

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Research Article

New triplet silylenes M–Si–M′–X along with some unusual cyclic forms (M = Li, Na, and K; M′ = Be, Mg, and Ca; X = F, Cl, and Br)

Samaneh ASHENAGAR¹, Mohamad Zaman KASSAEE^{1,2,*}

¹Department of Chemistry, Tarbiat Modares University, Tehran, Iran ²Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA

Received: 12.02.2018	•	Accepted/Published Online: 02.04.2018	•	Final Version: 03.08.2018
----------------------	---	---------------------------------------	---	----------------------------------

Abstract: Comparison of 54 M–Si–M′–X species is carried out using quantum mechanical ab initio and DFT computations at B3LYP/6-311++G**, QCISD(T)/6-311++G**, and CCSD(T)/6-311++G** levels of theory (M = Li, Na, K; M′ = Be, Mg, Ca, and X = F, Cl, Br). All triplet species with M = K appear more linear than their corresponding ones with Li and Na. The electronegativity reactivity descriptor for each halogen (X = F, Cl, Br) is used as a tool to evaluate the interrelated properties of these silylenes. Stability, assumed as singlet–triplet energy difference (ΔE_{S-T}) for each series depends on the substituent's electropositivity, analyzed by applying appropriate isodesmic reactions. Stability of triplet M–Si–M′–X silylenes increases as functions of electropositivity of α -substituents and of β -substituents. The purpose of the present work was therefore to assess the influence of different di-alkaline metals with different β -substituents on the singlet–triplet energy gaps.

Key words: Triplet silylene, electropositivity, energy gaps, α and β substituent effects, multiplicity

1. Introduction

Sextet divalent silylenes have evolved from exotic reaction intermediates to important chemical species.¹ They have a low ability for hybridization, as their s-orbital is more constricted than the p-orbital.^{2–8} As the chemistry of triplet silylenes is expected to be entirely different from that of singlets, the preparation of a silylene that has a triplet ground state and the development of its chemistry is one of the most challenging concerns in the modern organo-silicon chemistry.^{9–14} Experimentally, generation of stable triplet silylenes is very difficult and has encountered many failures. In 1991, Gaspar succeeded in generating a triplet silylene with very large substituents.¹⁴ Theories have predicted that with electropositive Li substitution triplet ground-states will be more stable than the corresponding singlets.^{15–18} In 1985, Apeloig studied the influence of electropositive substituents at the divalent silicon atom and pointed out that these substituents stabilized its triplet state.⁹ Therefore, after disappointing attempts to isolate alkali-metal-substituted silyl radicals, in 2008, Sekiguchi et al. generated silyl radical (tBu₂MeSi)₂SiM structures (M = Li, Na, K) with the first group alkali-metals like Li, Na, and K.¹⁹ In fact, the more electropositive SiH₃, Li, Na, and K groups reduce the computed ΔE_{S-T} . The magnitude of the singlet–triplet splitting (ΔE_{S-T}) as well as the preparations of triplet states has received particular attention.^{10–12,20–23} The enormity of ΔE_{S-T} depends on the geometry of the molecule since the wider R-Si-R angle, the more stable the silylene triplet state.^{24–26} The development in this field in recent years

^{*}Correspondence: mohamad.z.kassaee@vanderbilt.edu

is principally impressive. Obviously, the rapid expansion of triplet silylene and germylene chemistry is evident due to their applications in electronics and other productions. $^{27-29}$

Some researchers have addressed interesting questions of how the presence of substituents affects the relative stabilities of triplet silylenes. We have already reported how electropositive substituents like Li, Na, and K affect the relative stabilities of different alkali-metal triplet germylenes.²⁹ Clearly, electronegative substituents increase the singlet–triplet energy gap, whereas electropositive substituents reduce the gap. In this paper we use density functional theory (DFT) computations to predict the effect of electronegative β -substituents along with electropositive α -substituents on the stability of triplet silylenes. The results show our theoretical investigation on singlet and triplet structures of 54 different di-alkaline metal silylenes with M–Si–M'–X formulation (M = Li, Na, K, M' = Be, Mg, Ca, and X = F, Cl, and Br) (Scheme 1).

Series 1; M = Li, M' = Be, Mg, Ca, X = F, Cl, Br
Series 2; M = Na, M' = Be, Mg, Ca, X = F, Cl, Br
Series 3; M = K, M' = Be, Mg, Ca, X = F, Cl, Br
Scheme 1. Schematic portrayal of a silylene in this study (Series 1–3).

2. Computational methods

All geometry optimizations are carried out without any symmetry constraints by means of hybrid functional B3LYP³⁰⁻³⁵ and the standardized 6-311++G^{**} basis set, using the GAMESS package of programs.^{36,37} Both restricted and unrestricted B3LYP density functional methods for singlet states are available in the GAMESS, allowing the dynamics to be studied at different levels of accuracy with the DFT results expected to provide more accurate structural and energetic results. Moreover, triplet states are calculated with a spin-unrestricted wave function.³⁸ To obtain more accurate energetic data, single point computations are performed at the QCISD(T) and CCSD(T) levels of theory using the 6-311++G^{**} basis set.³⁹ The S^2 expectation values of these species all showed a rather ideal value (2.001) after spin annihilation, so that their geometries are reliable for this study. The frequency calculations are applied to characterize the structures as minima (the number of imaginary frequencies (NIMAG = 0) or transition states (NIMAG = 1)).⁴⁰

3. Results and discussion

To achieve accessible triplet ground states of M–Si–M'–X species (M = Li, Na, K; M' = Be, Mg, Ca and (X = Li (1s,t), Table 1; X = Na (2s,t), Table 2; and X = K (3s,t), Table 3)), we compare thermodynamic and geometrical parameters for 54 new silylenic isomers at B3LYP/6-311++G^{**}, CCSD(T)/6-311++G^{**}, and QCISD(T)/6-311++G^{**} levels of theory (Figure 1). Among our isomers, only two singlet structures (K–Si–Ca–Cl and K–Si–Ca–Br) undergo rearrangement upon optimization, forming rather long linkages from K to Ca (3.88 Å and 3.92 Å, respectively) and transform into cyclic structures (Figure 1). Clearly, for chlorine and bromine substituents at the silicon center, it is observed that in two cases the expected structures collapse to three-membered cyclic systems with the formation of weak bonds involving the calcium, potassium, and one of the bromine or chlorine atoms (Figure 1). This phenomenon is consistent with the convergence reported for

 $XGeCBr_3$ and $XGeCCl_3$ molecules to unexpected structures, using the same DFT functionals (X = H, F, Cl, Br, and I).⁴¹

The structural parameters for the silicon compounds are collected (Figure 1). Clearly, in going from $F \rightarrow Cl \rightarrow Br$, variations of M–Si bond lengths in most of the structures are small, but M'–X bond lengths become longer as the atomic sizes of the halogen substituents increase (Br > Cl > F).

Furthermore, it is observed that the bond angles for all molecules in their singlet ground states lie in the range $80.0^{\circ}-98.4^{\circ}$. The lone pair on the silicon atom causes a larger repulsion compared to the analogous repulsion of the bonding pair of electrons; hence the ideal angle of 120° is decreased significantly. This lone pair "occupies" a large space and consequently results in divalent angles less than 120° . Clearly, in all series the values of the divalent angles Si-M'-X increase as follows: F < Cl < Br. In Series 3, from the singlet to the triplet states, there is a decrease of nearly 0.2 Å in the M-Si bond lengths, while the expected increase in the bond angle is about 100° . Typically, there is an unexpected decrease in the M-Si-M' and Si-M'-X (M' = Be, Mg) bond angles of nearly 15° and 5° in Series 1 and 2. The magnitudes of the Si-Ca-X bond angle in nearly all triplets are more than those of their corresponding singlets. These structural changes may be related to the decreasing electron density around the divalent silicon center in the molecular plane from the singlet state to its corresponding triplet species. The halogen ligands linked to magnesium get closer to the silicon atom and achieve a better screening of the bonding electrons (Figure 1).

The other results obtained in the present research include DFT calculations and isodesmic reactions for 54 isomers of divalent silylenes. In addition, the zero point energies (ZPE) of these species are calculated for each optimized structure at $B3LYP/6-311++G^{**}$. For the sake of brevity, selected harmonic frequencies of our species are included in the supplementary information.

With respect to substituents of these structures, the singlet-triplet energy gaps (ΔE_{S-T}) are employed to compare the relative stabilities at B3LYP/6-311++G^{**}, QCISD(T)/6-311++G^{**}, and CCSD(T)/6-311++G^{**} levels of theory. The trends in the singlet-triplet energy gaps computed using the high-level QCISD(T) and CCSD(T) single-point energies are similar to that computed using the B3LYP-optimized energy (Tables 1–3).

B3LYP/6-311++G^{**} as well as QCISD(T)/6-311++G^{**} order of singlet-triplet energy gaps calculations between 1s-M'-X and 1t-M'-X show a trend of: ΔE_{S-T} , $_{Be-F}$ (-10.33 kcal/mol, -9.10 kcal/mol) > ΔE_{S-T} , $_{Be-Cl}$ (-2.93 kcal/mol, -3.98 kcal/mol) > ΔE_{S-T} , $_{Be-Br}$ (-2.91 kcal/mol, -3.85 kcal/mol) and ΔE_{S-T} , $_{Mg-F}$ (-3.48 kcal/mol, -5.59 kcal/mol) > ΔE_{S-T} , $_{Mg-Cl}$ (-3.35 kcal/mol, -5.42 kcal/mol) > ΔE_{S-T} , $_{Mg-Br}$ (-3.32 kcal/mol, - 5.39 kcal/mol) and ΔE_{S-T} , $_{Ca-F}$ (-5.08 kcal/mol, -9.50 kcal/mol) > ΔE_{S-T} , $_{Ca-Cl}$ (-4.94 kcal/mol, -8.64 kcal/mol) > ΔE_{S-T} , $_{Ca-Br}$ (-4.94 kcal/mol, -8.30 kcal/mol) (Table 1). Apparently, the structures with the most electronegative β -substituent (X = F) have the lowest singlet-triplet energy gaps.

Clearly, the presence of a fluorine substituent destabilizes σ orbitals at M', meaning that triplets with fluorine substituents are more stable than triplets with chlorine and bromine substituents. Obviously, with reducing the electronegativity of β -halogens, stability of singlet state increases.

However, all the odds are in favor of existence of the triplet silvlenes. The same levels of theory have been computed order of singlet-triplet energy gaps, ΔE_{S-T} , $_{M'-X}$, between 2s-M'-X and 2t-M'-X are: ΔE_{S-T} , $_{Be-F}$ (-7.33 kcal/mol, -8.26 kcal/mol) > ΔE_{S-T} , $_{Be-Cl}$ (-7.30 kcal/mol, -8.11 kcal/mol) > ΔE_{S-T} , $_{Be-Br}$ (-7.09 kcal/mol, -7.84 kcal/mol) and ΔE_{S-T} , $_{Mg-F}$ (-7.53 kcal/mol, -8.37 kcal/mol) > ΔE_{S-T} , $_{Mg-Cl}$ (-1.63 kcal/mol, -5.17 kcal/mol) > ΔE_{S-T} , $_{Mg-Br}$ (-1.63 kcal/mol, -5.17 kcal/mol) and ΔE_{S-T} , $_{Mg-Br}$ (-1.63 kcal/mol, -5.17 kcal/mol) = ΔE_{S-T} , $_{Ca-F}$

ASHENAGAR and KASSAEE/Turk J Chem

Singlet	Triplet	Singlet	Triplet
2.52 Si 2.18 177.20 Li 83.32 Be	$Li \underbrace{\frac{2.34}{5}}_{179.97} \underbrace{{5}}_{179.97} \underbrace{{2.10}}_{Be} \underbrace{{Be}}_{1.39} F$	2.52 Si 2.16 177.55 Li 81.15 Be	Li 71.01 Be 1.83 CI
(C ₁)	(C ₁)	(C ₁)	(C ₁)
2.52 Si 2.16 177.88 Li 80.03 Be	2.40 Si 2.17 176.33 Li 70.14 Be	Li 2.52 Si 2.60 177.93 Li 86.86 Mg	2.40 Si 2.63 Mg 1.80 F
(C ₁)	(C ₁)	(C ₁)	(C ₁)
2.52 Si 2.59 178.17 Li 86.94 Mg	Li ^{2.40} Si ^{2.63} Mg ^{171.14} Cl Mg ^{2.24}	2.52 SI 2.59 178.55 Li 88.86 Mg	Li 2.40 Si 2.63 Mg 2.39 Br
(C ₁)	(C ₁)	(C ₁)	(C ₁)
$Li \frac{2.49}{90.18} \frac{Si}{Ca} \frac{2.99}{2.00} F$	2.50 Si 2.99 159.72 F Li 75.52 Ca 2.00	$Li \underbrace{ \begin{array}{c} 2.49 \\ 90.10 \end{array}}^{2.49} \underbrace{ Si}_{90.10} \underbrace{ \begin{array}{c} 2.97 \\ Ca \end{array}}^{154.85} Cl$	2.52 Si 2.92 165.07 Cl Li 76.40 Ca 2.48
(C ₁)	(C ₁)	(C ₁)	(C ₁)
$Li \frac{2.49}{90.11} \frac{Si}{Ca} \frac{2.96}{2.65} Br$	^{2.49} Si ^{2.90} Ca ^{171.33} Br Li ^{76.88} Ca ^{2.64}	2.84 Si 2.18 177.24 Na 84.65 Be	$\mathbf{Ne} \underbrace{\overset{2.66}{\underbrace{Si}}_{179.96} \overset{\cdots}{\underbrace{Si}}_{1.39} \underbrace{\overset{2.10}{\underbrace{Be}}_{1.39} \mathbf{F}}_{1.39}}_{\mathbf{F}}$
(C ₁)	(C ₁)	(C ₁)	(C ₁)
Na 82.77 Be	$\mathbf{Na}^{\underline{2.67}} \underbrace{\underbrace{Si}}_{179.99} \underbrace{\underbrace{2.09}}_{1.82} \mathbf{Be}_{\underline{1.82}}^{1.8000} \mathbf{Cl}$	2.74 Si 2.18 177.28 Na 81.82 Be	$\mathbf{Ne}^{\underline{2.67}} \underbrace{\underbrace{\mathbf{Si}}_{180.00}}_{180.00} \underbrace{\underbrace{2.09}_{\mathbf{Be}}}_{\mathbf{Be}} \mathbf{Br}$
(C ₁)	(C ₁) 179.98	(C_1)	$(C*_V)$
2.85 Si 2.60 Na 88.07 Mg	$\mathbf{Na} \underbrace{\overset{2.68}{\underbrace{\mathbf{Si}}}}_{179.89} \underbrace{\overset{2.49}{\underbrace{\mathbf{Mg}}}}_{\mathbf{Mg}} \mathbf{Mg} \underbrace{\mathbf{F}}_{\mathbf{I}.80}$	2.85 Si 2.60 170.01 Na 87.93 Mg	2.81 Si 2.62 Mg Na 75.49 Mg
(C ₁)	(C ₁)	(C ₁)	(C ₁)
2.85 Si 2.60 179.02 Na 87.79 Mg 2.40 Br	2.81 Si 2.63 Na 75.37 Mg 2.40	$\begin{array}{c} 2.82 \\ Na \\ g_{1.30} \\ g_{1.30} \\ Ca \\ 2.00 \\ \end{array} F$	2.90 Si 2.94 160.13 Na 77.07 Ca 2.00 F
(\mathbf{C}_1)	(C ₁)	(C ₁)	(C ₁)
$\begin{array}{c} 2.83 \\ Na \\ 89.90 \\ \end{array} \begin{array}{c} 2.99 \\ Ca \\ 2.49 \\ \end{array} \begin{array}{c} Cl \\ 2.49 \\ \end{array}$	$\sum_{Na}^{2.90} \frac{Si}{78.67} \frac{2.87}{Ca} \frac{104.18}{2.48} Cl$	2.82 Si 2.98 ^{152.79} Br Na _{91.37} Ca _{2.65}	$\frac{2.89}{Na} \underbrace{\frac{Si}{79.16}}_{79.16} \underbrace{\frac{2.85}{Ca}}_{2.64} Br$
3 27 Si 2.17 177.90	180.0	(C_1)	(C ₁) 180.00
K 86.84 Be	$K \xrightarrow{3.04} \underbrace{Si}_{179,99} \xrightarrow{2.11} Be_{1.39} F$	K 84.55 Be	$\mathbf{K}_{\underline{3.05}} \underbrace{\mathbf{\ddot{Si}}}_{180.00} \underbrace{\overset{2.10}{\mathbf{Be}}}_{\underline{2.83}} \mathbf{Cl}$
(C ₁)	(C ₁) 180.00	(C ₁)	(C [*] _V) 179.82
3.27 Si 2.15 100.18 K 83.36 Be 2.00 Br	$\mathbf{K} \underbrace{\overset{3.06}{\underbrace{\mathbf{Si}}}}_{180.00} \underbrace{\overset{2.10}{\underbrace{\mathbf{Be}}}}_{1.99} \mathbf{Br}$	K 90.95 Mg	$\mathbf{K} \underbrace{\overset{3.06}{\underbrace{\mathbf{Si}}}}_{179.57} \underbrace{\overset{2.51}{\underbrace{\mathbf{Mg}}}}_{1.81} \mathbf{F}$
(C ₁)	(C [*] _V)	(C ₁)	(C ₁)
3.29 Si 2.58 179.69 K 90.43 Mg	$\mathbf{K} \underbrace{\overset{3.06}{\underbrace{\text{Si}}}}_{180.00} \underbrace{\overset{2.51}{\underbrace{\text{Mg}}}}_{2.25} \mathbf{Cl}$	K ^{3.29} Si ^{2.58} ^{179.96} Mg ^{2.41} Pr	$\mathbf{K} \underbrace{\overset{3.06}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}{\overset{\mathbf{i}}}}}}}}}}$
(C ₁)	(C* _V)	(C ₁)	(C* _V)
$\begin{array}{c} 3.25 \\ \mathbf{K} \\ 98.46 \\ 98.46 \\ \mathbf{Ca} \\ 2.01 \\ \end{array} \mathbf{F}$	$\mathbf{K} \xrightarrow{3.09} \underbrace{\mathbf{Si}}_{178.64} \xrightarrow{168.55} \mathbf{F}$	K 2.88 2.88 2.89 2.81 2.91	$\mathbf{K}_{\underline{3.10}} \underbrace{{\text{Si}}}_{178,40} \underbrace{{\text{Ca}}}_{2.51} \underbrace{{\text{Ca}}}_{2.51} \mathbf{Cl}$
(C ₁)	(C ₁)	SI (C ₁)	(C ₁)
80.80 3.27 Br ^{2.75} K 3.92 3.92 3.92 2.91	$\mathbf{K}^{3.21} \underbrace{\mathbf{Si}}_{85.21} \underbrace{\mathbf{Si}}_{\mathbf{Ca}} \underbrace{2.97}_{\mathbf{Ca}} \underbrace{\mathbf{Br}}_{2.66}$		
SI (C ₁)	(C ₁)		

Figure 1. Geometrical parameters of M–Si–M^{\prime}–X with bond lengths (Å) and bond angles (°) optimized at B3LYP/6-311++G^{**} (M = Li, Na, K and M^{\prime} = Be, Mg, Ca, and X = F, Cl and Br).

	Dipole	Vibrational zero	Relative energie	es	
Structures	moments (D)	point energies	B3LYP	QCISD(T)	CCSD(T)
	B3LYP	(kcal/mol)	/6-311++G**	/6-311++G**	/6-311++G**
	/6-311++G**	B3LYP/6-311++G**			
1_{s-Be-F}	6.11	3.73	10.33	9.10	9.11
$1_{s-Be-Cl}$	6.16	3.08	2.93	3.98	3.94
$1_{s-Be-Br}$	6.16	2.84	2.91	3.85	3.81
1_{t-Be-F}	8.42	3.90	0	0	0
$1_{t-Be-Cl}$	5.78	2.98	0	0	0
$1_{t-Be-Br}$	5.74	2.75	0	0	0
1_{s-Mg-F}	6.87	2.42	3.48	5.59	5.46
$1_{s-Mg-Cl}$	7.21	2.04	3.35	5.42	5.31
$1_{s-Mg-Br}$	7.22	1.88	3.32	5.39	5.28
1_{t-Mg-F}	6.62	2.37	0	0	0
$1_{t-Mg-Cl}$	6.87	1.98	0	0	0
$1_{t-Mg-Br}$	6.89	1.82	0	0	0
1_{s-Ca-F}	5.60	2.02	5.08	9.50	9.48
$1_{s-Ca-Cl}$	6.21	1.64	4.94	8.64	8.60
$1_{s-Ca-Br}$	6.43	1.50	4.94	8.30	8.25
1_{t-Ca-F}	5.14	1.92	0	0	0
$1_{t-Ca-Cl}$	5.79	1.53	0	0	0
$1_{t-Ca-Br}$	5.66	1.37	0	0	0

Table 1. Relative energies (kcal/mol) for silylenes (Series 1), singlet (1s–Be–X, 1s–Mg–X, and 1s–Ca–X), and triplet states (1t–Be–X, 1t–Mg–X, and 1t–Ca–X), where X = F, Cl, Br, calculated at two levels of theory; along with B3LYP/6-311++G^{**} computed dipole moments (D) and vibrational zero point energies (kcal/mol).

(-5.60 kcal/mol, -9.92 kcal/mol) > ΔE_{S-T} , $_{Ca-Cl}$ (-5.56 kcal/mol, -8.81 kcal/mol) > ΔE_{S-T} , $_{Ca-Br}$ (-5.56 kcal/mol, -8.80 kcal/mol) (Table 2). Evidently, fluorine has an extraordinary effect on ΔE_{S-T} , $_{Mg-F}$, which is due to the fair orbital size difference between Na and Mg. On the other hand, Na and Mg are in the same period and their ionic radii are approximately near to each other (Na⁺ = 1.16 Å, Mg²⁺ = 0.85 Å).⁴² It could be a reasonable reason for stability of ΔE_{S-T} , $_{Be-F}$ in Li–Si–Be–F. Interestingly, ΔE_{S-T} , $_{Mg-F}$ in Na–Si–Mg–F and ΔE_{S-T} , $_{Ca-F}$ in Li–Si–Be–F show fair triplet stability structures. In Series 3, singlet–triplet energy gaps have a manifest consistency trend at DFT and single-point levels of theory (Table 3). Clearly, these compounds with the highest electropositive substituent (M = K), have the most stable triplets relative to 1t–X and 2t–X. Energy gaps between 3s–M'–X and 3t–M'–X, calculated at B3LYP/6-311++G^{**} and QCISD(T)/6-311++G^{**} levels of theory, appear as: ΔE_{S-T} , $_{Be-F}$ (-11.48 kcal/mol, -12.29 kcal/mol) > ΔE_{S-T} , $_{Mg-F}$ (-11.91 kcal/mol, -12.23 kcal/mol) > ΔE_{S-T} , $_{Mg-Cl}$ (-11.63 kcal/mol, -12.18 kcal/mol) > ΔE_{S-T} , $_{Mg-F}$ (-11.58 kcal/mol, -12.09 kcal/mol) and ΔE_{S-T} , $_{Ca-Cl}$ (-2.41 kcal/mol, -7.88 kcal/mol) (Table 3). Evidently,

	Dipole	Vibrational zero	Relative energie	es	
Structures	moments (D)	point energies	B3LYP	QCISD(T)	CCSD(T)
	B3LYP	(kcal/mol)	/6-311++G**	/6-311++G**	/6-311++G**
	/6-311++G**	B3LYP/6-311++G**			
2_{s-Be-F}	6.26	3.43	7.33	8.26	8.26
$2_{s-Be-Cl}$	6.41	2.78	7.30	8.11	8.14
$2_{s-Be-Br}$	6.46	2.53	7.09	7.84	7.85
2_{t-Be-F}	9.89	3.51	0	0	0
$2_{t-Be-Cl}$	10.23	2.87	0	0	0
$2_{t-Be-Br}$	10.39	2.63	0	0	0
2_{s-Mg-F}	7.09	2.11	7.53	8.37	8.40
$2_{s-Mg-Cl}$	7.45	1.74	1.63	5.17	5.03
$2_{s-Mg-Br}$	7.46	1.56	1.63	5.17	5.03
2_{t-Mg-F}	10.87	2.18	0	0	0
$2_{t-Mg-Cl}$	8.12	1.62	0	0	0
$2_{t-Mg-Br}$	8.18	1.46	0	0	0
2_{s-Ca-F}	5.63	1.68	5.60	9.92	9.93
$2_{s-Ca-Cl}$	7.29	1.31	5.56	8.81	8.80
$2_{s-Ca-Br}$	6.95	1.19	5.56	8.80	8.80
2_{t-Ca-F}	5.54	1.60	0	0	0
$2_{t-Ca-Cl}$	6.37	1.23	0	0	0
$2_{t-Ca-Br}$	6.35	1.10	0	0	0

Table 2. Relative energies (kcal/mol) for silylenes (Series 2), singlet (2s–Be–X, 2s–Mg–X, and 2s–Ca–X), and triplet states (2t–Be–X, 2t–Mg–X, and 2t–Ca–X), where X = F, Cl, Br, calculated at two levels of theory; along with B3LYP/6-311++G^{**} computed dipole moments (D) and vibrational zero point energies (kcal/mol).

the structures with the most electronegative substituents (like Li–Si–Be–F and K–Si–Ca–F) have the smallest singlet–triplet energy gaps. The Frontier molecular orbitals for singlet and triplet states of these structures are obtained (Figure 2).

The declining trend of LUMO–HOMO energy gaps ($\Delta E_{HOMO-LUMO}$) is as follows: Series 1 \geq Series 2 > Series 3 (Table 4).

An inspection of the calculated LUMO–HOMO energy gaps ($\Delta E_{HOMO-LUMO}$) in all singlet silvlenes also seems to suggest that this parameter is dictated by the size of the angle formed by the two substituents bound to the central atom.⁴³

The magnitude of divalent bond angle is one of the considerable parameters affecting the ΔE_{S-T} .³⁰ Variations in the Li–Si–M' divalent angles of singlet 1s–X and triplet 1t–X as a function of X are negligible and in all of them the angles are bent (except in the case of triplet Li–Si–Be–F). Among our 54 silylene isomers, only two singlet structures, K–Si–Ca–Cl and K–Si–Ca–Br, undergo rearrangement upon optimization, forming rather long linkages from K to Ca (Figure 1).

In Series 2, four triplet structures are linear (Na–Si–Be–F, Na–Si–Be–Cl, Na–Si–Be–Br, and Na–Si–Mg–

Structuros	Dipole	Vibrational zero	Relative energie	es	
Structures	moments (D)	point energies	B3LYP	QCISD(T)	CCSD(T)
	B3LYP	(kcal/mol)	/6-311++G**	/6-311++G**	/6-311++G**
	/6-311++G**	B3LYP/6-311++G**			
3_{s-Be-F}	8.90	3.29	12.44	12.29	12.31
$3_{s-Be-Cl}$	9.15	2.64	11.37	11.79	11.81
$3_{s-Be-Br}$	9.23	2.40	11.18	11.41	11.44
3_{t-Be-F}	12.49	3.42	0	0	0
$3_{t-Be-Cl}$	12.98	2.80	0	0	0
$3_{t-Be-Br}$	13.21	2.54	0	0	0
3_{s-Mg-F}	9.77	1.99	11.91	12.23	12.28
$3_{s-Mg-Cl}$	10.15	1.60	11.63	12.18	12.23
$3_{s-Mg-Br}$	10.22	1.45	11.58	12.09	12.14
3_{t-Mg-F}	13.91	2.06	0	0	0
$3_{t-Mg-Cl}$	14.56	1.71	0	0	0
$3_{t-Mg-Br}$	14.68	1.55	0	0	0
3_{s-Ca-F}	8.54	1.57	14.15	13.64	13.77
$3_{s-Ca-Cl}$	3.84	1.36	9.43	8.79	8.92
$3_{s-Ca-Br}$	3.45	1.21	2.41	7.88	7.97
3_{t-Ca-F}	10.12	1.54	0	0	0
$3_{t-Ca-Cl}$	12.17	1.25	0	0	0
$3_{t-Ca-Br}$	11.85	0.99	0	0	0

Table 3. Relative energies (kcal/mol) for silylenes (Series 3), singlet (3s–Be–X, 3s–Mg–X, and 3s–Ca–X), and triplet states (3t–Be–X, 3t–Mg–X, and 3t–Ca–X), where X = F, Cl, Br, calculated at two levels of theory; along with B3LYP/6-311++G^{**} computed dipole moments (D) and vibrational zero point energies (kcal/mol).

F) and the others are bent. In all compounds of these structures, the Si-M'-X bond angle is bent to a degree that is (except in the case of one triplet) a function of the atomic size of X: Br \approx Cl > F.

All compounds with 3t-X structures are linear, which confirms the stability of the triplet states for these structures with M = K relative to the others (except in the case of one triplet).

Although the Si–M' bond length does vary significantly across this series of structures, the M'–X bond lengthens notably as the size of the halogen substituent increases (Br > Cl > F). Most of the species have C_1 point groups, except for those that have $C \propto v$ point groups (Figure 1).

Isodesmic reactions 1, 2, and 3 are employed to evaluate the sum of electronic and thermal enthalpies of silvlenes with different substituents. Clearly, every triplet silvlene (1t–X, 2t–X) with more electronegative β -substituents appears slightly more stable than its corresponding triplets with less electronegative ones (Table 5).

ASHENAGAR and KASSAEE/Turk J Chem

Figure 2. Shapes of selected molecular orbitals for Li–Si–Be–F and K–Si–Ca–F singlet and triplet silylenes.

Structures 1	$\Delta E_{HOMO-LUMO}$	Structures 2	$\Delta E_{HOMO-LUMO}$	Structures 3	$\Delta E_{HOMO-LUMO}$
1_{s-Be-F}	36.39	2_{s-Be-F}	35.14	3_{s-Be-F}	28.86
$1_{s-Be-Cl}$	36.39	$2_{s-Be-Cl}$	34.51	$3_{s-Be-Cl}$	28.86
$1_{s-Be-Br}$	36.39	$2_{s-Be-Br}$	34.51	$3_{s-Be-Br}$	28.86
1_{s-Mg-F}	35.76	2_{s-Mg-F}	34.51	3_{s-Mg-F}	28.23
$1_{s-Mg-Cl}$	36.39	$2_{s-Mg-Cl}$	34.51	$3_{s-Mg-Cl}$	28.86
$1_{s-Mg-Br}$	36.39	$2_{s-Mg-Br}$	34.51	$3_{s-Mg-Br}$	28.23
1_{s-Ca-F}	34.51	2_{s-Ca-F}	33.88	3_{s-Ca-F}	28.23
$1_{s-Ca-Cl}$	34.51	$2_{s-Ca-Cl}$	33.25	$3_{s-Ca-Cl}$	25.10
$1_{s-Ca-Br}$	34.51	$2_{s-Ca-Br}$	33.88	$3_{s-Ca-Br}$	25.10

Table 4. LUMO-HOMO energy gaps ($\Delta E_{HOMO-LUMO}$) for singlet silvlenes, at B3LYP/6-311++G**.

The stability of a reactive species requires its resistance to isomerization, which necessitates identifying and calculating energy barriers for such processes.⁴⁴ One of the most important reactions of silylenes is insertion into the hydrogen molecule. Accordingly, the insertion reactions of hydrogen into silylenes afford the dihydrido-silane (Scheme 2).

In close analogy, every singlet silven can undergo an intramolecular H–H bond activation.¹⁷ Table 6 shows the heats of hydrogenation (ΔH_H) and energy barriers of silven hydrogenation. Strikingly, 1s–Ca– Br, 2s–Ca–Br, and 3s–Ca–F are the most capable of activating dihydrogen, likely due to their relatively small singlet-triplet energy gaps.

Iso doomic reactions	Х	Relative therr	nal energies
isodesinic reactions		$\Delta E_{\rm S}^{\rm a}$	$\Delta E_{\mathrm{T}}{}^{\mathrm{b}}$
ң да н н	F	-8.4	-12.8
	Cl	-9.4	-17.4
(1) Li BeH Li BeX Si + Li Si BeH	Br	-9.9	-24.5
<u>ң</u> н	F	-9.7	22.7
	Cl	-9.7	13.4
(1) LY MgH LY MgX LY MgX LY MgH	Br	-9.8	12.2
н н ң н	F	-7.1	-1.7
$(1) I := Si C_{A}I + I := Si C_{A}X \longrightarrow Si C_{A}X$	Cl	-5.9	-9.5
Li Car Li Car Li Car	Br	-5.7	-9.7
н н	F	-8.8	-4.9
$(2) y Si P_{AH} + y_{A} Si P_{AY} \rightarrow Si Si + Si$	Cl	-9.6	-6.0
Na' BeH Na' BeX Na Si BeH	Br	-10.1	-10.7
н н п	F	-10.0	-9.9
S_{i} + S_{i} + S_{i} · · ·	Cl	-10.0	-4.1
(2) Na MgH Na MgX Si + Si MgH MgH	Br	-10.1	-4.1
н н п	F	-10.3	-8.6
	Cl	-5.9	-8.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br	-5.7	-8.9
н н н	F	-7.5	-10.1
	Cl	-9.2	17.7
(3) K' 'BeH K' 'BeX K' BeX BeH	Br	-9.7	-2.1
н н н	F	-9.3	-12.0
(3) K Si MoH + K Si MoX - Si + (3)	Cl	-9.4	-2-2
MgX K MgH	Br	-9.5	-3.8
н н н	F	-11.1	-22.5
(3) K Si Gau $+$ K Si Gau $+$ Ci	Cl	-15.1	-19.6
K Cax K CaH	Br	-14.3	-12.1

Table 5. Isodesmic reactions showing the relative thermal energies of singlet ($\Delta E_{\mathbf{S}}$) and triplet (ΔE_T) silylenes, in kcal/mol, at B3LYP/6-311 ++G** level, where X = F, Cl, Br.

 a Singlet germylenes are employed in both sides of the isodesmic reactions.

^b Triplet germylenes are employed in both sides of the isodesmic reactions.

In 2010, Nyíri studied hydrogen insertion into SiH₂. The reaction proceeded via a concerted transition state in which the vacant *p*-orbital and the lone pair on the silicon atom interacted with the σ -bonding and σ^* -antibonding orbitals of hydrogen, respectively, forming a three-membered ring structure.⁴⁵ In contrast, our reactions indicate a surprisingly different character. In the transition state, both or one of the hydrogen atoms interact with the silicon center. Interestingly, the ionic bond pair electron of silicon center (attached to M) is more active than its free lone pair and interacts with one of the hydrogens. Hence, at the same time, the Si–M

Scheme 2. Direct insertion of hydrogen into M–Si–M'–X species, where M = Li, Na, K; M' = Be, Mg, Ca; and X = F, Cl, Br.

Table 6. Heats of hydrogenation (ΔH_H^a) and hydrogen activation barrier of M–Si–M'–X species $(\Delta E_a^{\neq} / \text{kcal mol}^{-1})$ at B3LYP/6-311++G** level (M = Li, Na, K; M' = Be, Mg, Ca; and X = F, Cl, Br).

Series 1	ΔH_H^a	ΔE_a^{\neq}	Series 2	ΔH_H^a	ΔE_a^{\neq}	Series 3	ΔH_H^a	ΔE_a^{\neq}
1_{s-Be-F}	-54.96	-28.61	2_{s-Be-F}	-54.08	-41.39	3_{s-Be-F}	-55.57	-31.53
$1_{s-Be-Cl}$	-53.94	-33.41	$2_{s-Be-Cl}$	-53.19	-45.33	$3_{s-Be-Cl}$	-54.42	-34.13
$1_{s-Be-Br}$	-53.44	-34.82	$2_{s-Be-Br}$	-52.75	-45.37	$3_{s-Be-Br}$	-53.89	-35.15
1_{s-Mg-F}	-54.32	-41.37	2_{s-Mg-F}	-54.45	-45.16	3_{s-Mg-F}	-55.50	-51.36
$1_{s-Mg-Cl}$	-54.28	-41.44	$2_{s-Mg-Cl}$	-53.39	-33.08	$3_{s-Mg-Cl}$	-55.44	-51.45
$1_{s-Mg-Br}$	-54.21	-41.35	$2_{s-Mg-Br}$	-53.33	-42.94	$3_{s-Mg-Br}$	-55.33	-51.58
1_{s-Ca-F}	-56.27	-47.31	2_{s-Ca-F}	-53.88	-49.00	3_{s-Ca-F}	-55.80	-54.57
$1_{s-Ca-Cl}$	-57.45	-50.60	$2_{s-Ca-Cl}$	-58.25	-48.12	$3_{s-Ca-Cl}$	-54.81	-49.80
$1_{s-Ca-Br}$	-57.67	-50.69	$2_{s-Ca-Br}$	-58.45	-50.75	$3_{s-Ca-Br}$	-55.56	-50.20
anc:M'V	п	UCIU M	/v					

 $^{a}MSiM'X + H_{2} \longrightarrow HSiH_{i}M'X$

bond splits and the new Si–H bond forms. The results unambiguously support that one or two new Si–H bonds form in the transition state while the Si–M bond splits. Generally, the mechanisms of all the reactions are very similar to each other.

Finally, the NBO atomic charges are computed for singlet and triplet states of silylene species (Table 7, Supplementary information). Clearly, halogens have some effects on NBO atomic charges of triplet silicon atoms with the trend of: M-Si-M'-F > M-Si-M'-Cl > M-Si-M'-Br, showing the influence of electronegative substituents on the stability of triplet silylenes (Table 7).

The results show that charges on all linear triplet silylenes are less than those of the corresponding singlet species (Table 7). In fact, silicon atoms in singlets tend to have their nonbonding electrons in the atomic orbitals with higher s-character. Consequently, electropositive substituents transfer charge from their corresponding Si–M and Si–M' bonding orbitals with higher p-character to the partially populated s-type orbital on the silicon atom.

The results also show that more linear molecules (all triplet species) have lower *p*-character than their corresponding singlets (Table 8). For example, Na–Si–Be–Br (t) with lower *p*-character (s¹ p¹) is more linear than its corresponding singlet (s¹ p^{5.54} d^{0.01}). Consequently, the *s*-character may be held responsible for the choice of the silicon ground state multiplicity (Table 8).

Furthermore, the stabilization energies for the intermolecular interactions $(LP_X \rightarrow \sigma^*{}_{Si-M'})$ are calculated using NBO analysis. Interestingly, except for species with M' = Be, stabilization energies trends fall in the order of: M–Si–M'–Cl > M–Si–M'–Br > M–Si–M'–F. However, in species with M' = Be, the trend reduces as a function of electronegativity of halogens (M–Si–M'–Br > M–Si–M'–Cl > M–Si–M'–F) (Table 9).

Structures	Si	F	Structures	Si	Cl	Structures	Si	Br
$\mathbf{Li}{-}\mathbf{Si}{-}\mathbf{Be}{-}\mathbf{F}\left(\mathbf{s}\right)$	-0.55	-0.72	$Li-Si-Be-Cl\left(s ight)$	-0.45	-0.47	$Li-Si-Be-Br\left(s ight)$	-0.43	-0.41
$\mathbf{Li-Si-Be-F}\left(\mathbf{t} ight)$	-0.96	-0.71	Li-Si-Be-Cl(t)	-0.49	-0.47	Li-Si-Be-Br(t)	-0.84	-0.41
$\mathbf{Na-Si-Be-F}\left(\mathbf{s}\right)$	-0.97	-0.71	Na-Si-Be-Cl(s)	-0.48	-0.48	Na-Si-Be-Br(s)	-0.46	-0.42
$\mathbf{Na-Si-Be-F}\left(\mathbf{t}\right)$	-0.99	-0.72	$Na-Si-Be-Cl\left(t ight)$	-0.88	-0.48	$Na-Si-Be-Br\left(t ight)$	-0.86	-0.42
$\mathbf{K}-\mathbf{Si}-\mathbf{Be}-\mathbf{F}\left(\mathbf{s} ight)$	-0.67	-0.67	K-Si-Be-Cl(s)	-0.55	-0.50	$K-Si-Be-Br\left(s ight)$	-0.53	-0.44
$\mathbf{K}-\mathbf{Si}-\mathbf{Be}-\mathbf{F}\left(\mathbf{t} ight)$	-1.02	-0.72	K-Si-Be-Cl(t)	-0.91	-0.49	K-Si-Be-Br(t)	-0.89	-0.44
$\mathbf{Li}{-}\mathbf{Si}{-}\mathbf{Mg}{-}\mathbf{F}\left(\mathbf{s}\right)$	-0.78	-0.87	$Li-Si-Mg-Cl\left(s ight)$	-0.71	-0.71	$Li-Si-Mg-Br\left(s ight)$	-0.70	-0.66
$\boxed{\mathbf{Li}{-}\mathbf{Si}{-}\mathbf{Mg}{-}\mathbf{F}\left(\mathbf{t}\right)}$	-0.77	-0.87	Li-Si-Mg-Cl(t)	-0.71	-0.71	$Li-Si-Mg-Br\left(t ight)$	-0.69	-0.66
Na-Si-Mg-F(s)	-0.82	-0.87	Na-Si-Mg-Cl(s)	-0.74	-0.72	$Na-Si-Mg-Br\left(s ight)$	-0.73	-0.67
$\mathbf{Na-Si-Mg-F}\left(\mathbf{t}\right)$	-1.28	-0.87	Na-Si-Mg-Cl(t)	-0.77	-0.72	Na-Si-Mg-Br(t)	-0.76	-0.67
$\mathbf{K}-\mathbf{Si}-\mathbf{Mg}-\mathbf{F}\left(\mathbf{s} ight)$	-0.91	-0.87	$K-Si-Mg-Cl\left(s ight)$	-0.82	-0.73	$K-Si-Mg-Br\left(s ight)$	-0.80	-0.68
$\mathbf{K-Si-Mg-F}\left(\mathbf{t}\right)$	-1.28	-0.87	$K-Si-Mg-Cl\left(t ight)$	-1.19	-0.73	K-Si-Mg-Br(t)	-1.18	-0.68
$\mathbf{Li}{-}\mathbf{Si}{-}\mathbf{Ca}{-}\mathbf{F}\left(\mathbf{s}\right)$	-0.99	-0.86	$Li-Si-Ca-Cl\left(s ight)$	-0.94	-0.79	$Li-Si-Ca-Br\left(s ight)$	-0.93	-0.77
$\mathbf{Li}{-}\mathbf{Si}{-}\mathbf{Ca}{-}\mathbf{F}\left(\mathbf{t}\right)$	-0.92	-0.86	$Li-Si-Ca-Cl\left(t ight)$	-0.90	-0.78	$Li-Si-Ca-Br\left(t ight)$	-0.90	-0.76
Na-Si-Ca-F(s)	-1.04	-0.86	Na-Si-Ca-Cl(s)	-0.97	-0.79	$Na-Si-Ca-Br\left(s ight)$	-0.97	-0.77
Na-Si-Ca-F(t)	-0.97	-0.86	$Na-Si-Ca-Cl\left(t ight)$	-0.93	-0.78	$Na-Si-Ca-Br\left(t ight)$	-0.93	-0.76
$\mathbf{K}-\mathbf{Si}-\mathbf{Ca}-\mathbf{F}\left(\mathbf{s} ight)$	-1.15	-0.86	$K-Si-Ca-Cl\left(s ight)$	-0.91	-0.83	$K-Si-Ca-Br\left(s ight)$	-0.91	-0.80
$\mathbf{K} - \overline{\mathbf{Si} - \mathbf{Ca} - \mathbf{F}(\mathbf{t})}$	-1.53	-0.87	$K - \overline{Si - Ca - Cl}(t)$	-1.46	-0.81	$K - \overline{Si - Ca - Br}(t)$	-0.99	-0.77

Table 7. The B3LYP/6-311++G^{**} calculated NBO atomic charges for M–Si–M'–X species, where M = Li, Na, K; M' = Be, Mg, Ca; and X = F, Cl, Br.

Evidently, the structures with the most electronegative substituent have the lowest stabilization energies and singlet-triplet energy gaps. It may be due to the better hyperconjugation effect of the F group attached to the M' center ($LP_F \rightarrow \sigma^*_{Si-M'}$) than Cl and Br. As we know F⁻ is a better base than Cl⁻ and Br⁻. Clearly, fluorine substituent destabilizes M' atoms σ orbitals and the triplets with fluorine substituents appear more stable than the triplets with chlorine and bromine substituents.

4. Conclusion

The effect of several first and second group di-alkaline metal substituents on the singlet-triplet energy separating, multiplicity, and relative stabilities of divalent silylenes with M-Si-M'-X formulation is considered by using B3LYP/6-311++G^{**} as well as the ab initio method QCISD(T)/6-311++G^{**} and CCSD(T) /6-311++G^{**} levels of theory, where M = Li, Na, K; M' = Be, Mg, Ca; and X = F, Cl, Br. Calculations pointed out electropositive substituents must be effective in reduction of the promotion energy and singlet-triplet energy separating to the point that a triplet ground state can be obtained at a reasonable bond angle. Moreover our calculations confirm that K-Si-Ca-X shows the most promise for its lower singlet-triplet energy difference and narrower band gap ($\Delta E_{HOMO-LUMO}$). Furthermore, we find that every triplet alkali-silylene with more electronegative β -substituents appears slightly more stable than its corresponding triplet with less electronegative substituents.

Structures	Bond		Structures	Bond		Structures	Bond	
	$\sigma_M - Si$	$\sigma_{Si}-M'$		$\sigma_M - Si$	$\sigma_{Si} - M'$		$\sigma_M - Si$	$\sigma_{Si}-M'$
Li-Si-Be-F(s)	$s^{1}p^{47.80}d^{0.11}$	${ m s}^{1}{ m p}^{8.00}{ m d}^{0.02}$	$_{K}-Si-Be-F\left(s ight)$	${ m s}^{1}{ m p}^{99.99}{ m d}^{0.20}$	${ m s}^{1}{ m p}^{6.88}{ m d}^{0.02}$	$_{K}-Si-Mg-Cl(s)$	$s^{1}p^{99.12}d^{0.12}$	${ m s}^{1}{ m p}^{11.89}{ m d}^{0.02}$
Li-Si-Be-F(t)	1	${ m s}^{1}{ m p}^{1.00}{ m d}^{0.00}$	$_{K}-Si-Be-F\left(t ight)$		${ m s}^{1}{ m p}^{4.36}{ m d}^{0.00}$	$_{K}-Si-Mg-Cl(t)$		${ m s}^{1}{ m p}^{6.12}{ m d}^{0.00}$
Na-Si-Be-F(s)	$s^{1}p^{75.87}d^{0.12}$	${ m s}^{1}{ m p}^{7.44}{ m d}^{0.02}$	$_{K}-Si-Be-Cl(s)$	${ m s}^{1}{ m p}^{99.99}{ m d}^{0.27}$	${ m s}^{1}{ m p}^{5.36}{ m d}^{0.01}$	$_{K}-Si-Mg-Br\left(s ight)$	${ m s}^{1}{ m p}^{99.99}{ m d}^{0.13}$	${ m s}^{1}{ m p}^{11.49}{ m d}^{0.02}$
Na-Si-Be-F(t)		${ m s}^{1}{ m p}^{4.25}{ m d}^{0.00}$	K-Si-Be-Cl(t)		${ m s}^{1}{ m p}^{1.00}{ m d}^{0.00}$	$_{K}-Si-Mg-Br\left(t ight)$		${ m s}^{1}{ m p}^{5.91}{ m d}^{0.00}$
Na-Si-Be-Cl(s)	$s^{1}p^{99.99}d^{0.21}$	${ m s}^{1}{ m p}^{5.77}{ m d}^{0.01}$	$_{K}-Si-Be-Br\left(s ight)$	${ m s}^{1}{ m p}^{99.99}{ m d}^{0.30}$	${ m s}^{1}{ m p}^{5.04}{ m d}^{0.01}$	K-Si-Ca-F(s)	${ m s}^{1}{ m p}^{99.41}{ m d}^{0.06}$	${ m s}^{1}{ m p}^{15.86}{ m d}^{0.01}$
Na-Si-Be-Cl(t)	1	${ m s}^{1}{ m p}^{1.00}{ m d}^{0.00}$	$_{K}-Si-Be-Br\left(t ight)$		${ m s}^{1}{ m p}^{1.00}{ m d}^{0.00}$	K-Si-Ca-F(t)		$s^{1}p^{11.13}d^{0.00}$
Na-Si-Be-Br(s)	$s^{1}p^{99.99}d^{0.30}$	$s^{1}p^{5.54}d^{0.01}$	$_{K}-Si-Mg-F\left(s ight)$	$s^{1}p^{94.13}d^{0.09}$	$s^{1}p^{13.93}d^{0.02}$	K-Si-Ca-Cl(s)	$s^{1}p^{41.56}d^{0.04}$	${\rm s}^{1}{\rm p}^{30.26}{\rm d}^{0.03}$
Na-Si-Be-Br(t)	I	$s^{1}p^{1.00}d^{0.00}$	$_{K}-Si-Mg-F\left(t ight)$	l	${ m s}^{1}{ m p}^{7.05}{ m d}^{0.01}$	K-Si-Ca-Cl(t)	1	${ m s}^{1}{ m p}^{7.86}{ m d}^{0.00}$
$Na{-}Si{-}Mg{-}F\left(s\right)$	$s^{1}p^{46.34}d^{0.07}$	$s^{1}p^{16.16}d^{0.02}$	$Na{-}Si{-}Mg{-}F\left(t\right)$	-	${ m s}^{1}{ m p}^{7.14}{ m d}^{0.01}$			

$\mathbf{K};$	
Na,	
Ľ.	
Ŋ	
lets	
sing	
ng	
ondi	
dsə.	
con	
leir	
d tł	
an s	
scie	
spe	
X- /	
i-M	
N_S	
let .	
trip	
lear	
r lin	
s fo	
tion	
diza	
vbrid	
d hy	
late	
alcu	
ں *	3r).
ۍ +	G, I
÷	н Г
6-31	X =
YP/	. pu
B3L	Ja; a
he	ي. فو
H 	е, М
le 8	= B
Tabi	м, _

ASHENAGAR and KASSAEE/Turk J Chem

Table 9. Calculated second-order perturbation stabilization energies $(E^{(2)})$, for the intermolecular interactions $(LP_X \rightarrow \sigma^*{}_{Si-M'})$ using NBO analysis at the B3LYP/6-311++G** level of theory for singlet M–Si–M'–X species (M = Li, Na, K; M' = Be, Mg, Ca; and X = F, Cl, Br).

Series 1	$donor \rightarrow acceptor$	$E^{(2)}$	Series 2	donor \rightarrow acceptor	$E^{(2)}$	Series 3	donor \rightarrow acceptor	$E^{(2)}$
1_{s-Be-F}	$LP_F \to \sigma^*{}_{Si-M'}$	0.14	2_{s-Be-F}	$LP_F \to \sigma^*{}_{Si-M'}$	0.18	3_{s-Be-F}	$LP_F \to \sigma^*{}_{Si-M'}$	0.23
$1_{s-Be-Cl}$	$LP_{Cl} \to \sigma^*_{Si-M'}$	1.49	$2_{s-Be-Cl}$	$LP_{Cl} \rightarrow \sigma^*_{Si-M'}$	1.52	$3_{s-Be-Cl}$	$LP_{Cl} \rightarrow \sigma^*{}_{Si-M'}$	1.46
$1_{s-Be-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	2.69	$2_{s-Be-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	2.70	$3_{s-Be-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	2.63
1_{s-Mg-F}	$LP_F \to \sigma^*{}_{Si-M'}$	0.24	2_{s-Mg-F}	$LP_F \to \sigma^*{}_{Si-M'}$	0.21	3_{s-Mg-F}	$LP_F \to \sigma^*{}_{Si-M'}$	0.28
$1_{s-Mg-Cl}$	$LP_{Cl} \to \sigma^*_{Si-M'}$	3.44	$2_{s-Mg-Cl}$	$LP_{Cl} \rightarrow \sigma^*_{Si-M'}$	3.49	$3_{s-Mg-Cl}$	$LP_{Cl} \rightarrow \sigma^*{}_{Si-M'}$	3.72
$1_{s-Mg-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	2.70	$2_{s-Mg-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	1.68	$3_{s-Mg-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	3.57
1_{s-Ca-F}	$LP_F \to \sigma^*{}_{Si-M'}$	3.42	2_{s-Ca-F}	$LP_F \to \sigma^*{}_{Si-M'}$	3.49	3_{s-Ca-F}	$LP_F \to \sigma^*{}_{Si-M'}$	3.52
$1_{s-Ca-Cl}$	$LP_{Cl} \to \sigma^*_{Si-M'}$	—	$2_{s-Ca-Cl}$	$LP_{Cl} \rightarrow \sigma^*_{Si-M'}$	4.00	$3_{s-Ca-Cl}$	$LP_{Cl} \rightarrow \sigma^*{}_{Si-M'}$	5.84
$1_{s-Ca-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	0.57	$2_{s-Ca-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	3.57	$3_{s-Ca-Br}$	$LP_{Br} \to \sigma^*{}_{Si-M'}$	5.57

Acknowledgment

The authors wish to gratefully thank Dr Maryam Koohi for many useful discussions.

References

- 1. Schoeller, W. W.; Sundermann, A.; Reiher, M. Inorg. Chem. 1999, 38, 29-37.
- 2. Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-92.
- 3. Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109, 3479-3511.
- Sasamori, T.; Tokitoh, N. in *Encyclopedia of Inorganic Chemistry II*; King, R. B., Eds. John Wiley & Sons: Chichester, UK, 2005, pp. 1698-1740.
- Fueno, T. Eds. The Transition State: A Theoretical Approach; Gordon and Breach Science Publishers: Langhorne, PA USA, 1999, pp. 147-161.
- 6. Barden, C. J.; Schaefer, H. F. J. Chem. Phys. 2000, 112, 6515-6516.
- 7. Lee, E. P. F.; Dyke, J. M.; Wright, T. G. Chem. Phys. Lett. 2000, 326, 143-150.
- 8. Bruce, M. Chem. Rev. 1991, 91, 197-257.
- Apeloig, Y. in *The Chemistry of Organic Silicon Compounds*; Patai, S.; Rappoport, Z. Eds. Vol. 1, Wiley: New York, NY, USA, 1989, p. 57.
- 10. Vessally, E. Heteroa. Chem. 2008, 19, 245-251.
- 11. Schaefer, H. F. Science 1986, 231, 1100-1107.
- 12. Holthausen, M. C.; Koch, W.; Apeloig, Y. J. Am. Chem. Soc. 1999, 121, 2623-2624.
- 13. Sekiguchi, A.; Tanaka, T.; Ichinohe, M.; Akiyama, K.; Gaspar, P. P. J. Am. Chem. Soc. 2008, 130, 426-427.
- 14. Grev, R. S.; Schaefer, H. F.; Gaspar, P. P. J. Am. Chem. Soc. 1991, 113, 5638-5643.
- Luke, B. T.; Pople, J. A.; Krogh-Jespersen, M. B.; Apeloig, Y.; Karni, M.; Chandrasekhar, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 1986, 108, 270-284.
- 16. Kalcher, J.; Sax, A. F. J. Mol. Struct. (THEOCHEM) 1992, 253, 287-302.
- 17. Krogh-Jespersen, K. J. Am. Chem. Soc. 1985, 107, 537-543.

- 18. Colvin, M. E.; Schaefer, H. F.; Bicerano, J. J. Chem. Phys. 1985, 83, 4581-4584.
- 19. Inoue, Sh.; Ichinohe, M.; Sekiguchi, A. Organometallics 2008, 27, 1358-1360.
- Nefedov, O. M.; Egorov, M. P.; Ioffe, A. I.; Menchikov, L. G.; Zuev, P. S.; Minkin, V. I.; Simkin, Ya. B.; Glukhovtsev, M. N. Pure Appl. Chem. 1992, 64, 265-314.
- 21. Schwartz, R. L.; Davico, G. E.; Ramond, T. M.; Lineberger, W. C. J. Phys. Chem. 1999, 103, 8213-8221.
- 22. Zhu, Z.; Bally, T.; Stracener, L. L.; McMahon, R. J. J. Am. Chem. Soc. 1999, 121, 2863-2874.
- 23. Wang, Y.; Yuzawa, T.; Hamaguchi, H.; Toscano, J. P. J. Am. Chem. Soc. 1999, 121, 2875-2882.
- 24. Wang, Y.; Toscano, J. P. J. Am. Chem. Soc. 2000, 122, 4512-4513.
- 25. Gordon, M. S. Chem. Phys. Lett. 1985, 114, 348-352.
- 26. Kassaee, M. Z.; Musavi, S. M.; Ghambarian, M. J. Organomet. Chem. 2006, 691, 1845-1856.
- 27. Razuvaev, G. A.; Gribov, B. G.; Domrachev, G. A.; Salamatin, B. A. In *Metalloorganicheskie soedineniya v* elektronike (Organometallic Compounds in Electronics), Nauka: Moscow, USSR, 1972.
- Gribov, B. G.; Domrachev, G. A.; Zhuk, B. V.; Kaverin, B. S.; Kozyrkin, B. I.; Mel'nikov, V. V.; Suvorova, O. N. In Precipitation of Films and Covers by Decomposition of Metalloorganic Compounds. Moscow, USSR: Science, 1981, p. 322.
- 29. Kassaee, M. Z.; Buazar, F.; Soleimani-Amiri, S. J. Mol. Struct. (THEOCHEM) 2008, 866, 52-57.
- 30. Kendall, R. A.; Jr. Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796-6806.
- 31. Yan, Z.; Truhlar, D. G. Theor. Chem. Account. 2008, 120, 215-241.
- Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory. John Wiley and Sons: New York, NY, USA, 1986.
- 33. Becke, A. D. Phys. Rev. 1988, 38, 3098.
- 34. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- 35. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37, 785.
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; et al. *J. Comput. Chem.* **1993**, *14*, 1347-1363.
- 37. Sobolewski, A. L.; Domcke, W. J. Phys. Chem. A 2002, 106, 4158-4167.
- Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules. Oxford University Press: New York, NY, USA, 1989.
- 39. Hoffmann, R.; Schleyer, P. v. R.; Schaefer. H. F. Angew. Chem. Int. Ed. 2008, 47, 7164-7167.
- 40. Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. v. R.; Schaefer, H. F. J. Am. Chem. Soc. 1996, 118, 9908-9914.
- 41. Bundhun, A.; Abdallah, H. H.; Ramasami, P.; Schaefer, H. F. J. Phys. Chem. A 2010, 114, 13198-13212.
- 42. Ward, S. G.; Taylor, R. C. In Metal-Based Anti-Tumor Drugs; Gielen, M. F. Ed., Freund Publ.: London, UK, 1988.
- Burgert, B.; Driess, M. In Functional Molecular Silicon Compounds II. Springer International Publishing: New York, NY, USA, 2013, pp. 85-123.
- 44. Moss, R. A.; Fantina, M. E. J. Am. Chem. Soc. 1978, 100, 6788-6790.
- 45. Nyíri, K. Szilvási, T.; Veszprémi, T. Dalton Trans. 2010, 39, 9347-9352.

Supplementary Information

for

New triplet silylenes M-Si-M'-X along with some unusual cyclic forms (M = Li,

Na, and K; M' = Be, Mg, and Ca; X = F, Cl, and Br)

Samaneh ASHENAGAR¹, Mohamad Zaman KASSAEE^{1,2,*}

¹Department of Chemistry, Tarbiat Modares University, Tehran, Iran

²Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA

*Correspondence: mohamad.z.kassaee@vanderbilt.edu

Contents	Page
Table S1. Cartesian coordinates for all calculated structures.	27
Figure S1. Shapes of selected molecular orbitals for singlet silylenes (Series 1).	81
Figure S2. Shapes of selected molecular orbitals for singlet silylenes (Series 2).	83
Figure S3. Shapes of selected molecular orbitals for singlet silylenes (Series 3).	85

Table S1. B3LYP/6-311++G** calculated xyz coordinates for structures studied in this work

B3LYP/6-311++G**.

Li-Si-Be-F(s)

HF = -411.6886871 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 96.7254$

Center	Atomic	Ato	omic	Coordinate	s (Ang	gstroms)
Numb	er Nu	mber	Туре	Х	Y	Z
 1	14	0	1.339483	-0.446019	∂ _0.	000003
2	4	0	-0.814493	-0.10345	7 0.0	000005
3	3	0	1.443268	2.074694	0.0	00002
4	9	0	-2.202733	0.048223	3 0.0	000002

Li-Si-Be-F(t)

HF = -411.7053947 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 54.2867$

Center	Atomic	e Ato	omic	Coordina	ates (Ang	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Z
1	4	0	-1.011933	-0.000	068 0.0)00064
2	3	0	3.445948	0.0006	68 0.0	00006
3	9	0	-2.404521	0.0001	68 -0.0	000016
4	14	0	1.096470	-0.0002	232 -0.0	000009

Li-Si-Mg-F(s)

HF = -597.0246238 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 78.4841$

Center	Atomi	c Ato	omic	Coordinates (Angstroms)			
Numl	ber Nu	umber	Туре	Х	Y	Ζ	
1	12	0	-0.74187	0 –0.083	468 –0.	000162	
2	3	0	2.03940	6 2.0816	513 0.0	00010	
3	9	0	-2.54031	5 0.098	439 0.0	00127	
4	14	0	1.83193	3 -0.437	798 0.0	000055	

Li-Si-Mg-F(t)

HF = -597.0301457 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 82.3374$

Center	Atomic	Ate	omic	Coordina	ates (Ang	gstroms)
Numb	per Nu	mber	Туре	Х	Y	Z
1	12	0	-0.717842	2 -0.001	456 –0.	000135
2	3	0	1.624324	1.9906	599 0.0	00042
3	9	0	-2.523673	3 -0.038	737 0.0	000105
4	14	0	1.889585	5 -0.400	428 0.0	00039

Li-Si-Ca-F(s)

HF = -1074.5280646 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 45.7622$

Center	Atomic	Ate	omic	Coordina	ates (Ang	stroms)
Numb	ber Nur	nber	Туре	Х	Y	Ζ
	20		0.740212	0.000		256040
1	20	0	-0./49313	-0.0823	820 –0	356840
2	3	0	2.511507	2.0425	73 –0.0	20325
3	9	0	-2.554461	0.1623	322 0.4	89793
4	14	Ο	0 174401	0 422	720 0 1	00260

Li-Si-Ca-F(t)

HF = -1074.5360852 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 40.6785$

Center	Atomi	c Ate	omic	Coordina	ates (Ang	gstroms)
Num	ber N	umber	Туре	Х	Y	Ζ
1	20	0	-0.689662	2 0.0943	370 –0.	103344
2	3	0	2.092531	2.0257	766 0.1	03237
3	9	0	-2.666426	-0.147	165 0.	136225
4	14	0	2.250963	-0.474	302 0.0	037939

Na-Si-Be-F (s)

HF = -566.4710047 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 62.8602$

Center	Atomic	Ate	omic	Coordina	ates (Ang	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Ζ
1	4	0	1.30651	8 0.0643	353 0.0	00108
2	11	0	-1.89321	8 -1.146	978 –0.	000063
3	9	0	2.486682	2 -0.6820	010 0.0	000241
4	14	0	-0.48434	4 1.3212	245 -0.0	000137

Na-Si-Be-F (t)

HF = -566.4828386 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 16.0316$

 Center	Atomic	Ato	omic	Coordina	ates (Ang	stroms)
Numb	oer Nur	nber	Туре	Х	Y	Ζ
 1	4	0	1.827184	-0.0000)89 0.0	00234
2	11	0	-2.945424	0.000	369 0.0	00006
3	9	0	3.221641	0.0003	68 –0.0	00057
4	14	0	-0.278846	-0.000	501 –0.0	000035

Na–Si–Mg–F (s)

HF = -751.8067368 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 51.8068$

Center	Atomic	Ato	omic	Coordina	ates (An	gstroms)
Numb	er Nu	nber	Туре	Х	Y	Ζ
1	12	0	-1.22799	1 0.151	586 –0.	000035
2	11	0	2.271412	2 -1.322	418 0.	000003
3	9	0	-2.87971	-0.584	374 0.	000040
4	14	0	1.11912	5 1.284	781 0.0	000002

Na-Si-Mg-F (t)

HF = -751.8188336 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 25.1896$

Center	Atomic	Ato	omic	Coordin	ates (An	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Z
1	12	0	1.64538	9 –0.000	084 –0.	000001
2	11	0	-3.53320	68 -0.001	329 0.	000000
3	9	0	3.44950	2 -0.000	948 0.0	000001
4	14	0	-0.8517	31 0.001	725 0.0	000000

Na-Si-Ca-F(s)

HF = -1229.3090645 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 31.7867$

Center	Ator	mic Ato	omic	Coordi	nates (An	gstroms)
Num	ber	Number	Туре	X	Y	Z
1	20	0	-1.22962	8 –0.13	1024 –0	.354633
2	11	0	2.674654	4 1.327	7825 –0.	007910
3	9	0	-2.89807	2 0.60	6163 0.4	487809
4	14	0	1.51814	4 -1.24	5791 0.	199243

Na–Si–Ca–F (t) HF = -1229.3179579 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 30.0529$

Center Ato	omic Ato	omic (Coordinates	(Angstr	roms)
Number	Number	Туре	X	Y	Z
1 20	0	-1.028290	-0.004606	-0.073	3103
2 1	1 0	2.298781	1.480472	0.017	918
3 9) 0	-3.004745	0.282956	0.095	856
4 14	4 0	1.594422	-1.338547	0.028	733

K–Si–Be–F (s)

HF = -1004.1074171 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 47.1234$

Center	Atomic	At	omic	Coordina	tes (Ang	gstroms)
Numb	er Nu	mber	Туре	Х	Y	Ζ
1	4	0	-1.801430	-0.1612	254 0.0	00161
2	19	0	2.012349	-0.536	755 0.0	000027
3	9	0	-2.685730	-1.2483	370 –0.0	000039
4	14	0	-0.489810) 1.5770	049 -0.0	000057

K-Si-Be-F(t)

HF = -1004.1264386 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 28.9538$

Center Numl	Atomic per Nur	Atc mber	omic (Type	Coordinates X	(Angstroms) Y Z	
 1	4	0	0.000131	0.008067	2.505226	
2	19	0	-0.000138	-0.008528	-2.661271	
3	9	0	0.000203	0.012608	3.903560	
4	14	0	0.000020	0.001164	0.386514	

K-Si-Mg-F(s)

HF = -1189.4431523 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 42.0468$

Center	Atomic	Ate	omic	Coordin	ates (An	gstroms)
Num	ber Nur	nber	Туре	Х	Y	Ζ
1	12	0	1.73802	1 0.052	164 0.0	000001
2	19	0	-2.40320	2 -0.782	231 -0.	.000023
3	9	0	3.153708	3 -1.080	889 0.0	000030
4	14	0	-0.25562	28 1.711	744 0.0	000011

K-Si-Mg-F(t)

HF = -1189.4622034 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 26.3757$

Center	Atomic	e Ato	omic	Coordin	ates (Ang	gstroms)
Num	iber Nu	ımber	Туре	Х	Y	Ζ
1	12	0	2.313263	3 -0.001	755 –0.	000006
2	19	0	-3.26406	9 -0.003	3135 0.	000001
3	9	0	4.123392	2 -0.003	320 0.0	000006
4	14	0	-0.20374	0.007	894 0.0	000001

K–Si–Ca–F(s)

HF = -1666.943677 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 34.1476$

Center	Atomic	Ato	omic	Coordina	ates (Ang	gstroms)
Numb	ber Nu	nber	Туре	Х	Y	Z
 1	20	0	1.751447	0.0017	/11 -0.3	341900
2	19	0	-2.909883	-0.778	717 0.0	010173
3	9	0	3.367894	-0.884	193 0.4	70720
4	14	0	-0.718015	1.622	796 0.1	72017

K–Si–Ca–F(t)

HF = -1666.9662494 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 24.0149$

Center	Atomi	e Ato	omic	Coordin	ates (An	gstroms)
Num	ber Nu	umber	Туре	Х	Y	Z
1	20	0	2.19890	6 -0.121	323 –0.	001429
2	19	0	-3.78888	0.062	364 –0.	001093
3	9	0	4.18912	.8 0.2432	203 0.0	000417
4	14	0	-0.69225	54 -0.067	7663 0.	003257

$\textbf{Li-Si-Be-Cl}\left(s\right)$

HF = -772.0299416 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 85.1310$

Center	Atomic	Ato	omic	Coordin	ates (Ang	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Ζ
1	14	0	-2.01062	7 -0.423	469 0.	000003
2	4	0	0.138466	6 -0.145	265 0.0	000000
3	3	0	-1.94606	1 2.099	296 0.0	00000
4	17	0	1.96665.	3 0.0124	455 -0.0	000002

Li-Si-Be-Cl (t)

HF = -772.0345305 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 97.2869$

Center A	tomic At	omic	Coordina	ites (Ang	gstroms)
Number	Number	Туре	Х	Y	Z
1 1	4 0	-2.058309	-0.3570	539 –0.	000013
2	4 0	0.110328	-0.1027	0.0 0.0	000021
3	3 0	-1.548272	2 1.9847	20 0.0	000048
4 1	7 0	1.942343	-0.0315	552 -0.	000002

Li-Si-Mg-Cl(s)

HF = -957.3859687 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 68.9228$

Center	Atomic	At	omic	Coordin	nates (An	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Ζ
1	12	0	-0.13467	6 -0.12	3912 –0	.000039
2	3	0	2.59258	0 2.107	991 0.0	000035
3	17	0	-2.37291	4 0.05	8493 0.0	000047
4	14	0	2.44127	9 -0.416	529 –0.	000031
$\textbf{Li-Si-Mg-Cl}\left(t\right)$

HF = -957.391269 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 66.2104$

Center	Atomic	Ato	omic	Coordina	ates (Ang	stroms)	
Numł	ber Nun	nber	Туре	Х	Y	Ζ	
 1	12	0	0.115533	-0.006	888 0.0	00121	
2	3	0	-2.233914	1.9901	63 –0.0	00021	
3	17	0	2.359063	-0.0155	588 –0.0	000082	
4	14	0	-2.484909	-0.401	631 0.0	00000	

Li-Si-Ca-Cl (s)

HF = -1434.8856835 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 22.7857$

Center	Atomic	Ate	omic	Coordina	ates (Ang	gstroms)
Num	ber Nu	nber	Туре	Х	Y	Ζ
1	14	0	-2.738533	-0.364	100 –0.	242962
2	20	0	0.168729	-0.164	788 0.3	353230
3	3	0	-2.975188	2.103	822 0.0	62960
4	17	0	2.581791	0.1224	452 -0.2	226589

$\textbf{Li-Si-Ca-Cl}\left(t\right)$

HF = -1434.8934757 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 19.5523$

Center	Atomic	At	omic	Coordin	ates (Ang	gstroms)
Num	ber Nur	nber	Туре	Х	Y	Z
1	20	0	0.116400	0.047	409 0.1	32250
2	3	0	-2.596574	2.0568	882 -0.0)99236
3	17	0	2.593586	-0.040	994 –0.0	083053
4	14	0	-2.759230	-0.458	710 –0.	066814

Na-Si-Be-Cl (s)

HF = -926.8122095 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 52.2079$

Center	Atomic	e Ate	omic	Coordina	ates (Ang	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Ζ
1	14	0	1.336750	0 1.305	842 0.0	00192
2	4	0	-0.645016	6 0.4127	711 –0.0	000034
3	11	0	2.169671	-1.412	576 0.0	000123
4	17	0	-2.352989	-0.258	488 –0.	000229

Na-Si-Be-Cl(t)

HF = -926.8242844 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 19.2194$

Center	Ator	nic Ato	omic	Coordin	ates (Ang	gstroms)
Num	ber	Number	Туре	Х	Y	Z
1	14	0	-0.0001	09 0.005	807 0.9	993232
2	4	0	0.00012	1 -0.0063	368 –1.1	101554
3	11	0	-0.0004	03 0.021	195 3.6	666638
4	17	0	0.00032	3 -0.016	998 –2.	931297

Na-Si-Mg-Cl (s)

HF = -1112.1681373 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 44.7962$

Center	Atomic	Ato	omic	Coordina	ates (Ang	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Z
1	14	0	1.818625	-1.235	289 0.0	000022
2	12	0	-0.635467	-0.374	065 0.	000000
3	11	0	2.665396	5 1.4878	854 0.0	000002
4	17	0	-2.773794	0.318	513 –0.	000019

Na-Si-Mg-Cl (t)

HF = -1112.1706794 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 49.3786$

Center Numb	Atomic Der Nur	Ato nber	omic (Type	Coordinates X	(Ang Y	stroms) Z	
1	14	0	1.962837	-1.203405	6 0.0	00022	
2	12	0	-0.506122	-0.302392	. –0.0	000016	
3	11	0	2.234337	1.594271	0.0	00012	
4	17	0	-2.704939	0.172905	-0.0	000015	

Na–Si–Ca–Cl (s)

HF = -1589.6666626 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 15.2395$

Center Numł	Atomic Der Nur	Ato nber	omic o Type	Coordinat X	tes (Ang Y	gstroms) Z	
 1	20	0	0.651072	-0.1447	06 0.3	326417	
2	11	0	-3.225257	1.37504	49 –0.0	055097	
3	17	0	3.052711	0.28464	43 –0.2	212891	
4	14	0	-2.102835	-1.2193	11 –0.	164509	

Na-Si-Ca-Cl (t)

HF = -1589.6754919 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 11.5414$

Center	Atomic	Ate	omic	Coordin	ates (Ang	gstroms)
Num	ber Nu	mber	Туре	X	Y	Z
1	20	0	0.49680	2 -0.152	561 0.0	092853
2	11	0	-2.73078	0 1.570	552 –0.	019647
3	17	0	2.95076	6 0.2094	424 –0.0	058110
4	14	0	-2.14717	7 -1.270	361 –0.	046647

K–Si–Be–Cl (s)

HF = -1364.4491782 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 34.8948$

Center	Atomic	Ato	omic (Coordinates	(Angstroms)	
Numb	ber Nun	nber	Туре	X	Y Z	
1	4	0	-1.200307	0.479589	0.000008	
2	14	0	0.479018	1.839339	0.000022	
3	19	0	2.289750	-0.890556	-0.000015	
4	17	0	-2.671192	-0.632267	-0.000003	

$\textbf{K-Si-Be-Cl}\left(t\right)$

HF = -1364.4679056 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 26.4671$

Center	Atomic	Atc	omic (Coordina	tes (Ang	gstroms)
Num	ber Nu	mber	Туре	Х	Y	Ζ
1	4	0	0.000000	0.00000	00 -1.7	84123
2	19	0	0.000000	0.0000	00 3.3	79051
3	17	0	0.000000	0.0000	00 -3.6	521579
4	14	0	0.000000	0.0000	00 0.3	21528

K-Si-Mg-Cl(s)

HF = -1549.8048658 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 32.5639$

Center	Atomic	Ate	omic (Coordinates	(Angstroms)
Num	ber Nu	mber	Туре	X	Y Z
1	14	0	1.063307	1.788440	0.000046
2	12	0	-1.169439	0.480769	0.000001
3	19	0	2.749383	-1.040447	0.000002
4	17	0	-3.123017	-0.649347	-0.000040

$\textbf{K-Si-Mg-Cl}\left(t\right)$

HF = -1549.82 39558 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 20.7985$

 Center	Atomic	Ator	mic (Coordinate	s (An	gstroms)	
Numb	er Nu	mber	Туре	Х	Y	Z	
 1	14	0	0.000000	0.00000	0 0.8	352405	
2	12	0	0.000000	0.000000) -1.	658493	
3	19	0	0.000000	0.00000	0 3.9	916663	
4	17	0	0.000000	0.000000) -3.	908726	

K–Si–Ca–Cl(s)

HF = -2027.3102916 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 42.6300$

Center	Atomic	Ate	omic	Coordin	ates (Ang	gstroms)
Num	lber Nur	nber	Туре	Х	Y	Ζ
1	14	0	2.49840	6 0.229	852 0.0	000152
2	20	0	0.31509	6 -1.703	942 –0.	000113
3	19	0	-0.39092	2.109	766 –0.	000060
4	17	0	-1.99129	3 -0.542	2626 0.0	000074

$\textbf{K-Si-Ca-Cl}\left(t\right)$

HF = -2027.3253789 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 20.0862$

Center	Atomic	Ato	omic	Coordinat	es (Ang	gstroms)
Num	ber Nur	nber	Туре	Х	Y	Ζ
1	14	0	1.267772	0.10295	51 0.0	000229
2	20	0	-1.582795	0.22724	45 -0.0	000117
3	19	0	4.362734	-0.11828	38 -0.0	000063
4	17	0	-4.057932	-0.2199	25 0.0	000020

Li-Si-Be-Br (s)

HF = -2885.9461204 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 79.5853$

Coordinates (Angstroms) Center Atomic Atomic Х Y Number Number Туре Ζ 14 -2.747363 -0.414418 0.0000031 0 2 4 -0.598960 -0.159044 0.0000010 3 3 $-2.607069 \quad 2.107361 \quad 0.000002$ 0 4 1.390861 0.003313 -0.000001 35 0

Li-Si-Be-Br (t)

HF = -2885.950687 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 83.4106$

Center	Atom	ic Ato	mic	Coordina	ates (An	gstroms)
Num	ber N	lumber	Туре	Х	Y	Ζ
1	14	0	2.783645	-0.3530)66 –0.	000020
2	4	0	0.617984	-0.1108	898 0.0	000068
3	3	0	2.223009	1.9862	97 0.0	00050
4	35	0	-1.374628	-0.016	354 –0.	.000004

Li-Si-Mg-Br (s)

HF = -3071.308062 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 60.2667$

Coordinates (Angstroms) Center Atomic Atomic Х Y Number Number Туре Ζ 12 $-0.617243 \quad -0.147302 \quad 0.000048$ 1 0 2 3 -3.312455 2.122803 -0.0000210 3 35 1.775095 0.030368 -0.000036 0 4 -3.198860 -0.404548 0.00005314 0

Li-Si-Mg-Br (t)

HF = -3071.313317 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 58.8165$

Number Number Type X Y Z 1 12 0 -0.631050 0.000047 0.000163 2 3 0 -2.989434 1.988273 0.000005 3 35 0 1.765434 -0.008283 -0.000067 4 14 0 -3.232092 -0.405391 0.000025	Center	Atomic	Ato	omic	Coordina	ates (Ang	stroms)
1 12 0 -0.631050 0.000047 0.000163 2 3 0 -2.989434 1.988273 0.000005 3 35 0 1.765434 -0.008283 -0.000067 4 14 0 -3.232092 -0.405391 0.000025	Num	iber Nu	mber	Туре	Х	Y	Z
230-2.9894341.9882730.00000533501.765434-0.008283-0.0000674140-3.232092-0.4053910.000025	1	12	0	-0.631050) 0.000	047 0.0	00163
3 35 0 1.765434 -0.008283 -0.000067 4 14 0 -3.232092 -0.405391 0.000025	2	3	0	-2.989434	1.9882	273 0.0	00005
4 14 0 -3.232092 -0.405391 0.000025	3	35	0	1.765434	-0.0082	283 –0.0	000067
	4	14	0	-3.232092	-0.405	391 0.0	000025

Li-Si-Ca-Br (s)

HF = -3548.8078185 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 17.1636$

Coordinates (Angstroms) Center Atomic Atomic Х Y Number Number Туре Ζ 14 -3.456610 -0.341213 -0.2851981 0 2 20 -0.571387 -0.194018 0.3979980 3 3 -3.671904 2.121498 0.071640 0 4 2.023885 0.065510 -0.119489 35 0

Li-Si-Ca-Br (t)

HF = -3548.8156207 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 4.7249$

Center	Atomic	Ate	omic	Coordina	ates (Ang	gstroms)
Numb	oer Nu	mber	Туре	Х	Y	Ζ
1	14	0	3.487858	-0.4293	304 –0.	013307
2	20	0	0.616825	5 -0.002	006 0.0	023294
3	3	0	3.283312	2.0872	18 -0.0)12856
4	35	0	-2.029041	-0.006	037 –0.	006886

Na-Si-Be-Br (s)

HF = -3040.7283661 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 45.9475$

Coordinates (Angstroms) Center Atomic Atomic Х Y Number Number Туре Ζ 14 $-2.167612 \ -1.285673 \ 0.000267$ 1 0 2 4 -0.138687 -0.515129 0.0000390 3 -2.789327 1.490836 0.000193 11 0 4 $1.759541 \quad 0.104592 \quad -0.000172$ 35 0

Na-Si-Be-Br (t)

HF = -3040.7402826 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 17.7121$

Center	Atomic	Ator	nic (Coordinates	s (Ang	gstroms)	
Numb	er Nu	mber	Туре	Х	Y	Z	
 1	14	0	0.000000	0.000000	-1.9	904291	
2	4	0	0.000000	0.000000	0.1	88644	
3	11	0	0.000000	0.000000	-4.5	578759	
4	35	0	0.000000	0.000000	2.1	79195	

Na-Si-Mg-Cl (s)

HF = -3226.0902539 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 13.9891$

Center Numb	Atomic ber Nu	Atoı mber	nic (Type	Coordinates X	(Angstroms) Y Z	
1	14	0	2.650667	-1.206519	0.000031	
2	12	0	0.152374	-0.477455	0.000007	
3	11	0	3.344213	1.561221	0.000007	
4	35	0	-2.163547	0.155637	-0.000017	

Na-Si-Mg-Br (t)

HF = -3226.0927981 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 43.2760$

Center Numb	Atomic er Nu	c Ator	mic (Type	Coordinates X	(Angstroms) Y 7	
Tunio		intoer	rype	24	1 2	
1	14	0	2.748472	-1.182526	0.000031	
2	12	0	0.254706	-0.345472	0.000000	
3	11	0	2.941188	1.624103	0.000011	
4	35	0	-2.111090	0.081026	-0.000016	

Na-Si-Ca-Br (s)

HF = -3703.5888015 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 13.9891$

Coordinates (Angstroms) Center Atomic Atomic Х Y Number Number Туре Ζ 14 $-2.913207 \quad -1.133230 \quad -0.298885$ 1 0 2 20 -0.111480 -0.411768 0.4490220 3 -3.755050 1.551460 -0.005390 11 0 4 2.409144 0.200986 -0.135336 35 0

Na-Si-Ca-Br (t)

HF = -3703.5976371 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 13.9498$

Coordinates (Angstroms) Center Atomic Atomic Х Y Number Number Туре Ζ 14 $-2.909044 \quad -1.242038 \quad -0.000113$ 1 0 2 20 -0.243333 -0.206474 0.0003970 3 -3.432019 1.608058 -0.000121 11 0 4 2.381299 0.109411 -0.000144 35 0

K-Si-Be-Br (s)

HF = -3478.365586 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 29.9098$

Center	Atomic	Ate	omic	Coordinate	es (Angst	roms
Num	ber Nu	mber	Туре	Х	Y	Ζ
1	4	0	-0.370787	0.75142	3 0.000	011
2	14	0	1.453689	1.90120	8 0.000	031
3	19	0	2.869544	-1.05649	5 -0.00	0013
4	35	0	-2.096852	-0.27283	4 -0.00	0007

K-Si-Be-Br (t)

HF = -3478.3839977 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 23.1041$

Center	Atomic	Ato	mic C	Coordinate	s (An	gstroms)	
Numb	ber Nu	nber	Туре	Х	Y	Z	
1	4	0	0.000000	0.000000) 0.7	799945	
2	19	0	0.000000	0.000000) -4.	363946	
3	35	0	0.000000	0.00000	0 2.7	798745	
4	14	0	0.000000	0.000000) -1.	302919	

K–Si–Mg–Br (s)

HF = -3663.7270737 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 27.6297$

 Center	Atomic	Ato	omic (Coordinates	(Angstroms)
Numl	ber Nur	nber	Туре	X Y	Ϋ́Ζ
 1	14	0	1.995290	1.800931	0.000066
2	12	0	-0.348320	0.701561	0.000011
3	19	0	3.412657	-1.173299	0.000012
4	35	0	-2.531277	-0.323974	-0.000036

K-Si-Mg-Br (t)

HF = -3663.7460724 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 20.2012$

Center	enter Atomic At		omic (Coordinates (Angstroms)		
Num	ber Nu	mber	Туре	Х	Y	Z
1	14	0	0.000000	0.0000	00 –1.8	800172
2	12	0	0.000000	0.0000	00 0.7	12387
3	19	0	0.000000	0.0000	00 -4.8	865150
4	35	0	0.000000	0.0000	000 3.1	16903

K-Si-Ca-Br (s)

HF = -4141.2317487 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 39.3180$

Coordinates (Angstroms) Center Atomic Atomic Х Y Number Number Туре Ζ 20 0 $-0.392073 \quad -1.742749 \quad 0.000377$ 1 2 19 -0.653843 2.171805 0.000259 0 3 1.762818 -0.034209 -0.000186 35 0 -2.959583 -0.372285 -0.0004264 14 0

K-Si-Ca-Br (t)

HF = -4141.235557 (a.u.)

Minimum vibrational frequencies $(v_{min}/cm^{-1}) = 15.3970$

Center	Center Atomic		omic	Coordinates (Angstroms)		
Num	ber N	umber	Туре	Х	Y	Ζ
1	14	0	-2.23488	8 1.765	596 –0.0	000001
2	20	0	0.21022	2 0.065	466 0.0	00085
3	19	0	-3.84247	8 -1.016	6159 0.0	000014
4	35	0	2.859745	5 -0.192	018 -0.0	000056

Figure S1. Shapes of selected molecular orbitals for singlet silylenes (Series 1).

Figure S2. Shapes of selected molecular orbitals for singlet silylenes (Series 2).

Figure S3. Shapes of selected molecular orbitals for singlet silylenes (Series 3).