. Selected bond angles (°) in β -Ca_{2-x} M_x SiO₄, M = Mg and Sr.

Figure 5. Representation of the β -Ca_{2-x}M_xSiO₄ structure. The M(1) and M(2) sites are indicated. The oxygen atoms are at the corners of the tetrahedral SiO₄ groups.

In general the geometry of the SiO_4 tetrahedra in all the compositions studied are very similar and our results are in excellent agreement with those of Jost et al.¹⁷

In contrast to the consistency of the Si–O bonds, the bond lengths within the two Ca polyhedra vary over a wide range of values, although the averages are remarkably constant (Table 4). These features can be related to local bonding effects and may be quantified by valence bond sums as listed in Table 6. The bond valence calculation shows that the Ca(1) sites are underbonded and each oxygen atom contributes a relatively small bond valence to the Ca(1) sites; rather, for the O atoms, the strongest interaction is with the Si atoms. Conversely, the valence bond sums for the Ca(2) site are unexceptional.

The structural refinements demonstrate that the smaller Mg²⁺ cations have a preference for the M(1)sites in the β -Ca₂SiO₄ structure (Table 2). This is somewhat surprising since the mean M(1)-O distance is longer than the mean M(2)-O distance and the M(1) site is underbonded. It might, therefore, have been expected that the smaller Mg cations would preferentially occupy the M(1) sites. Conversely, the refinements

PRODJOSANTOSO and KENNEDY/Turk J Chem

	$\beta - Ca_{1.975}Mg_{0.025}SiO_4$	β -Ca _{1.99} Mg _{0.01} SiO ₄	β -Ca ₂ SiO ₄	β – Ca _{1.99} Sr _{0.01} SiO ₄	$\beta - Ca_{1.975}Sr_{0.025}SiO_4$
Ca(1)	1.79	1.80	1.81	1.79	1.78
	1.74^{*}	1.75^{*}			
M(1)	0.85	0.86	-	-	-
Ca(2)	2.00	1.99	1.97	1.98	1.96
				2.02*	2.03*
M(2)	-	-	-	2.97	2.94
Si	3.74	3.71	3.80	3.81	3.82

Table 6. Valence bond sums of β -Ca_{2-x} M_x SiO₄.

*Bold values indicate average values obtained using the refined site occupancies.

suggest that the larger Sr^{2+} cations preferentially occupy the smaller M(2) site. While the average valence bond sum for the M(2) site is not unusual, it is evident from Table 2 that at a local level the Sr ions in this site will be considerably overbonded. Likewise, the Mg ions in the M(1) site are considerably underbonded. Clearly, the valence bond sums provide a rationale for the observed low levels of Mg and Sr substitution, although they do not help to explain the observed site preferences.

2.4. Conclusions

Single-phase samples of $\operatorname{Ca}_{2-x} \operatorname{M}_x \operatorname{SiO}_4$, $M = \operatorname{Mg}$ and Sr, with the β -Ca₂SiO₄ structure have been successfully prepared from CaCO₃, SiO₂, and MCO₃ by prolonged heating at 950 °C. The powder diffraction patterns show that these silicates are all isostructural and the structures have been refined in the monoclinic space group, $P2_1/n$. As expected based on size arguments, the cell parameters increase as the amount of Sr increases and likewise decrease as the amount of Mg increases due the size effects of the dopant cation. In all cases the SiO₄ tetrahedra are essentially regular. For both the Sr- and Mg-doped series, the solubility limit of the dopant cation is relatively low, i.e. ~0.025. This can be explained by examination of the valence bond sums.

3. Experimental

3.1. Sample preparation

All samples were prepared by conventional solid-state reaction methods. β -Dicalcium silicate (β -Ca₂SiO₄) was prepared by heating stoichiometric amounts of SiO₂ (Riedel-de Haën) and CaCO₃ (Merck, 99.5%) at 950 °C for 4 h. The sample was then air-quenched to room temperature to avoid the formation of γ -Ca₂SiO₄. Magnesium-doped β -dicalcium silicate (β -Ca_{2-x}Mg_xSiO₄, x = 0.01, 0.025, 0.04, 0.05, 0.1, and 0.25) and strontium-doped β -dicalcium silicate (β -Ca_{2-x}Sr_xSiO₄, x = 0.01, 0.025, 0.04, 0.05, 0.1, and 0.25) and strontium-doped β -dicalcium silicate (β -Ca_{2-x}Sr_xSiO₄, x = 0.01, 0.025, 0.04, 0.05, 0.1, and 0.25) and strontium-doped β -dicalcium silicate (β -Ca_{2-x}Sr_xSiO₄, x = 0.01, 0.025, 0.05, and 0.1) were prepared by the solid-state reaction of stoichiometric amounts of MgCO₃ (BDH) or SrCO₃ (Merck, 98.5%), CaCO₃ (Merck, 99.5%), and SiO₂ (Riedel-de Haën) at 950 °C for 4 h followed by air-quenching.

3.2. Structure measurements and analysis

The formation of the targeted phases was monitored by powder X-ray diffraction using a Siemens D-5000 Diffractometer and the wavelength of the X-ray CuK $\alpha = 1.54178$ Å. Synchrotron X-ray diffraction data were collected on a Debye Scherrer diffractometer at the Australian National Beamline Facility and Beamline 20B at the Photon Factory, Tsukuba, Japan.^{32,33} The sample was housed in a capillary of 0.3 mm in diameter that was rotated during the measurements. Wavelengths (λ) used in synchrotron X-ray diffraction data collections

of β -Ca₂SiO₄, β -Ca_{2-x}Mg_xSiO₄ (x = 0.01 and 0.025), and β -Ca_{2-x}Sr_xSiO₄ (x = 0.01 and 0.025) were 0.99418 Å, 0.99868 Å, and 0.99702 Å, respectively. EDA was performed with an EDAX PV9900 system on a Phillips 505 scanning microscope operating at 20 keV. The samples were mounted using carbon tape and coated with either Pt (for collecting images) or C (for EDA) to reduce charging effects.

All structures were refined by the Rietveld method,³⁴ using the program LHPM.³⁵ The structures of the doped samples β -Ca_{2-x} M_x SiO₄, M = Mg or Sr, were refined using synchrotron powder X-ray diffraction data. In all cases it was possible to obtain satisfactory fits using a single-phase model, although a small amount of poorly crystalline SiO₂ was present in some samples. The structural parameters reported by Jost et al.¹⁷ for monoclinic space group $P2_1/n$, β -Ca₂SiO₄, were used as a starting model. Up to 51 parameters, including positional, profile, and background parameters, were used in the refinements.

Acknowledgments

This work was partially supported by the Australian Research Council. The synchrotron measurements at the Australian National Beamline Facility were supported by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities program. We thank Drs James Hester and Garry Foran for their assistance with these measurements.

References

- 1. Wen, J.; Yeung, Y. Y.; Ning, L. X.; Duan, C. K.; Huang, Y. C.; Zhang, J.; Yin, M. J. Lumin. 2016, 178, 121-127.
- 2. Popescu, C. D.; Muntean, M.; Sharp, J. H. Cem. Concr. Compos. 2003, 25, 689-693.
- Chen, Y. L.; Shih, P. H.; Chiang, L. C.; Chang, Y. K.; Lu, H. C.; Chang, J. E. J. Hazard. Mater. 2009, 170, 443-448.
- 4. Barbier, J.; Hyde, B. G. Acta Crystallogr. B 1985, 41, 383-390.
- 5. Eysel, W.; Hahn, T. Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 1970, 131, 322.
- 6. Ishida, H.; Mabuchi, K.; Sasaki, K.; Mitsuda, T. J. Am. Ceram. Soc. 1992, 75, 2427-2432.
- 7. Saalfeld, H. Am. Mineral. 1975, 60, 824-827.
- 8. Yamazaki, S.; Toraya, H. Powder Diffr. 2001, 16, 110-114.
- 9. Nettleship, I.; Shull, J. L.; Kriven, W. M. J. Eur. Ceram. Soc. 1993, 11, 291-298.
- 10. Roy, D. M.; Oyefesobi, S. O. J. Am. Ceram. Soc. 1977, 60, 178-180.
- Xiong, Z. H.; Liu, X.; Shieh, S. R.; Wang, S. C.; Chang, L. L.; Tang, J. J.; Hong, X. G.; Zhang, Z. G.; Wang, H. J. Am. Mineral. 2016, 101, 277-288.
- 12. Kralj, D.; Matkovic, B.; Trojko, R.; Young, J. F.; Chan, C. J. J. Am. Ceram. Soc. 1986, 69, C170-C172.
- 13. Lai, G. C.; Nojiri, T.; Nakano, K. Cem. Concr. Res. 1992, 22, 743-754.
- 14. Cuesta, A.; Aranda, M. A. G.; Sanz, J.; de la Torre, A. G.; Losilla, E. R. Dalton Trans. 2014, 43, 2176-2182.
- 15. Tilley, C. E. Min. Mag. 1929, 22, 77-86.
- 16. Cruickshank, D. W. Acta Crystallogr. 1964, 17, 685-686.
- 17. Jost, K. H.; Ziemer, B.; Seydel, R. Acta Crystallogr. B 1977, 33, 1696-1700.
- 18. Midgley, C. M. Acta Crystallogr. 1952, 5, 307-312.
- 19. Mumme, W.; Cranswick, L.; Chakoumakos, B. Neues Jahrb. Mineral. Abh. 1996, 170, 171-188.
- 20. Mumme, W. G.; Hill, R. J.; Bushnell-Wye, G.; Segnit, E. R. Neues Jahrb. Mineral. Abh. 1995, 169, 35-68.

- 21. Yamnova, N. A.; Zubkova, N. V.; Eremin, N. N.; Zadov, A. E.; Gazeev, V. M. Crystallogr. Rep. 2011, 56, 210.
- 22. Berliner, R.; Ball, C.; West, P. B. Cem. Concr. Res. 1997, 27, 551-575.
- 23. Horiuchi, H.; Sawamoto, H. Am. Mineral. 1981, 66, 568-575.
- Irifune, T.; Nishiyama, N.; Kuroda, K.; Inoue, T.; Isshiki, M.; Utsumi, W.; Funakoshi, K.; Urakawa, S.; Uchida, T.; Katsura, T. et al. *Science* 1998, 279, 1698-1700.
- 25. Carlson, E. T. J. Res. Nat. Bur. Stand. 1955, 54, 329.
- 26. Bickle, M. J. Nature 1994, 367, 699-704.
- 27. Catti, M.; Gazzoni, G. Acta Crystallogr. B 1983, 39, 679-684.
- 28. Catti, M.; Gazzoni, G.; Ivaldi, G. Acta Crystallogr. C 1983, 39, 29-34.
- 29. Catti, M.; Gazzoni, G.; Ivaldi, G. Acta Crystallogr. B 1984, 40, 537-544.
- 30. Sakurada, R.; Kawazoe, Y.; Singh, A. K. ACI Mater. J. 2015, 112, 85.
- 31. Lu, Z. Y.; Tan, K. F. Cem. Concr. Res. 1997, 27, 989-993.
- Garrett, R. F.; Cookson, D. J.; Foran, G. J.; Sabine, T. M.; Kennedy, B. J.; Wilkins, S. W. Rev. Sci. Instrum. 1995, 66, 1351-1353.
- 33. Sabine, T. M.; Kennedy, B. J.; Garrett, R. F.; Foran, G. J.; Cookson, D. J. J. Appl. Crystallogr. 1995, 28, 513-517.
- 34. Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65-71.
- 35. Hunter, B. A.; Howard, C. J. A Computer Program for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns; Australian Atomic Energy Commission: Lucas Heights, Australia, 1998.