
Turk J Chem
(2018) 42: 1086 – 1094
© TÜBİTAK
doi:10.3906/kim-1711-3

Turkish Journal of Chemistry

http :// journa l s . tub i tak .gov . t r/chem/

Research Article

The synthesis of new 3,4-(bisaryl)-1,8-naphthalimide and
2,3-(bisaryl)-7H -benzimidazo[2,1-a]benzo[d]isoquinolin-7-one compounds and an

investigation of their photochromic properties

Ersin ORHAN1,∗ , Mahmut KÖSE2 , Tolga YAZAN2

1Department of Chemistry, Faculty of Arts and Science, Düzce University, Düzce, Turkey
2Department of Chemistry, Faculty of Arts and Science, Bülent Ecevit University, Zonguldak, Turkey

Received: 01.11.2017 • Accepted/Published Online: 20.04.2018 • Final Version: 03.08.2018

Abstract: Three new photochromic compounds, 3-(2,5-dimethyl-3-thienyl)-4-(2-phenyl-5-methyl-4-thiazolyl)-1,8-napht-
halimide (1-O), 2,3-bis(2-phenyl-5-methyl-4-thiazolyl)-7H -benzimidazo[2,1-a]benzo[de]isoquinolin-7-one (2-O), and 2,5-
dimethyl-3-thienyl)-7H -benzimidazo[2,1-a]benzo[de]isoquinolin-7-one (3-O), were synthesized and their photochromic
properties were studied. Compound 1-O was synthesized by two consecutive Suzuki coupling reactions using 2,5-
dimethylthiophene-3-boronic acid and 5-methyl-2-phenylthiazole-4-boronic acid. Photochromic compounds 2-O and 3-O
were prepared by multistep reactions starting with 3-iodo-4-bromo-1,8-naphthalic anhydride and 2,5-dimethylthiophene-
3-boronic acid or 2-phenyl-5-methylthiazole-4-boronic acid. All photochromic compounds showed a color change from
colorless (or light yellow) to blue-green, purple, or orange colors (depending on the nature of the structures) on exposure
to UV light at 365 nm in ethyl acetate solutions. The colored solutions can be reversed to the original colorless (or light
yellow) solution by exposure to visible light at 530 nm.

Key words: Diarylethene, photochromism, 1,8-naphthalimide, 1,8-naphthalic anhydride, 7H -benzimidazo[2,1-a]benz[de]
isoquinolin-7-one

1. Introduction
Photochromic compounds usually have two forms, an open form (form O, generally colorless) and a closed form
(form C, often colored). The structural and color changes in the photochromic molecules can be controlled by
different wavelengths of light. The UV light is usually used for ring-closure photoreactions, and visible light is
usually used for ring-opening photoreactions.1

Organic photochromic compounds such as fulgides, diarylethenes, and diarylethene related compounds
have some possible industrial applications in actinometry, optical memory systems, information storage at a
molecular level, molecular-level switches, etc.

Fulgides and diarylethenes are well-known photochromic compounds that show color change via electro-
cyclic reaction.2,3 Diarylethenes are known to be more stable than fulgides with regard to thermal stability and
fatigue resistance. They could be used for optical switches and in high-density optical recording materials. For
optical recording application, it is very important to develop photochromic diarylethenes with different absorp-
tion wavelengths, especially with shorter absorption wavelengths, as the recording capacity is proportional to
the wave laser wavelength.4−6
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Recently, many research groups studying photochromism have focused on synthesizing new types of pho-
tochromic systems that are related to diarylethenes. A major modification to diarylethenes has been made
by replacing the ethene part in the diarylethenes with other suitable ring systems that act with ethene-like
behavior. Some synthesized examples of recently reported photochromic compounds within this framework
include bisarylthiazole/phenylthiazoles, bisarylthiophenes, bisarylindenone/indenols, bisarylcoumarin, bisaryl-
benz[f]indenones/benz[f]indenols, bisarylcyclopentenones, bisarylnaphthoquinones , bisarylazulene, and bisaryl-
pyridazinone.7−22

1,8-Naphthalimide derivatives are of interest due to their promising useful photophysical and biological
properties. Most of these properties concern the planar shape and the efficient optimal dimensions. In addition,
they are particularly attractive as fluorophores. They have high quantum yields and good photostability, and
their fluorescence varies from tunable bluish red to broad spectrum. 1,8-Naphthalimide-derived fluorescent
pigments and fluorescent compounds can be used as sensors, for pH determination, and as optical switches for
certain metal cations.23−25

In this study, three new photochromic compounds, 3-(2,5-dimethyl-3-thiophenyl)-4-(5-methyl-2-phenyl-
4-thiazolyl)-1,8-naphthalimide (1-O), 2,3-bis(2-phenyl-5-methyl-4-thiazolyl)-7H benzimidazo[2,1-a]benzo[d]iso-
quinolin-7-one (2-O), and 2,5-dimethyl-3-thiophenyl)-7H -benzimidazo[2,1-a]benzo[d]isoquinolin-7-one (3-O),
were prepared and their photochromic properties were examined.

Photochromic 2,3-(bisaryl)-7H -benzimidazo[2,1-a]benzo[d]isoquinolin-7-one (2-O and 3-O) compounds
have not yet been reported; however, similar bisaryl-1,8-naphthalimide compounds that present symmetri-
cal aryl groups, such as 3,4-bis(2,5-dimethyl-3-thiophenyl or 5-(4-methoxyphenyl)-2-methyl-3-thiophenyl)-1,8-
naphthalimide, have already been reported.26,27

2. Results and discussion
3-Iodo-4-bromo-1,8-naphthalic anhydride (5)27 , 3-iodo-4-bromo-1,8-naphthalimide (6)27 , 2,5-dimethylthiophene-
3-boronic acid (7)26,27 , and (5-methyl-2-phenyl-4-thiazole-4-boronic acid (8)18−20 were prepared together by a
multistage reaction using procedures in the published literature.

In order to produce 3,4-(bisaryl)-1,8-naphthalimide (1-O), which presents different aryl groups such
as 2,5-dimethyl-3-thienyl and 2-phenyl-5-methyl-4-thiazolyl groups, a two-step Suzuki coupling reaction was
used (Figure 1). In the first Suzuki coupling reaction, an intermediate compound (9) was prepared via
a reaction between 3-iodo-4-bromo-1,8-naphthalimide (6) and 2,5-dimethyl-3-thienyl boronic acid (7) in a
medium containing palladium catalysts (e.g., Pd(PPh3)4 and Pd2 (dba)3) . In order to stop the reaction at the
intermediate stage, the reaction was monitored by thin-layer Chromatography (TLC). The intermediate adduct
(9) was obtained using simple purification by liquid–liquid extraction, and the crude product (9) was then
used in the second Suzuki coupling reaction with 2-phenyl-5-methylthiazole-4-boronic acid and the necessary
palladium catalyst (e.g., Pd(PPh3)4 and Pd2 (dba)3) to give photochromic compound 1-O. 1-O was isolated
from the reaction together with side product 11. TLC results showed that compound 1-O and its intermediate
product (11) have very close retention times on the TLC plate, and, as a result, complete separation is almost
impossible with flash column chromatography.

Synthesis of 2,3-(bisaryl)-7H -benzimidazo[2,1-a]benzo[de]isoquinolin-7-one (2-O) uses a multistep reac-
tion (Figure 2). All attempts to obtain 12 via a one-pot Suzuki coupling reaction using excess boronic acid
and a palladium catalyst failed. Thus, two consecutive Suzuki coupling reactions were used to get 12. First of
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Figure 1. Synthesis of 3,4-(bisaryl)-1,8-naphthalimide (1-O).

all, a reaction between 3-iodo-4-bromo-1,8-naphthalic anhydride (5) and 5-methyl-2-phenylthiazole-4-boronic
acid (8) was used to give a semicoupled product (10). After simple liquid–liquid extraction that gave the
crude product (10), the second Suzuki coupling reaction yielded compound 12. After extraction of the or-
ganic component from the reaction mixture, the crude product 12 was refluxed with o−phenylenediamine in
the presence of glacial acetic acid under a dry nitrogen atmosphere. The reaction was monitored using TLC.
After 1 day of reflux, the reaction mixture was subjected to flash column chromatography to give photochromic
isomers. A condensation reaction between 12 and o−phenylenediamine resulted in two photochromic isomers
whose retention times were very close to each other on the TLC plate. The 1H NMR spectrum showed that
the photochromic mixture consisted of two isomers of 2-O and a side product (13). Many attempts to sep-
arate these isomers using classic flash column chromatography have failed. On the other hand, photochromic
isomers were also proven by LC–MS analysis where [M+H] appeared at 617.16 m/z (the calculated molecular
weight for 2-O was 616.14 g/mol). Photochromic compound 3-O, which is an isomeric mixture that presents
2,5-dimethyl-3-thienyl groups instead of 2-phenyl-5-methyl-4-thiazolyl groups, was also similarly synthesized.
An investigation of the structure of 3-O was carried out by LC–MS analysis (ESI-491.13 (M+H)) (calculated
for C30H22N2OS2 : 490.12).

Forward and reverse photoreactions of photochromes 1-O, 2-O, and 3-O in solution were carried out at
different light wavelengths. After irradiation of 1-O in ethyl acetate by UV light at 365 nm, a light yellow to
blue-green color change was observed owing to the occurrence of C-forms (1-C), which reverse upon exposure
to visible light at 530 nm. The C-form (λmax = 656 nm) showed a bathochromic shift of 315 nm compared
to the O-form (λmax = 341 nm) due to the large conjugated systems in the C-forms. The ring-closure and
ring-opening isomerization at different wavelengths of light is general behavior in most organic photochromic
compounds, especially in fulgide, diarylethenes, and diarylethenes related to photochromic molecules. Figure 3
shows the photoreaction and absorption spectral changes for 1-O in ethyl acetate before and after irradiation
with UV light.

Likewise, irradiation of a nearly colorless ethyl acetate solution of 2-O (λmax = 337 nm) underwent
photocyclization to form purple-colored photochrome 2-C (λmax = 555 nm), which can then change back to
2-O upon exposure to light at 530 nm. From the photoreaction of 2-O, bathochromic shifts of 218 nm were
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Figure 2. Synthesis of 2-O and 3-O.

observed, which are attributed to the longer conjugation of the C-form compared to the O-form. Figure 4 shows
the photoreaction and absorption spectral changes for 2-O in ethyl acetate before and after irradiation with
UV light.

A photochromic reaction was also conducted for 3-O, whereby it produced a reversible color change from
light yellow (λmax = 351 nm) to an orange color (λmax = 545 nm) upon exposure to UV (365 nm) and visible
(530 nm) light, respectively. The UV–Vis spectra and the photoreaction for 3-O can be seen in Figure 5.

Replacement of the 2,5-dimethylthienyl groups with the 2-phenyl-5-methylthiazolyl groups at the 3,4-
position of benzimidazo[2,1-a]benzo[d]isoquinolin-7-one caused bathochromic shifts of 10 nm when compared to
their C-forms. For example, the λmax of 3-C in ethyl acetate was recorded at 545 nm, whereas the λmax of
2-C in ethyl acetate was recorded at 555 nm. A slight red shift may be connected to the greater conjugation of
the C-form of 2-O due to the phenyl groups in the thiazole rings.

In conclusion, two new photochromic compounds of 2,3-(bisaryl)-7H -benzimidazo[2,1-a]benzo[de]isoqui-
nolin-7-one were synthesized using a Suzuki coupling reaction, starting from 4-bromo-3-iodo-1,8-naphthalic
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Figure 3. Photoreaction and absorption spectral changes for 1-O in ethyl acetate (∼1 × 10−4 mol dm−3) when
irradiated by 365 nm UV light.

anhydride using (2,5-dimethylthiophen-3-yl) boronic acid or (2-phenyl 5-methyl thiazol-4-yl) boronic acid. Be-
sides these two compounds, a new cross-coupled photochromic 3,4-(bisaryl)-1,8-naphthalimide was also prepared
starting from 3-iodo-4-bromo-1,8-naphthalimide (6) employing two consecutive Suzuki coupling reactions us-
ing (2,5-dimethyl-3-thiophenyl) boronic acid (7) and (2-phenyl-5-methyl-4-thiazolyl) boronic acid (8). All the
compounds in solutions exhibited reversible photoreactions when exposed to UV or visible light.

3. Experimental

3.1. General

3-Iodo-4-bromo-1,8-naphthalic anhydride (5)23,27 , 3-iodo-4-bromo-1,8-naphthalimide (6)26,27 , 2,5-dimethylthienyl-
3-boronic acid (7),26,27 and (2-phenyl-5-methylthiazole-4-boronic acid (8)18−20 were prepared together with
the procedures in the published literature.

The 1HNMR spectra of the samples in CDCl3 were detected on a Bruker 400 MHz spectrometer. The
signals were detected as ppm downfield compared to tetramethylsilane, which operates as an internal standard
(δ -value) for measuring chemical shifts. Mass spectra were measured by an AB Sciex 4000 Q TRAP LCMS/MS.
UV–Vis spectra were measured on an Agilent Cary 60 UV–Vis spectrophotometer. Photochemical reactions
in organic solvents were measured over a 10-mm path length quartz cell using an 8-W three-way UV lamp
(Cole-Parmer) at 365 nm and a green light source (Obelux CR9 Forensic Lights) at 530 nm. Solutions in the
UV cell were mixed throughout the photoreactions. Melting points were determined with a Büchi Melting Point
B-540. Flash column chromatographic separation was achieved using a Merck Kieselgel 60 (70 to 230 mesh)
with a particle size from 0.06 to 0.200 mm using ethyl acetate and hexane as the eluent. Preparative TLC was
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Figure 4. Photoreaction and absorption spectral changes for 2-O in ethyl acetate (∼1 × 10−4 mol dm−3) when
irradiated by 365 nm UV light.

performed on silica gel 60 from Merck with a particle size from 5 to 40 µm. Analytical TLC was carried out
on Merck precoated silica gel 60 GF-254 using 0.25-mm-thick TLC plates.

3.2. 3-(2,5-Dimethyl-3-thiophenyl)-4-(2-phenyl-5-methyl-4-thiazolyl)-1,8-naphthalimide (1-O)

A mixture of 2,5-dimethylthienyl-3-boronic acid (7) (0.31 g, 1.97 mmol), 3-iodo-4-bromo-1,8-naphthalimide (6)
(0.3 g, 0.654 mmol), potassium carbonate (0.91 g, 6.54 mmol), tetrakis(triphenylphosphine)palladium(0) (0.091
g, 7.86 × 10−2 mmol), and a catalytic proportion of tris(dibenzylideneacetone)dipalladium(0) in THF (30 mL)
and H2O (5 mL) was stirred for 2 h at room temperature and then the reaction mixture was refluxed for 3
h. After the solvent was removed under reduced pressure, the residue was extracted using DCM/H2O, dried
over Na2SO4 , and filtered. The crude intermediate compound (9) (0.025 g) was dissolved in THF (4 mL)
and H2O (1 mL). Then 5-methyl-2-phenylthiazole-4-boronic acid (8) (0.037 g, 0.17 mmol), Pd(PPh3)4 (0.01
g, 6.78 × 10−3 mmol), and K2CO3 (0.91 g, 0.565 mmol) were added to the mixture and stirred. The crude
reaction mixture was stirred for 4 h at room temperature and then refluxed for 4 h. Afterwards the solvent
was removed under reduced pressure and the residue was extracted using DCM/H2O, dried over Na2SO4 , and
filtered. The remaining precipitate was purified with flash column chromatography on silica gel using ethyl
acetate and hexane as the eluents. From these purifications, compound 1-O was isolated together with side
product 11. Although two flash column chromatography procedures and one preparative TLC procedure were
repeatedly carried out, 1-O and side product 11 could not be separated.

1091



ORHAN et al./Turk J Chem

300 400 500 600 700

0,0

0,2

0,4

0,6

0,8

1,0

A
b

s

Wavelength (nm)

C-Form 

O-Form 

N

S

Me

S
Me Me

Me

365 nm

530 nm

3-O (O-form)                                  3-C (C-form)

N

O

S S
Me

Me

Me

Me

N

O

N

Figure 5. Photoreaction and absorption spectral changes for 3-O in ethyl acetate (∼1 × 10−4 mol dm−3) irradiated
with 365 nm UV light.

The resulting product was a mixture of a yellow solid (0.017 g) containing 1-O (30%) and side product
11 (70%).

The 1H NMR (300 MHz, CDCl3 , ppm) spectrum for 1-O was recorded as follows: δ 1.01 (t, 3H,
CH2CH3) , 1.49 (m, 2H, CH2 CH3) , 1.76 (m, 2H, CH2 CH2) , 2.02 (s, 3H, CH3) , 2.22 (s, 3H, CH3) , 2.44 (s,
3H, CH3) , 4.23 (t, 2H, N-CH2) , 6.55 (s, 1H, thiophene-H), 7.86, 8.16, 8.76 (m, 4H, Ar-H), and 7.45 (m, 5H,
Ph).

Photochromic compound 1-O was calculated for C32H28N2O2S2 as follows: 536.16; ESI-537.2
(M+H).

Compound 11 was recorded as follows: δ 1.01 (t, 3H, CH2CH3) , 1.49 (m, 2H, CH2 CH3) , 1.76 (m,
2H, CH2 CH2) , 2.45 ppm (s, 3H, CH3) , 4.23 (t, 2H, N-CH2) , δ 7.46, 7.98, 8.73, 8.77 (m, 9H, Ph, Ar-H).

3.3. 4-Bromo-3-(5-methyl-2-phenyl-4-thiazolyl)-1,8-naphthalic anhydride (10)

A mixture of 5-methyl-2-phenylthiazole-4-boronic acid (8) (0.44 g, 1.99 mmol), 4-bromo-3-iodo-1,8-naphthalic
anhydride (5) (0.2 g, 0.497 mmol), potassium carbonate (0.69 g, 4.97 mmol), tetrakis(triphenylphosphine)pal-
ladium(0) (0.07 g, 0.0597 mmol), and a catalytic proportion of Tris (dibenzylideneacetone) dipalladium(0) in
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THF (10 mL) and H2O (2 mL) was stirred for 2 h at 45 ◦C and then the reaction mixture was refluxed for 2
h. The solvent was removed under reduced pressure and the mixture was poured onto crushed ice/water and
acidified with 5 M HCl. The organic phase was extracted (2 × V) using DCM, dried over Na2SO4 , and filtered,
leaving a brown solid that was recrystallized by diethyl ether/ethyl acetate to give intermediate compound 10
as a brown solid (0.203 g, 80%). The 1H NMR (400 MHz, DMSO, ppm) was recorded as follows: δ 2.43 (s,
3H, CH3) , 7.51 (m, 5H, Ph), 7.9–8.67 (m, 4H, Ar-H).

3.4. 2,3-Bis(2-phenyl-5-methyl-4-thiazolyl)-7H-benzimidazo[2,1-a] benzo[d]isoquinolin-7-one (2-O)

A mixture of 5-methyl-2-phenylthiazole-4-boronic acid (8) (0.33 g, 1.49 mmol), 4-bromo-3-(5-methyl-2-phenyl-
4-thiazolyl)-1,8-naphthalic anhydride (10) (0.22 g, 0.497 mmol), potassium carbonate (0.49 g, 3.49 mmol),
tetrakis(triphenylphosphine)palladium(0) (0.07 g, 0.096 mmol) and a catalytic proportion of Tris (dibenzyli-
deneacetone) dipalladium(0) in THF (10 mL) and H2O (2 mL) was stirred for 2 h at 45 ◦C and then the
mixture was refluxed for 2 h. The solvent was removed under reduced pressure and the mixture was poured
onto crushed ice/water and acidified with 5 M HCl. The organic phase was extracted (2 × V) using DCM, dried
over Na2SO4 , and filtered. The residue was dissolved in glacial acetic acid (8 mL) and o−phenylenediamine
(0.063 g, ∼1.2 eq.) was added. The mixture was refluxed overnight under a nitrogen atmosphere. After
removing the solvent, the residue was washed with NaHCO3 (10%), extracted with DCM (3 × V), dried over
Na2SO4 , and filtered. The reaction mixture was purified with flash column chromatography on silica gel using
ethyl acetate/hexane (5% to 30%) as the eluents to give 2-O as an isomeric mixture as a greenish solid (0.055
g). The 1H NMR (400 MHz, CHCl3 , ppm) recorded isomers of 2-O as follows: δ 2.08 (s, 3H, CH3) , 2.32 (s,
3H, CH3) , (2.55 (s, 3H, CH3) , 2.65 (s, 3H, CH3) , 7.40–7.52 (m, 5 × Ph), 7.91–8.96 (m, Ar-H). Calculated for
C38H24N4OS2 : 616,14; ESI-617.16 (M+H).

The 1H NMR (400 MHz, CHCl3 , ppm) recorded side product 13 as follows: 2.47(s, CH3) , 7.40–7.52
(m, Ph), 7.91–8.96 (m, Ar-H).

3.5. 2,3-Bis(2,5-dimethyl-3-thienyl)-7H-benzimidazo[2,1-a] benzo[d]isoquinolin-7-one (3-O)

4-Bromo-3-iodo-1,8-naphthalic anhydride (0.3 g, 0.75 mmol), a mixture of 2,5-dimethylthiophene-4-boronic acid
(0.35 g, 2.23 mmol), potassium carbonate (1.0 g, 7.46 mmol), tetrakis(triphenylphosphine)palladium(0) (0.1 g,
0.090 mmol), and a catalytic proportion of Tris (dibenzylideneacetone) dipalladium(0) in THF (10 mL) and
H2O (2 mL) was stirred for 2 h at 45 ◦C and then the mixture was refluxed for 2 h. The solvent was removed
under reduced pressure and the mixture was poured onto crushed ice/water and acidified with 5 M HCl. The
organic phase was extracted (2 × V) using DCM, dried over Na2SO4 , and filtered. The residue was dissolved
in glacial acetic acid (8 mL) and o−phenylenediamine (0.1 g, ∼1.2 eq.) was added. The mixture was refluxed
overnight under a nitrogen atmosphere. After removing the solvent, the residue was washed with NaHCO3

(10%), extracted with DCM (3 × V), dried over Na2SO4 , and filtered. The reaction mixture was purified with
flash column chromatography on silica gel using ethyl acetate/hexane (5% to 30%) as the eluents to give 3-O
as an isomeric mixture as a yellow solid (0.058 g). The 1H NMR (400 MHz, CHCl3 , ppm) recorded isomers
of 3-O as follows: δ 2.21 (s, 3H, CH3) , 2.23 (s, 3H, CH3) , 2.33 (s, 3H, CH3) , 2.36 (s, 3H, CH3) , 6.34 (s,
1H, thienyl), 6.39 (s, 1H, thienyl), 7.31–8.66 (m, Ar-H). Calculated for C30H22N2OS2 : 490,12; ESI-491.13
(M+H).
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