

Turkish Journal of Chemistry

http://journals.tubitak.gov.tr/chem/

Berat İLHAN CEYLAN^{1,*}, Ayberk YILMAZ², Olcay BÖLÜKBAŞI YALÇINKAYA², Bahri ÜLKÜSEVEN¹

¹Department of Chemistry, Faculty of Engineering, İstanbul University, İstanbul, Turkey ²Department of Physics, Faculty of Science, İstanbul University, İstanbul, Turkey

Received: 22.01.2018 • Accep	ted/Published Online: 09.04.2018	•	Final Version: 11.10.2018
------------------------------	----------------------------------	---	----------------------------------

Abstract: Cis-dioxomolybdenum(VI) chelate complexes with 5-chloro-2-hydroxybenzophenone S-methyl-4-phenylthiosemicarbazone (**L**) were synthesized in the general formula (MoO₂(L)D), where D is an odd- or even-numbered alcohol (methanol (**1**), ethanol (**2**), n-propanol (**3**), n-butanol (**4**), and allyl alcohol (**5**)). The structures of **1**–**5** were verified by elemental analysis, Fourier transform infrared (FT-IR), and ¹H NMR spectra. Complex **5** crystallizes in the monoclinic space group P21/n, and its crystalline data showed a dimeric structure formed by a pair of intermolecular hydrogen bonds with 1.92 Å. These dimers are stacked in a similar crystalline structure as a single molecule. The experimental data were compared with the theoretical results obtained by the quantum chemical calculations of the DFT/B3LYP method with LANL2DZ basis set. A detailed interpretation of the FT-IR spectra of the studied compounds was performed based on the total energy distribution. In order to investigate the electronic structures and the UV-Vis spectrum of complex **5**, time-dependent density functional theory calculation was taken into account. The interaction energies between the oddand even-numbered alcohols and remaining parts of complexes **1**–**4** were evaluated with the help of natural bonding orbital analysis. In addition, the basis set superposition error correction energies were calculated. The results were evaluated by considering the coordinated alcohols with an even number of carbon atoms to have much higher interaction energy than the next lower homologous alcohols with an odd number of carbon atoms.

Key words: Thiosemicarbazone, vibrational spectra, density functional theory, time-dependent density functional theory, basis set superposition error, natural bonding orbital

1. Introduction

Thiosemicarbazones with versatile ligand features have been involved in numerous structural analysis studies. Also, since the 1950s, thiosemicarbazones and their metal complexes have been the subject of pharmaceutical research.¹⁻⁶ Some thiosemicarbazones have been used in clinical drug trials as triapine (3-aminopyridine 2-carboxaldehyde thiosemicarbazone).^{7,8}

Molybdenum is a biologically important trace element that acts in the redox-active sites of molybdoenzymes involved in nitrogen, sulfur, or carbon metabolism.^{9–11} Some dioxomolybdenum(VI) complexes have an ability to participate in the reversible oxo-transfer process of aldehyde oxidase and xanthine dehydrogenase.^{12–14}

Dioxomolybdenum(VI) complexes formed by bidentate ligands such as O_2^{15} or N_2^{16} and polydentate ligands having donor sets $O_2 N^{17}$, $O_2 N_2^{18}$, $SO_2 N_2^{19}$, or $S_2 N_2^{20}$ can catalyze oxo-atom transfer reactions.^{21–23}

^{*}Correspondence: beril@istanbul.edu.tr

Molybdenum complexes consisting of 2-hydroxyarylidene thiosemicarbazones with $N_2 O^{24,25}$ or ONS^{26,27} donor sets are particularly preferred for biological activity tests.

This work contains the preparation, structural characterization, and theoretical calculations of five cis-dioxomolybdenum(VI) complexes with a new ligand, namely 5-chloro-2-hydroxybenzophenone S-methyl-4-phenylthiosemicarbazone (\mathbf{L}) (Figure 1).

Figure 1. 3D representation of the complexes. Alcohols: MeOH (1), EtOH (2), n-PrOH (3), n-BuOH (4), allylOH (5).

The compounds were experimentally characterized by elemental analyses, Fourier transform infrared spectroscopy (FT-IR), and ¹H NMR spectra. The molecular and crystal structures of the cis-dioxomolybdenum(VI) complex (5), which contains allyl alcohol, was studied by single-crystal X-ray diffraction technique for the first time.

Density functional theory (DFT) calculations perform well with respect to the molecular geometry and vibrational properties of organic compounds. The quantum-mechanical calculations and structural parameters of thiosemicarbazone metal complexes were reported in previous studies.^{28,29} DFT studies will not only help in definitive investigation of molecular properties and in clarifying experimental data, but will also be the base of further studies of cis-dioxomolybdenum(VI) complexes. The experimental results were compared with theoretical calculations based on the DFT technique. The electronic transitions of complex **5** were observed using the UV-Vis spectrum and calculated by time-dependent DFT. Chemical bond characteristics of complex **5** were examined by means of the natural bonding orbital (NBO).

2. Results and discussion

2.1. Some physical properties of the compounds

The thiosemicarbazone ligand was obtained as a crystalline powder, and it was soluble in alcohols and donor solvents such as dimethyl sulfoxide (DMSO). Althought complexes 1-5 have different shades of orange, these shades are indistinguishable. The complexes are in the form of fine crystals, moderately soluble in chlorinated hydrocarbons, but highly soluble in dimethyl formamide and DMSO. Despite the decrease of brightness of the crystals in the course of time, the chemical compositions of 1-5 do not change in air for several months, but if left in solution, they slowly decompose within a few days. Transformation of the complexes occurs more quickly in a warm solution, and as a result of decomposition, blackish-green substances are obtained in any case.

2.2. Spectral data

The selected, observed, and calculated wavenumbers of fundamental bands along with their total energy distribution (TED) are summarized in Table S1. The TED values, the calculated vibrational wavenumbers

of the ligand, and complex 5 wavenumbers are given in Tables S2 and S3, respectively. The atom-numbering scheme of the ligand and complex 5 are shown in Figures S1 and S2. Moreover, FT-IR spectra of the complexes are presented in Figure 2.

Figure 2. FT-IR spectra of a) ligand, b) $[MoO_2(L)MeOH]$ (1), c) $[MoO_2(L)EtOH]$ (2), d) $[MoO_2(L)PrOH]$ (3), e) $[MoO_2(L)BuOH]$ (4), f) $[MoO_2(L) allylOH]$ (5).

FT-IR spectra of the ligand and all complexes were investigated. In the FT-IR spectra of the ligand, the stretching vibrations of the N⁴H, C=N¹, and N²=C groups are clearly observed. The ν (N⁴H) band disappears in the spectra of the complexes due to the coordination of the deprotonated phenolate and N⁴ nitrogen. As a result of the Mo-N¹ bond formed in the complex, the C=N¹ stretching mode of the complexes shifts to lower frequencies, whereas the N¹-N² stretching mode of complexes shifted to higher frequencies than the ligand.^{30,31}

The N¹-N² stretching mode was assigned at 1057 cm⁻¹ for **5**, 1058 cm⁻¹ for **4**, 1055 cm⁻¹ for **3**, 1043 cm⁻¹ for **2**, and 1053 cm⁻¹ for **1**. The C-N¹ and C-N² stretching modes were assigned at 1578 and 1525 cm⁻¹ for **5**, 1569 and 1531 cm⁻¹ for **4**, 1565 and 1527 cm⁻¹ for **3**, 1597 and 1527 cm⁻¹ for **2**, and 1578 and 1523 cm⁻¹ for **1**.

Characteristic antisymmetric stretching bands $_{asym}$ (MoO₂) and symmetric stretching bands $_{sym}$ (MoO₂) were observed in the FT-IR spectra of the complexes. The ν_s and ν_{as} bands of the cis-MoO₂ group of the complexes can be observed, as strong stretching modes, at 935–949 and 864–895 cm⁻¹, respectively.^{32,33} The corresponding bands were observed at 864–939 cm⁻¹ for **5**, 895–935 cm⁻¹ for **4**, 889–936 cm⁻¹ for **3**, 887–949 cm⁻¹ for **2**, and 892–946 cm⁻¹ for **1**. The TED contributions of the MoO₂²⁺ antisymmetric and symmetric stretching modes were approximately 80%.

Bands at 699, 694, 696, 694, and 696 cm⁻¹ due to the C-S stretching modes were observed for the ligand and complexes containing allyl alcohol (5), n-butanol (4), n-propanol (3), ethanol (2), and methanol (1) as the auxiliary ligand, respectively.

The ¹H NMR spectrum of the ligand showed the expected signals arising from the protons due to the phenolic group, aromatic ring, S-methyl, and N⁴H groups.^{34–36} The deprotonation (and simultaneous coordination) of the phenolic oxygen and thioamide nitrogen (N⁴) can be checked by the ¹H NMR spectra of the complexes. The OH and N⁴H proton signals of complexes **1–5** disappear due to chelation, and the singlet-shaped peak for the S-methyl protons shifted upfield from 2.65 ppm to 1.95–1.98 ppm. After coordination of the ligand to the molybdenum center, the chemical shifts of the aromatic protons (a, b, and c) did not show a significant change.

The ¹H NMR spectra of the complexes clearly showed the proton-based signals of the coordinated alcohols (D). The shift values and peak patterns of the alcohols were as expected. ^{37,38} The chemical shifts of the hydroxyl protons of the alcohols in the spectra of complexes 1-4 were in the range of 4.12–4.32 ppm, but an equivalent proton of allyl alcohol in complex 5 had a shift of 4.69 ppm, such as the one in a similar structure. ³¹ The difference probably arises from allyl alcohol, as it is an unsaturated molecule.

The ¹³C NMR spectrum of the ligand (**L**) showed the expected chemical shift values. Upon coordination, some chemical shifts of its corresponding dioxomolybdenum(VI) complex (**5**) were observed compared to the free ligand. The remarkable shifts (about 7 ppm) are for the carbon atoms, C2 and C15, which are connected/bonded to donor nitrogen atoms (N¹ and N⁴) (Figure 3). The data are significant enough to demonstrate the coordination bonds, N¹-Mo and N⁴-Mo, and the functionality of the ON¹N⁴ donor set on the ligand backbone, considered together with deprotonated phenolic oxygen. After formation of chelate complexes, the other carbon atoms are not affected much (at only 1–2 ppm shifts), and these values indicate that the benzene rings are not distorted to a noticeable extent. Additionally, the shift values of 62.5 (CH₂), 139.8 (-CH=), and 114.0 (=CH₂) show the presence of allyl alcohol as the second ligand in the complex.

Figure 3. General formula of the complex molecule.

Consequently, the ¹H and ¹³C NMR spectra confirm the complex structure's ON¹N⁴ chelating ligand system and also the coordination of the second ligands (D).

2.3. Crystal structure of complex 5

A single crystal of complex **5**, suitable for crystal structure analysis, was obtained by recrystallization from a chloroform-allyl alcohol mixture (10:1, v:v). Complex **5** is formed by the chelation of the doubly deprotonated thiosemicarbazone with an ON^1N^4 donor set that consists of a phenoxy oxygen atom and azomethine and thioamide nitrogen atoms. Allyl alcohol (D) is weakly attached to the molybdenum center with a bond distance of 2.380(2). This bond distance was 2.3613(14) Å.³⁰ The bond distances and angles indicate the three-axis

distorted octahedral environments of the molybdenum center. In the structure, the oxo-oxygens are in the cis-position and allyl alcohol is in the trans-position to one of the oxygens (O2) (Figure 4). The double-bonded C23 and C24 atoms of the allyl moiety exhibit disorder.

Figure 4. Dimeric structure of complex 5, showing an intermolecular hydrogen bond of 1.92 Å.

Complex **5** crystallizes in the monoclinic space group P21/n with Z = 4. The crystalline structure includes an intermolecular hydrogen bond involving the hydroxyl proton of the allyl alcohol. The bond parameters are as follows: O4-H22 0.81 Å (calculated 1.0 Å), H22···· O3 1.92 Å (calculated 1.62 Å), O3-O4 2.728 Å (calculated 2.737 Å), < O4-H22··· O3 171.57° (calculated 177.119 Å), (i) 2-x , -y , 2-z. Selected torsion angles and molybdenum-centered angular values of **5** are shown in Tables 1 and 2.

Table 1. Selected torsion angles of complex 5 ($^{\circ}$).

Mo1-N3-C16-N2	-0.6(4)	C1-C2-C7-N1	-15.9(3)
Mo1-O1-C1-C2	43.7(3)	C1-C2-C7-O3	0.7(5)

O1-Mo1-O2	98.28(9)	O3-Mo1-N1	157.66(8)
O1-Mo1-O3	105.98(8)	O3-Mo1-N3	93.69(8)
O1-Mo1-O4	77.26(7)	O4-Mo1-N1	78.06(8)
O1-Mo1-N1	80.80(7)	O4-Mo1-N3	78.8(1)
O1-Mo1-N3	146.79(8)	N1-Mo1-N3	72.1(1)
O2-Mo1-O3	105.8(1)	Mo1-O4-C22	132.7(2)
O2-Mo1-O4	171.31(9)	Mo1-N1-C7	127.9(2)
O2-Mo1-N1	93.9(1)	Mo1-N1-N2	117.0(1)
O2-Mo1-N3	101.8(1)	Mo1-N3-C14	118.1(1)
O3-Mo1-O4	82.69(9)	Mo1-N3-C16	121.9(2)

Table 2. The molybdenum-centered angular values of complex 5 ($^{\circ}$).

For analogous cis-MoO₂²⁺ complexes obtained from 2-hydroxyarylidene thiosemicarbazones, a hydrogen bond (1.767 Å), which is between the hydroxy proton of the coordinated alcohol and terminal oxo-oxygen of another complex molecule, was first reported in a previous article.³¹ In the single crystal of complex 5,

an intermolecular hydrogen bond, which is shorter than the σ -coordination bonds, was 1.92 Å. The crystal structure does not contain remarkable short contacts, except the hydrogen bond. Hydrogen bonding connects two molecules consisting of a dimer, and these supramolecular-like structures are stacked in a crystalline structure resembling a single molecule (Figure 5).

Figure 5. Unit cell packing diagram of complex 5 dimers.

Mo-O1, Mo-O2, Mo-O3, Mo-O4, Mo-N1, and Mo-N3 bond lengths were 1.965 Å, 1.735 Å, 1.745 Å, 2.529 Å, 2.284 Å, and 2.076 Å, respectively. Corresponding experimental bond lengths were 1.934 Å, 1.684 Å, 1.711 Å, 2.380 Å, 2.245 Å, and 2.059 Å. N1-N2 bond lengths were 1.266 Å in the ligand and 1.408 Å in the allyl alcohol-bound molecule (this value was 1.393 Å with experiments).

O4-Mo-O2, O3-Mo-N1, O1-Mo-N3, O4-Mo-O1, O4-Mo-O3, O4-Mo-N1, O4-Mo-N3, and N2-N1-Mo bond angles were 176.94°, 154.37°, 146.05°, 100.45°, 107.31°, 97.18°, 101.18°, and 115.06°, respectively. Corresponding experimental values were 171.31°, 157.66°, 146.79°, 77.26°, 82.69°, 78.06°, 79.08°, and 117.0°. The rest of the experimental and computed molecular geometric parameters are given in Table S1 and compared. The results show that there is reasonable agreement between calculated and experimental geometric parameters.

2.4. TD-DFT

The electronic transitions of complex **5** were observed via the UV-Vis spectrum and calculated by TD-DFT/B3LYP with the LANL2DZ basis set. The lowest 45 singlet-to-singlet spin-allowed excitation states were calculated with the same functional and basis set. TD-DFT calculation in chloroform as the solvent was performed. The calculated results involving oscillator strength (f), wavelength (scaled by 0.862)³⁷, and major contributions of the most intense transitions were obtained and compared with measured experimental wavelengths listed in Table S4. Experimental absorption bands were interpreted by means of theoretical results. The experimental and calculated UV-Vis spectra are provided in Figure 6.

A 1 × 10⁻⁴ M solution of complex **5** was prepared in chloroform. Complex **5** displayed six bands in the UV-Vis spectrum. The bands at 240 and 251 nm were assigned to the $\pi \to \pi^*$ transitions. The absorption bands at 310 nm (f = 4.19) and 358 nm (f = 3.92) were associated with n $\to \pi^*$ transitions. According to results of TD-DFT calculation, the bands at 310 nm (mainly (S3-2pz) and (S3-1pz) \to (Mo1-1dyz) and (Mo1-1dx2-y2)) and 435 nm (mainly (N9-1pz) and (N9-2pz) \to (Mo1-1dyz) and (Mo1-1dx2-y2)) were attributed

Figure 6. The experimental and DFT-generated UV spectra of $[MoO_2(L)allylOH]$ (5).

to charge transfer transitions from the ligand to metal. The calculated oscillator strength values near unity represent strong transitions, while the values near 0.001 represent quantum-mechanically forbidden transitions. The most intense electronic transitions predicted by TD-DFT at 443 nm (f = 0.0406), 314 nm (f = 0.0731), and 235 nm (f = 0.1438) are consistent with the experimental data of 435 nm, 310 nm, and 251 nm.

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are the most significant orbitals in the molecules for reactivity and kinetic stability. Therefore, some parameters (ionization energy, electron affinity, global hardness, and chemical potential)³⁸ obtained from the HOMO and the LUMO were calculated by B3LYP with the LANL2DZ basis set.³⁹ The results are listed in Table S5. The atomic orbital compositions of the HOMO and LUMO are shown in Figure 7.

2.5. NBO analysis

NBO analysis is important for understanding the delocalization effect from the donor to the acceptor.³⁹ The stabilization energy E(2), derived from the interactions between the donor and acceptor orbitals, was estimated by second-order perturbation interaction energy in the NBO.^{29,30} The second-order perturbation energies E(2) (donor \rightarrow acceptor), which involve the most important delocalization energies of the ligand, methanol-, ethanol-, n-propanol-, n-butanol-, and allyl alcohol-bearing complexes, are given in Tables S6–S11, respectively. The important interaction in the ligand has a lone N2 pair with anti- π bonding C=N4. The result of the stabilization was 64.89 kcal/mol. The stabilization energies of these interactions were obtained as 11.82, 11.80, 5.92, 0.89, and 0.45 kcal/mol for n-butanol-, ethanol-, n-propanol-, allyl alcohol-, and methanol-bearing complexes, respectively.

The calculation results are compatible with the molecule including a molybdenum ion and thiosemicarbazone ligand. 40,41

The contributions of the stabilization energies for the $E \rightarrow \pi - \pi^*$ charge transfers of the ligand and relevant complexes were obtained as 455.92 kcal/mol for **L**, 521.11 kcal/mol for **4**, 519.96 kcal/mol for **2**, 560.45 kcal/mol for **5**, 274.59 kcal/mol for **3**, and 249.80 kcal/mol for **1**.

Figure 7. The MO energy levels of [MoO₂(L)allylOH] (5).

According to the NBO, the electronic arrangement of the Mo in complexes 1-5 are respectively as follows: (Kr)5S(0.22)4d(4.09)5p(0.50)5d(0.05), (Kr)5S(0.22)4d(4.07)5p(0.32)5d(0.05)6p(0.18), (Kr)5S(0.22)4d(4.07)5p(0.32)5d(0.05)6p(0.18), and (Kr)5S(0.22)4d(4.07)5p(0.32)5d(0.05)6p(0.18), with 4.81489, 4.78063, 4.78142, 4.78145, and 4.78170 valence electrons. Natural charges were 1.15860, 1.19667, 1.19600, 1.19551, and 1.19590, respectively.

The dimeric structure of complex 5 is a supramolecular-like structure formed by the hydrogen-bonding interaction between two adjacent monomers. In this structure, charge transfer has taken place.

2.6. Odd- and even-numbered alcohols as second ligands

The stabilization and interaction energies of the molybdenum-alcohol system were calculated by means of the NBO and BSSE (Figure 8). In light of the obtained results, the relationship between the carbon chain of alcohols and the Mo- $O_{alcohol}$ bond energy is discussed.

The carbon atoms of the alcohols (D) are arranged in a zig-zag manner. In odd-numbered alcohols, methyl and OH groups can be placed on the same and opposite sides. Alcohols with opposite terminal groups have higher symmetry and so the molecules result in a more regular crystal.⁴²

According to the interaction energies obtained from NBO and BSSE calculations of complexes 1–4, electron density is on the carbon atoms placed at the end of the zig-zag chain and stabilization energy of $\pi \to \pi^*$ shows a zig-zag change as a result of the different molecular weights of the alcohols with odd and even numbers of carbon atoms, as seen in Figure 8.

Carbon atoms of even-numbered alcohols are closely packed in the crystal lattice.⁴² Hence, the van der Waals forces of even-numbered alcohols are stronger than those of odd-numbered alcohols in the solid state. This is referred to as the alternation effect due to the differences in the shape, size, and packing of the alcohols, which means that alcohols with an even number of carbon atoms have much higher interaction energy than the next lower homologous alcohols with an odd number of carbon atoms. In addition, alcohols

Figure 8. Plot of number of carbon atoms versus: a) electron density on carbons atoms placed at the end of the zig-zag chain; b) interaction energies (kJ/mol) obtained from NBO calculation; c) stabilization energy of $\pi \to \pi^*$ (kJ/mol); d) interaction energies (kJ/mol) obtained from BSSE calculation.

with odd and even numbers of C atoms have different chain lengths and different molecular arrangements. The electron-withdrawing effect from the O atom to the C atoms occurs in the chain of the alcohols.^{42,43} Theoretical calculations confirmed that the electron density is much higher in the last C atom of the alcohols (Figure 8). In light of the results discussed above, it can be suggested that odd-numbered alcohols show a globular structure, while even-numbered alcohols show an oblate structure.

2.7. Conclusions

Five new cis-MoO₂ complexes (1-5) of an ON¹N⁴-chelating thiosemicarbazone were synthesized and characterized. The crystal structure of complex 5 (which has allyl alcohol as the coligand) showed a quite strong intermolecular hydrogen bond with a length of 1.92 Å, shorter than the coordination bonds in the complex molecule. Geometric calculation showed that the relatively short intermolecular connection was 1.62 Å. These interactions resulted in a dimer-resembling supramolecular structure, with the dimers packed as singular molecules in the crystal. Complexes bearing methanol, ethanol, n-propanol, n-butanol, and allyl alcohol as the coligands were also investigated with DFT, TD-DFT, and NBO methods and BSSE approximation.

NBO methods indicate that the different stabilization energies of complex molecules coordinated odd and even alcohols, probably because of globular and oblate structures of odd- and even-numbered alcohols, respectively. The calculated values are 274.59–268.05 kcal/mol for odd-numbered alcohols and 583.53–582.40 kcal/mol for even-numbered alcohols.

The differences between the experimental and theoretical values are quite large. This can be explained by the fact that the calculations assume an isolated molecule where the intermolecular interactions are absent in the gaseous phase, while the experimental results are based on interacting molecules in the solid phase.

3. Experimental

3.1. General remarks

Analytical data were obtained with a Thermo Finnigan Flash EA 1112 analyzer (Waltham, MA, USA). ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE 500 MHz spectrometer (Billerica, MA, USA). The FT-IR spectra of the complexes were measured using a PerkinElmer Spectrum 400 FT-Mid-IR with an ATR unit (Pike Technologies, Madison, WI, USA; Gladi ATR, 3 mm diameter, 45° angle of incidence). The system spectrometer operates in the 4000–600 cm⁻¹ range. The spectral resolution was 4 cm⁻¹ and 200 scans were performed. UV-Vis spectra were obtained using an ATI-Unicam UV/visible spectrophotometer (Markham, ON, Canada).

X-ray measurements were performed on a Rigaku (The Woodlands, TX, USA) RAXIS RAPID imaging plate area detector with graphite monochromated MoK α radiation ($\lambda = 0.71070$ Å). The data were corrected for Lorentzian and polarization effects. An empirical absorption correction was applied, which resulted in transmission factors ranging from 0.79 to 1.00. The molecular and crystal structures were solved by direct methods implemented in the program SIR92.⁴⁴ Hydrogen atoms were refined using the riding model and the nonhydrogen atoms were refined anisotropically. All calculations were performed with the crystal structure obtained from the crystallographic software package (Mercury v3.3; Cambridge Structural Database System, Cambridge, UK).^{45,46}

3.2. Preparation of the compounds

The yellow thiosemicarbazone ligand (L) was synthesized by the method appearing in the literature.⁴⁷ The general formula is given in Figure 5. Detailed ¹H NMR and ¹³C NMR results are shown in Figures S3–S10 and Tables S12 and S13. Elemental analysis (C, H, N, S) results were in good agreement ($\pm 0.2\%$) with the calculated values.

5-Chloro-2-hydroxobenzophenone-N⁴-phenyl-S-methyl-thiosemicarbazone (**L**): Yellow, yield (%): 45, mp 170.2 °C. For C₂₁H₁₈ ClN₃ OS (395.91 g/mol), found (calc.): C, 63.81 (63.71); H, 4.71 (4.58); N, 10.38 (10.61); S, 5.89 (6.10). ¹H NMR (DMSO-d₆, δ in ppm): 13.02 (s, 1H, OH) 8.6 (s, 1H, NH), 7.56–6.76 (doublet and triplets, 13H, aromatic rings), 2.65 (s, 3H, S-CH₃). ¹³C NMR (DMSO-d₆, δ in ppm): C1(171.24), C2(158.63), C3(119.60), C4(159.41), C5(120.56), C6(121.66), C7(163.14), C8(135.36), C9(129.88), C10–14(128.72), C11–13(123.22), C12(131.24), C15(140.61), C16–20(128.92), C17–19(129.07), C18(122.62), C21(14.57).

Complex 1 was prepared according to the literature-based method with small modifications as follows: the ligand (0.345 g, 1.0 mmol) was dissolved in absolute methanol (2.0 mL) by heating. The hot solution was treated with 2.0 mL of a methanolic solution of $MoO_2(acac)_2$ (0.325 g, 1.1 mmol). The reaction mixture was stirred at 60 °C for 5 h and then allowed to stand at room temperature overnight. The orange precipitate was collected by filtration and washed twice with 2–4 mL of cold methanol. Recrystallization of the product from methanol yielded an analytical-grade pure compound. The crystalline powder was dried for 12 h in air.^{32,48}

In order to synthesize complex 5, we used chloroform as a solvent, and the synthesis was accomplished by eliminating bound *n*-propanol according to the following procedure: 300 mg (0.05 mmol) of complex 3 (having *n*-propanol as the second ligand) was dissolved in chloroform (5 mL) and then 0.007 mL (0.1 mmol) of allyl alcohol was added to the solution. The mixture was allowed to stand at room temperature overnight. The precipitated orange solid product was filtered, recrystallized from chloroform-allyl alcohol mixture (10:1, v:v), and dried in air.

Samples 1–5 were subjected to all analyses mentioned above. Yield (%), mp (°C, uncorrected), microanalysis, and ¹H NMR and ¹³C NMR (DMSO-d₆, ppm) data of the second ligands (D) are given below. Elemental analysis (C, H, N, S) results were in good agreement ($\pm 0.4\%$) with the calculated values.

Cis-dioxo (5-chloro-2-hydroxobenzophenone-N⁴-phenyl-S-methyl-thiosemicarbazonato N,N,O)-methanol-molybdenum(VI) (1): 51, 264.7. For $C_{22}H_{20}$ ClMoN₃O₄S (553.87 g/mol), found (calc.): C, 47.46 (47.71); H, 4.07 (3.64); N, 7.53 (7.59); S, 6.08 (5.79). ¹H NMR chemical shift values of aromatic hydrogens: 6.79 (d, 1H, a), 7.45 (d-d, 1H, b), 6.99 (d, 1H, d) 7.40 (d, 2H, e, i), 7.51–7.56 (m, 3H, f, g, h), 7.33(t, 2H, j, n), 7.21 (t, 3H, k, l, m), D (CH₃OH): 4.12 (s, 1H, OH), 3.16 (s, 3H, CH₃).

Cis-dioxo (5-chloro-2-hydroxobenzophenone-N⁴-phenyl-S-methyl-thiosemicarbazonato N,N,O)-ethanolmolybdenum(VI) (**2**): 70, 260.9. For $C_{23}H_{22}$ ClMoN₃O₄S (567.90 g/mol), found (calc.): C, 49.09 (48.64); H, 4.33 (3.90); N, 7.53 (7.40); S, 5.45 (5.65). ¹H NMR for D (HOCH₂CH₃): 4.32 (s, 1H, OH), 3.41–3.45 (m, 2H, CH₂), 1.05 (t, 3H, CH₃).

Cis-dioxo (5-chloro-2-hydroxobenzophenone-N⁴-phenyl-S-methyl-thiosemicarbazonato N,N,O)-propanol-molybdenum(VI) (**3**): 25, 258.8. For $C_{24}H_{24}$ ClMoN₃O₄S (581.92 g/mol) found (calc.): C, 49.95 (49.54); H, 4.26 (4.16); N, 7.40 (7.22); S, 5.27 (5.51). ¹H NMR for D (HOCH₂CH₂CH₃): 4.32 (s, 1H, OH), 3.31–3.34 (m, 2H, CH₂), 1.38–1.42 (m, 2H, CH₂), 0.82 (t, 3H, CH₃).

Cis-dioxo (5-chloro-2-hydroxobenzophenone-N⁴-phenyl-S-methyl-thiosemicarbazonato N,N,O)-butanol-molybdenum(VI) (4): 64, 259.8. For $C_{25}H_{26}$ ClMoN₃O₄S (595.95 g/mol) found (calc.): C, 50.59 (50.38); H, 4.83 (4.40); N, 7.00 (7.05); S, 5.08 (5.38). ¹H NMR for D (HOCH₂CH₂CH₂CH₃): 4.29 (s, 1H, OH), 3.34–3.38 (m, 2H, CH₂), 1.36–1.39 (m, 2H, CH₂), 1.27–1.30 (m, 2H, CH₂), 0.85 (t, 3H, CH₃).

Cis-dioxo (5-chloro-2-hydroxobenzophenone-N⁴-phenyl-S-methyl-thiosemicarbazonato N,N,O)-2-propen-1-ol (allyl-alcohol)-molybdenum(VI) (**5**): 38, 268.5. For C₂₄H₂₂ClMoN₃O₄S (579.91 g/mol) found (calc.): C, 50.07 (49.71); H, 4.03 (3.82); N, 7.11 (7.25); S, 5.80 (5.53). UV-Vis [λ (nm)/log ε (L mol⁻¹ cm⁻¹)] 240 (4.41), 251 (4.38), 310 (4.19) 435 (3.68). ¹H NMR for D (HOCH₂CH=CH₂): 4.69 (t, 1H, OH), 3.92 (t, 2H, CH₂), 5.87–5.97 (m, 1H, -CH=), 5.01 (d-d, 2H, =CH₂); ¹³C NMR: C1(170.65), C2(151.34), C3(121.16), C4(158.45), C5(124.49), C6(125.37), C7(160.87), C8(133.02), C9(129.69), C10–14(128.89), C11–13 (127.43), C12 (131.87), C15 (133.53), C16–20 (129.18), C17–19(129.32), C18(127.07), C21(15.02), C22(62.48), C23(139.75), C24(114.02).

For X-ray diffraction analysis of complex **5**, crystallographic data and structure refinement parameters are presented in Table 3. Selected bond distances and angles of complex **5** are given in Table S3.

CCDC deposition number	971335
Chemical formula	$C_{24}H_{22}N_3O_4ClMoS$
Crystal habit	Block
Crystal size (mm)	$0.60 \times 0.40 \times 0.20 \text{ mm}$
Formula weight (g/mol)	579.91
Temperature (K)	294
Wavelength (Å)	0.71070
Crystal system	Monoclinic
Space group	$P2_1/n \ (\#14)$
Unit cell parameters	
$a,b,c({ m \AA})$	9.7723(3), 17.8540(4), 15.1974(5)
γ, β, V	90°, 101.084(2)°, 2602.10(13) Å ³
Cell volume $(Å^3)$	2602.10(13)
Z	4
Density (g/cm^3)	1.480
Absorption coefficient (mm^{-1})	0.204
F ₀₀₀	1176.00
Index ranges	$-13 \le h \le 13, -25 \le k \le 25, -21 \le l \le 21$
Reflections collected	7836
Independent reflections	6617
R _{int}	0.028
Data reflections / parameters	147206 / 332
Goodness of fit indicator	1.026
Final R indices $[I > 3\sigma(I)]$	R1 = 0.046, wR2 = 0.062
$\Delta p \max , \Delta p \min (e/Å^3)$	1.43, -0.68

Table 3. Crystal data and structure refinement details for complex 5.

a, b, c: Cell parameters, β : cell angles, V: cell size, Z: the unit number of molecules in crystal cells, R: residual.

3.3. Computational section

The optimized geometries of the monomeric and dimeric structures of complex 5 were obtained via the DFT/B3LYP method combined with the LANL2DZ basis set, employing Gaussian 09 software (Gaussian, Inc., Wallingford, CT, USA) in order to determine the change in the geometric structure of the synthesized complexes.³⁹ The same calculations were repeated for complexes 1-4. In order to evaluate the optimized geometries, the initial geometries of all complexes and the dimeric structure of complex 5 were constructed based on the crystallographic data of complex 5. The harmonic wavenumbers of the complexes were calculated by the DFT with the same functional and basis set. The selected bond lengths and angles for the calculated and experimental data are compared in Table S14. The theoretically optimized parameters were slightly less than the experimental values due to disparity of the phase of the complexes: the gaseous phase for theoretical and the solid phase for experimental analysis.

The probable donor-acceptor interactions and electronic transitions of complex 5 were examined with Gaussian 09 software, utilizing the NBO with the DFT/B3LYP and TD-DFT/B3LYP methods combined with the LANL2DZ basis set, respectively. Systematic values of calculated coordination bond energies for the odd-and even-numbered alcohols bound to the molybdenum center were suggested by means of BSSE approximation.

3.4. Supplementary data

CCDC number 971335 contains the supplementary crystallographic data for complex 5 ($C_{24}H_{22}$ ClMoN₃O₄S). The data can be obtained, free of charge, via http://www.ccdc.cam.ac.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; or email: deposit@ccdc.cam.ac.uk.

Acknowledgment

This work was supported by the Scientific Research Projects Coordination Unit of İstanbul University, Project Nos. 13495–24842–22155-22172 and T956/06102006.

References

- 1. Quenelle, D. C.; Keith, K. A.; Kern, E. R. Antivir. Res. 2006, 71, 24-30.
- 2. Ali, M. A.; Livingstone, S. E.; Quenelle, D. C.; Keith, K. A.; Kern, E. R. Coord. Chem. Rev. 1974, 13, 101-132.
- 3. Thompson, K. H.; McNeill, J. H.; Orvig, C. Chem. Rev. 1999, 99, 2561-2572.
- Bal-Demirci, T.; Çongur, G.; Erdem, A.; Erdem-Kuruca, S.; Özdemir, N.; Akgün-Dar, K.; Varol, B.; Ülküseven, B. New. J. Chem. 2015, 39, 5643-5653.
- West, D. X.; Liberta, A. E.; Padhye, S. B.; Chikate, R. C.; Sonawane, P. B.; Kumbhar, A. S; Yerande, R. G. Coord. Chem. Rev. 1993, 123, 49-71.
- 6. Garoufis, A.; Hadjikakou, S. K.; Hadjiliadis, N. Coord. Chem. Rev. 2009, 253, 1384-1397.
- Knox, J. J.; Hotte, S. J.; Kollmannsberger, C.; Winquist, E.; Fisher, B.; Eisenhauer, E. A. Invest. New Drugs 2007, 25, 471-477.
- Mortazavi, A.; Deam, D.; Ling, Y.; Harper, E. J.; Phelps, M. A.; Espinoza-Delgado, I. J.; Monk, L. P.; Otterson, G. A.; Grever, M. R.; Bekaii-Saab, T. *Invest. New Drugs* 2013, *31*, 685-695.
- 9. Mendel, R. R. Dalton Trans. 2005, 21, 3404-3409.
- 10. George, G. N.; Bray, R. C.; Cramer, S. P. Biochem. Soc. Trans. 1986, 14, 651-652.
- Temple, C. A.; George, G. N.; Hilton, J. C.; George, M. J.; Prince, R. C.; Barber, M. J.; Rajagopalan, K. V. Biochemistry 2000, 39, 4046-4052.
- 12. Fischer, B.; Enemark, J. H.; Basu, P. J. Inorg. Biochem. 1988, 72, 13-21.
- 13. Hernandez, J. A.; George, S. J.; Rubio, L. M. Biochemistry 2009, 48, 9711-9721.
- 14. Arzoumanian, H. Coord. Chem. Rev. 1998, 178-180, 191-202.
- 15. Tarushi, A.; Efthimiadou, E. K.; Christofis, P.; Psomas, G. Inorg. Chim. Acta 2007, 360, 3978-3986.
- Amarante, T. R.; Gomes, A. C.; Neves, P.; Paz, F. A. A.; Valente, A. A.; Pillinger, M.; Gonçalves, I. S. *Inorg. Chem. Commun.* 2013, *32*, 59-63.
- 17. Gupta, S.; Barik, A. K.; Pal, S.; Hazra, A.; Roy, S.; Butcher, R. J.; Kar, S. K. Polyhedron 2007, 26, 133-141.
- 18. Rayati, S.; Rafiee, N.; Wojtczak, A. Inorg. Chim. Acta 2012, 386, 27-35.

- 19. Rana, A.; Dinda, R.; Ghosh, S.; Blake, A. J. Polyhedron 2003, 22, 3075-3082.
- 20. Eierhoff, D.; Tung, W. C.; Hammerschmidt, A.; Krebs, B. Inorg. Chim. Acta 2009 362, 915-928.
- Ducrot, A.; Scattergood, B.; Coulson, B.; Perutz, R. N.; Duhme-Klair, A. K. Eur. J. Inorg. Chem. 2015, 21, 3562-3563.
- 22. Thomson, L. M.; Hall, M. B. J. Am. Chem. Soc. 2001, 123, 3995-4002.
- 23. Seo, J.; Williard, P. G.; Kim, E. Inorg. Chem. 2013, 52, 8706-8712.
- 24. Tomic, Z. D.; Kapor, A.; Zmiric, A.; Leovac, V. M.; Zobel, D.; Zaric, S. D. Inorg. Chim. Acta 2007, 360, 2197-2206.
- 25. Takjoo, R.; Ahmadi, M.; Akbari, A.; Rudbari, H. A.; Nicolo, F. J. Coord. Chem. 2012, 65, 3403-3412.
- 26. Mondal, J. U.; Zamora, J. G.; Kinon, M. D.; Schultz, F. A. Inorg. Chim. Acta 2000, 309, 147-150.
- Pramanik, N. R.; Ghosh, S.; Raychaudhuri, T. K.; Chaudhuri, S.; Drew, M. G. B.; Mandal, S. S. Coord. Chem. 2007, 60, 2177-2190.
- 28. Novak, P.; Piculjan, K.; Hrenar, T.; Biljan, T.; Meic, Z. J. Mol. Struct. 2009, 919, 66-71.
- 29. Mansour, A. M. Dalton Trans. 2014, 42, 15950-15957.
- 30. İlhan-Ceylan, B.; Deniz, N. G.; Kahraman, S.; Ulkuseven, B. Spectrochim. Acta A 2015, 141, 272-277.
- 31. İlhan-Ceylan, B.; Daşdemir, Y.; Ulkuseven, B. J. Coord. Chem. 2009, 62, 757-766.
- Hussein, M. A.; Guan, T. S.; Haque R. A.; Ahamed, M. B. K.; Majid, A. M. S. A. J. Coord. Chem. 2014, 67, 714-727.
- 33. Rajan, O. A.; Chakratvorty, A. Inorg. Chem. 1981, 20, 660-664.
- Vrdoljak, V.; Cindrić, M.; Matković-Ccalogović, D.; Prugovecki, B.; Novak, P.; Kamenar, B. Z. Anorg. Allg. Chem. 2005, 631, 928-936.
- Vrdoljak, V.; Đilović, I.; Rubčić, M.; Pavelić, S. K.; Kralj, M.; Matković-Čalogović, D.; Piantanida, I.; Novak, P.; Rožman, A.; Cindrić, M. *Eur. J. Med. Chem.* 2010, 45, 38-48.
- 36. Cindrić, M.; Vrdoljak, V.; Strukan, N.; Kamenar, B. Polyhedron 2005, 24, 369-376.
- 37. Suendo, V.; Viridi, S. ITB Journal of Science 2012, 44, 93-112.
- 38. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512-7516.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. *Gaussian 09 Revision A*; Gaussian Inc.: Wallingford, CT, USA, 2009.
- 40. Reed, A. E.; Schleyer, P. V. R. Inorg. Chem. 1988, 27, 3969-3987.
- 41. Mansour, A. M. Polyhedron 2014, 78, 10-17.
- 42. Ohtaki, H.; Yamatera, H. Structure and Dynamics of Solutions; Studies in Physical and Theoretical Chemistry; Elsevier: New York, NY, USA, 1992.
- Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N. J. Coord. Chem. 2015, 68, 2902-2922.
- Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115-119.
- Rijaku. Crystal Structure 3.5.1: Crystal Structure Analysis Package; Rigaku and Rigaku/MSC: The Woodlands, TX, USA, 2003.
- 46. Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. W. CRYSTALS Issue 10, Chemical Crystallography Laboratory, University of Oxford: Oxford, UK, 1996.
- 47. Yamazaki, C. Can. J. Chem. 1975, 53, 610-620.
- 48. İlhan-Ceylan, B.; Daşdemir, Y.; Ulkuseven, B. Rev. Inorg. Chem. 2009, 29, 49-67.

Supplementary

Table S1. Selected calculated wavenumbers, experimental wavenumbers, and TED values of the ligand and related complexes.

	Ligand	1				Complex			
				Methan	ol		Ethano	ol	
Assign.	Е	С	TED (>10%)	Е	С	TED (>10%)	Е	С	TED (>10%)
v(OH)	-	3675	(94)v(O-H)	-	3675	(100)v(O-H)	-	3672	(100)v(O-H)
v(NH)	3303	3401	(100)v(N-H)						
$\nu(C=N^1)$	1592	1602	$(45)v(C-N_1), (15)v(C-N_2)$	1578	1554	$(35)v(C-N_1)$	1579	1548	$(39)v(C-N_1), (20)v_{ring},$
						$(23)v_{ring}, (14)\delta(CH)_{ring}$			$(16)\delta(CH)_{ring}$
v(C=N ²)	1532	1412 1354	$(23)v(C-N_2), (12)v(C-N_4)$	1523	1453	$(41)\upsilon(C-N_2), (11)\delta(CH)_{ring}$	1527	1483	$(24)\upsilon(C-N_2), (15)\upsilon(C-N_1)$
δ(COH)	1241	1378	$(29)\upsilon_{\text{ring}}, (16)\delta(\text{CH})_{\text{ring}},$	1265	1345	(40)δ(COH), (25)υ _{ring} ,	1272	1340	(40)δ(COH), (23)υ _{ring} ,
		1196	(15)δ(COH)			(18)δ(CH) _{ring}			$(14)\delta(CH)_{ring}$
v (CO)	1230	1259	(37)υ(C-O), (25)υ _{ring} , (18)δ(CH)	1241	1269	$(35)\upsilon(C-O), (27)\upsilon_{ring}, (17)\delta(CH)ring$	1240	1270	(42)v(C-O)
v(C-S)	699	657	$(75)\upsilon(C-S), (10)\delta_{\text{ring.}}$	697	656	(68)v(C-S)	696	660	(88)v(C-S)
v (N-N)	980	1581	$(32)v(N-N), (16)v_{ring},$	1053	1057	$(29)\upsilon_{\rm ring}, (21)\delta_{\rm ring},$	1043	1039	$(29)v_{\rm ring},$
. ()			$(14)v(C-N_1), (9)v(C-N_4)$			$(17)\delta CH_{ring}, (14)\nu(N-N)$			$(24)v(N-N), (21)\delta_{ring}$
v(MoO ₂)asym				941	953	(78) υ (O=Mo), (10) δ_{ring} , (10) γ (CH) _{ring}	949	1123	(89)v(Mo=O)
v(MoO ₂)sym				885	935	(83)v(O=Mo), (10)v(C-O)	887	1074	(47)υ(Mo=O), (11)δ(COH)
v(Mo-N)				435	453	(33)τring, (20)υ(N-Mo), (15)δring	445	463	(30)v(C-Cl), (15)v(O-Mn) (15)v(N-Mo)

	n-Prop	anol		n-Butar	ol		Allyl	alcohol	
Assign.	E	С	TED (>10%)	Е	С	TED (>10%)	Е	С	TED (>10%)
v(OH)		3694	(100)v(O-H)		3677	(100)v(O-H)		3664	(94)v(O-H)
$\nu(C=N^1)$	1565	1548	(38) v (C-N1), (19) v _{ring} , (18) δ (CH) _{ring}	1569	1547	(36)v(C-N1), (17)v _{ring} , (16)δ(CH) _{ring}	1578	1547	(35)υ(C-N1), (17)υ _{ring} , (16)δ(CH) _{ring}
$\nu(C=N^2)$	1527	1482	$(28)\upsilon(C-N2), (18)\delta(CH)_{ring}, (15)\upsilon(C-N1), (13)\upsilon(C-N4)$	1531	1482	$(24)\upsilon(C-N2), (15)\delta(CH)_{ring,}$ $(12)\upsilon(C-N1), (11)\upsilon(C-N4)$	1525	1481	$(23)\upsilon(C-N2), (17)\delta(CH)_{ring}, (12)\upsilon(C-N1)$
δ(COH)	1279	1343	(44)δ(COH), (26)CH ₂ twist, (14)CH ₂ rock, (12)CH ₂ wag	1267	1344	(44)δ(COH), (26)CH ₂ twist, (14)CH ₂ rock, (12)CH ₂ wag	1270	1341	(33)CH ₂ twist, (21)tetra O7, (18)δ(COH)
v (CO)	1242	1270	(40)υ(C-O), (25)υ _{ring} , (16)δ(CH) _{ring}	1242	1270	(38)υ(C-O), (26)υ _{ring} , (18)δ(CH) _{ring} ,	1257	1269	(39)v(C-O), (26)v _{ring} , (18)\delta(CH) _{ring}
v(C-S)	694	660	(80)v(C-S)	696	657	(78)v(C-S)	694	657	(79)v(C-S)
v (N-N)	1055	1039	$(36)\upsilon_{ring}, (25)\delta_{ring},$ $(19)\delta(CH)_{ring}, (13)\upsilon(N-N)$	1058	1057	(34)υ _{ring} , (22)δring, (18)δCH) _{ring} , (11)υ(N-N)	1057	1057* 1040*	$(32)\upsilon_{ring}, (22)\delta_{ring}, (18)\delta(CH)_{ring}, (13)\upsilon(N-N),$
v(MoO ₂)asym	936	1118	(25)υ(O-Mo), (19)υ(C-O), (18)δ(C-H ₃)	935	952	(21)v(O-Mo), (19)v(C-O), (18)\delta(C-H3)	939	947	$(41)v(O-Mo), (16)\delta_{ring}, (11)v_{ring},$
$\nu(MoO_2)$ sym	889	1069	(65)υ(O-Mo), (15)γ(CH) _{ring}	895	937	(61)υ(O-Mo), (14)γ(CH) _{ring}	864	940	(54)υ(O-Mo), (10)γ(CH)ring
v(Mo-N)	405	440	(39)τ _{ring} , (25)υ(N-Mo), (22)γ(CH) _{ring}	410	435	(20)δring, (20)υ(N-Mo), (10)υ(C-Cl)	395	423	(22) tetrapyrimidine Mo, (20) υ(N-Mo), (13)δ(CCS)
$E = Experimental wavenumbers$, $C = calculated wavenumbers$, $TED = total energy distribution$; $v = stretching$; $\delta = in-plane ring bending$; $\gamma = out-of-plane ring bending vibrations$.									

Table S2. The calcu	lated wavenumbers (cm^{-1}) and TED (%) of the ligand (L).
Calculated	TED (%), >10%
wavenumbers	
18	$(66)\tau C13-N, (23)\delta(CN1N2)$
24	$(60)\tau N5-N, (12)\tau C13-N$
31	(76)TC13-N, (22)TN5-N
40	(52)τC14-C, (11)δ(CN1N2), (10)δ(CC)
46	(44)τC13-N, (19)τC14-C, (12)δ(CN1N2)
55	(35)τC14-C, (14)δ(CC), (13)γ(CC)
70	$(43)\tau C21$ -S, $(15)\tau C14$ -C, $(10)\tau C13$ -N, $(10)\tau_{ring}$
77	$(26)\tau C14-C, (13)\gamma(CC), (12)\tau C21-S, (11)\tau_{ring}, (10)\tau C13-N$
92	$(20)\tau_{\rm ring}, (15)\tau C13-N, (12)\delta(\rm CCN)$
99	(24)τC21-S, (19)τC13-N, (11)δ(CN1N2)
112	$(20)\tau C13-N, (18)\tau_{ring}, (18)\delta(CCN), (14)$ tetra C20, (11) τ C21-S
130	$(50)\tau_{\rm ring}, (15)$ wag CCl
151	(15)δ(CCN), (13)δ(CN1N2), (12)rock NC, (10)rock CCl
163	(71)TC21-S
185	$(22)\tau C21$ -S, $(18)\tau C13$ -N, $(16)\tau_{ring}$, (13) tetra C20
205	$(26)\tau_{ring}, (15)rock CCl, (11)\tau C13-N$
218	$(19)\delta(CC), (19)\tau_{ring}$
240	$(24)\tau_{\rm ring}, (10)\delta(\rm CC)$
246	$(44)\delta(CCS), (13)\tau_{ring}, (11)\delta(CN1N2)$
268	(24)δ(CCS), (14)rock NC
294	$(19)\delta_{\text{ring}}, (17)\text{rock CCl}, (17)\nu(C-C), (14)\delta(CC)$
313	$(42)\tau_{ring}, (30)wag CCl, (14)\gamma(C=O)$
338	$(16)v(C-Cl), (10)\delta_{ring}, (10)v(C-S)$
366	$(21)\delta_{\text{ring}}, (18)\tau_{\text{ring}}, (17)\nu(\text{C-Cl}), (13)\tau\text{C13-N}$
382	(19)tetra C20, (17) δ_{ring} , (14) τ C13-N, (14) τ_{ring}
405	$(26)\tau_{\rm ring}, (15)\delta_{\rm ring}, (10)\delta({\rm CN1N2})$
423	(100)τ _{ring}
423	$(100)\tau_{\rm ring}$
451	$(27)\delta_{\text{ring}}, (26)\tau_{\text{ring}}$
467	$(51)\tau_{ring}, (21)\gamma(CC)$
479	$(24)\tau_{ring}, (15)\delta(CN1N2), (15)\delta_{ring}, (10)C20$ umbrella
507	$(27)\delta(C=O), (19)\tau_{ring}$
540	$(37)\tau_{ring}, (15)\gamma(C=O), (15)wag CCl$
550	$(22)\tau_{ring}, (14)\delta(C=O), (12)wag NC$
566	$(25)\tau_{ring}, (15)$ wag NC, $(13)v(C-S)$
581	$(20)v(C-S), (15)\delta_{ring}, (13)\delta(CCN), (13)rock NC$
616	$(33)\delta_{\text{ring}}, (24)C20 \text{ umbrella}, (11)\text{tetra C20}$
632	$(77)\delta_{\rm ring}$
634	$(68)\delta_{\rm ring}, (16)v(C-S)$
637	$(68)\delta_{ring}, (12)v_{ring}, (11)v(C-Cl)$
657	(75)v(C-S)
668	$(38)\delta_{ring}$, $(10)\tau_{ring}$
677	$(24)\tau_{ring}, (14)\delta_{ring}$
715	$(27)\delta ring, (13)\delta(CN1N2), (13)V_{ring}, (11)\tau_{ring}$
	$1 \times i \bigcup_{i \in \mathcal{I}} i = j \times$

717	$(73)\tau_{\rm ring}, (17)\gamma(\rm CH)_{\rm ring}$
728	$(76)\tau_{\rm ring}, (19)\gamma(\rm CH)_{\rm ring}$
744	(22)ν _{ring} , (18)δ(CN1N2), (16)δring
781	$(31)\gamma(CH)_{ring}, (29)\tau_{ring}, (15)\gamma(C=O), (15)\gamma(CC)$
801	$(59)\gamma(CH)_{ring}, (19)$ wag NC, $(18)\tau_{ring}$
811	$(46)\gamma(CH)_{ring}, (17)\gamma(CC), (15)\tau_{ring}$
830	$(51)v_{\text{ring}}, (24)\delta_{\text{ring}}$
860	$(26)v_{ring}, (15)$ tetra C20, $(15)\delta_{ring}, (11)v(C-N)$
865	$(59)\gamma(CH)_{ring}, (27)\gamma(C=O)$
874	(99)γ(CH) _{ring}
894	(100)γ(CH) _{ring}
933	(100)γ(CH) _{ring}
956	$(40)\delta_{\text{ring}}, (22)\nu_{\text{ring}}, (15)\gamma(\text{CH})_{\text{ring}}$
957	(86)y(CH) _{ring}
976	$(31)v(C-N2), (19)\gamma(CH)_{ring}, (11)\delta(CH_{3}), (10)tetra C20$
984	(91)γ(CH) _{ring}
1012	$(65)\delta(CH_3), (18)\delta_{ring}, (13)v_{ring}$
1013	(100)γ(CH) _{ring}
1014	$(32)\delta_{\text{ring}}, (28)\delta(\text{CH}_3), (21)\gamma(\text{CH})_{\text{ring}}, (20)\nu_{\text{ring}}$
1014	$(57)\delta_{\text{ring}}, (33)v_{\text{ring}}, (10)\gamma(\text{CH})_{\text{ring}}$
1016	$(90)\gamma(CH)_{ring}, (10)\delta_{ring}$
1032	(100) γ (CH) _{ring}
1037	(100) γ (CH) _{ring}
1045	$(67)\delta(CH_3), (13)v_{ring}$
1047	$(58)v_{ring}, (18)\delta(CH)_{ring}, (11)\delta(CH_3)$
1049	(100)γ(CH) _{ring}
1053	$(54)\nu_{\text{ring}}, (16)\delta(\text{CH})_{\text{ring}}, (14)\gamma(\text{CH})_{\text{ring}}, (11)\delta_{\text{ring}}$
1079	$(61)v_{\rm ring}, (22)\delta(\rm CH)_{\rm ring}, (11)v(\rm C-Cl)$
1110	$(54)v_{\text{ring}}, (40)\delta(\text{CH})_{\text{ring}}$
1114	$(53)v_{\text{ring}}, (32)\delta(\text{CH})_{\text{ring}}$
1139	$(27)v_{ring}, (18)\delta_{ring}, (15)v(C-N1), (15)\delta(CH)_{ring}$
1162	$(45)\delta(CH)_{ring}, (30)v_{ring}$
1203	$(84)\delta(CH)_{ring}, (15)v_{ring}$
1211	$(85)\delta(CH)_{ring}, (15)v_{ring}$
1216	$(63)\delta(CH)_{ring}, (19)v_{ring}$
1224	$(46)\delta(CH)_{ring}, (27)v_{ring}$
1236	$(76)\delta(CH)_{ring}, (24)v_{ring}$
1239	$(25)v(C-N), (24)\delta(CH)_{ring}, (23)v_{ring}$
1296	$(41)\delta(CH)_{ring}, (18)v(C-C), (16)v_{ring}$
1326	$(46)_{V_{ring}}$, $(29)_{\delta}(CH)_{ring}$, $(16)_{V}(C-C)$
1349	$(47)\delta(CH)_{ring}, (47)v_{ring}$
1362	(71) Vring, $(23)\delta(CH)$ ring
1367	$(40)\delta(CH)_{ring}$ (27) v_{ring} (15) $v(C=0)$
1378	$(53)_{V_{ring}} (47)\delta(CH)_{ring}$
1387	$(75)\delta(CH)_{\text{sing}}$
1399	$(100)\delta(CH)$
1/30	$(100)0(CH_3)$ $(12)y(C-O) (12)y(C-O) (11)S(CH)$
1430	(+2) Vring, (19) V(U-U), (13) V(U-U), (11) O(UI) ring

1471	$(47)\delta(CH)_{ring}, (29)v_{ring}, (12)v(C-C)$
1475	$(53)\delta(CH)_{ring}, (36)v_{ring}$
1478	$(57)\delta(CH)_{ring}, (37)v_{ring}$
1495	$(100)\delta(CH_3)$
1516	$(53)\delta(CH)_{ring}, (27)v_{ring}, (15)\delta(CH_3)$
1518	$(80)\delta(CH_3), (12)\delta(CH)_{ring}$
1522	$(52)\delta(CH)_{ring}, (29)v_{ring}$
1537	$(26)v_{ring}, (23)v(C-C), (22)v(C=O), (18)\delta(CH)_{ring}$
1546	$(66)v_{\rm ring}, (11)v(N-N)$
1581	$(51)v(N-N), (16)v_{ring}, (14)v(C-N1)$
1616	$(66)v_{\text{ring}}, (17)\delta(\text{CH})_{\text{ring}}$
1619	$(70)v_{\text{ring}}, (20)\delta(\text{CH})_{\text{ring}}$
1638	$(48)v_{ring}, (16)v(C-N4), (15)\delta(CH)_{ring}$
1645	$(67)v_{\text{ring}}, (19)\delta(\text{CH})_{\text{ring}}, (10)\delta_{\text{ring}}$
1651	$(66)v_{ring}, (17)\delta(CH)_{ring}, (10)\delta_{ring}$
1660	$(53)v(C-N4), (27)v_{ring}$
3085	$(100)v(CH_3)$
3194	(100)v(CH) _{ring}
3199	(100)v(CH) _{ring}
3204	(96)v(CH) _{ring}
3205	(96)v(CH ₃)
3208	(100)v(CH) _{ring}
3219	(100)v(CH) _{ring}
3220	(99)v(CH) _{ring}
3222	$(98)\nu(CH)_{ring}$
3223	(98)v(CH ₃)
3228	$(99)v(CH)_{ring}$
3230	$(99)\nu(CH)_{ring}$
3238	(99)v(CH) _{ring}
3238	(99)v(CH) _{ring}
3245	(99)v(CH) _{ring}
3252	$(99)\nu(CH)_{ring}$

Table S3. The calcu	lated wavenumbers (cm^{-1}) and TED (%) of [MoO ₂ (L)allylOH] (5).
Calculated	TED (%), >10%
wavenumbers	
16	(33)τMoN, (16)τCN, (10)τNN
23	(49)τCN, (24)τCC, (12)τCO
35	(39)τMoO, (21)τCN, (10)τCO
40	(24) τMoO
42	(63) TCN
51	(20)tetra N10, (18) τ_{ring} , (10)C26 umbrella
57	$(21)\tau_{ring}$, (15)tetra C17, (13)C18 umbrella, (11) τ CS
63	$(22) \tau MOO, (12) \tau CN, (10) \tau MON, (10) \tau_{ring}$
66	$(32)\tau CS$, (14) tetra NIO, $(13)\tau_{ring}$
75	$(26) \tau CS, (16) \tau CN, (12) \tau CO$
96	$(23) tCO, (16) t_{ring}, (10) tCS$
	(11) tetra (24, (10)) (00
115	(68)V(0-M0), (15)O(0CC), (6)tCO
116	(25) τ_{ring} , (17) tetrapyrimidine Mo, (10) tetra 07
128	$(22)\tau CS, (11)\tau CO$
135	
142	(26) TCS, (17) tetrapyrimidine Mo, (13) N10 umbrella
152	(18)tetra 07, (12)tetra C24, (11)tetra N10
166	(74) TCC
169	(13) TNN, (11) Tring, (10) tetrapyrimidine Mo, (10) rock CCI
180	(26) tetrapyrimidine
194	(55) tetrapyrimidine (12) t (11) tetrapyrimidine Me (10) reak CCl
210	(12) tring, (11) tetrapyrimitaine Mo, (10) rock CCI
217	(22) tetrapyrimidine, $(16)V(NMO)$, $(13)\delta(CCS)$, (12) tetra C26
222	$(23) \text{tetrapyrimidine, (11)} \tau_{\text{ring}}, (10) \text{tetrapyrimidine, (11)}$
230	(25) tetrapyrimidine, (21) tetra C18, (13) τ_{ring}
250	$(26)\tau_{ring}$, $(14)\delta(CCS)$, $(12)tetra NIU$, $(12)tetra C24$
260	(16) τ_{ring} , (14)tetrapyrimidine Mo, (11)tetra C1/
266	(53)tetrapyrimidine Mo, (12)tring, (11) δ (CCS)
290	(14) τ_{ring} , (11)rock CCl, (11)tetrapyrimidine, (10) δ (CCS)
307	$(10)\delta(CCS)$, $(10)\nu(C-C)$, $(10)\nu(C-C1)$
320	$(38)\delta(CCC)$, $(16)\delta(OCC)$, $(12)v(OMo)$
333	(19) tetrapyrimidine, (15) τ_{ring} , (10) rock CCl
349	(72)tetrapyrimidine
368	$(17)\tau_{ring}$, $(16)\delta(MoCO)$, (14) tetrapyrimidine
405	$(22)\tau_{ring}$, (15)N8 umbrella, (14) τ CN
414	$(74) \tau_{ring}$, $(25) \gamma (CH)_{ring}$
423	(22) tetrapyrimidine Mo, (20) v (NMo), (13) δ (CCS)
432	$(17) v (CC1)$, $(10) \tau_{ring}$
435	$(11) v (CC1), (10) \delta_{ring}$
462	(24) tetra (26, (13) Tring
488	$(24)\tau_{\text{ring}}$ (11)C12 umbrella, (10)N8 umbrella
497	(21)v(CS) (10) to trap C11
510	$(23)\tau = (14)C26 \text{ umbrella}$
525	$(22) \circ \tau_{\text{ring}} (17) \circ \tau_{\text$
521	(22) UNDERLA, (17) TETRA (17), (15) δ (MOUH), (11) γ (CH) ring
JST	$(13)\tau_{ring}, (11)\delta(MOCO), (10)\nu(OMO)$
548	$(14) O_{ring}, (11) \tau_{ring}$
560	(37)CCl wag, (23) τ_{ring} , (11)C11 umbrella

591	$(35)\gamma(CH)_{ring}$, $(20)CH_2$ twist, $(19)\tau CC$, $(12)CH_2$ rock
621	$(38)\delta(OCC)$, $(26)\delta(CCC)$, $(12)CH_2$ rock
628	$(53) \delta_{ring}$
629	$(41) \delta_{ring}$
633	$(84) \delta_{ring}$
646	$(36)C24$ umbrella, $(19)\delta_{ring}$, $(11)\tau NN$
657	(79) v (C-S)
671	$(42) \delta_{\text{ring}}$, $(10) v_{\text{ring}}$
683	$(32)\delta_{\text{ring}}$, (11)tetra C11
697	(26) τ_{ring} , (18)C17 umbrella
709	(21) τ_{ring} , (12) δ_{ring}
723	$(44)\gamma(CH)_{ring}$, $(36)\tau_{ring}$
729	(50) γ (CH) _{ring} , (29) τ _{ring}
751	(20) δ_{ring} , (11) ν_{ring} , (10) ν (CCl), (10) ν (C-S)
772	(26) τ_{ring} , (19)C12 umbrella, (17)C11 umbrella, (13)C17umbrella
790	$(36)\gamma(CH)_{ring}, (16)\tau_{ring}$
805	$(37)\gamma(CH)_{ring}$, $(19)\tau_{ring}$
835	$(13) v_{ring}, (11) g (CH)_{ring}, (11) \delta_{ring}$
863	$(76)\gamma(CH) ring(12)Tring$
070	$(30)\gamma(CH) ring(19)Vring, (12)Oring, (11)Tring$
079	$(40)\gamma(CH)ring, (17)tring, (11)Vring$
883	$(74)\gamma(CH)_{ring}$, $(25)\gamma_{ring}$
036	(49)V(CC), (25)V(C-0)
940	(71) Y (Ch) ring, (10) tring
947	$(41) v (OMO)$, (16) δ_{ring} , (11) v_{ring}
960	$(49) \gamma (CH) ring = (28) \gamma (OM_0) = (13) Tring$
964	$(46) \gamma (OM_{O}) = (41) \gamma (CH) rises (10) Trice$
965	$(10)^{\vee}(010)^{\vee}(11)^{\vee}(010)^{\vee}(12)^{\vee}(10)^{\vee}(1$
984	(39) CH ₂ rock (30) CH ₂ wag (17) V(C=0)
998	$(63)_{V(CH)} = (24)_{T} = (24)_$
999	(19) CH ₂ rock (17) V(C=0) (17) CH ₂ was
1000	$(12)_{\text{CH}_2} = 100 \text{ K}, (17)_{\text{CH}_2} = 100 \text{ K}, (10)_{\text{CH}_2} = 100 \text{ K}, (10)$
1007	$(42)V_{ring}$, $(10)CH_2$ 10CK, $(10)V(C O)$
1014	(37) CH ₂ wag, (27) CH ₂ rock, (16) CH ₂ twist, (16) TCC
1015	$(40) v_{\text{ring}}, (38) \delta_{\text{ring}}, (10) \text{ tetra C18}$
1015	$(37)\delta_{\text{ring}}$, $(21)v_{\text{ring}}$, $(12)\gamma(CH)_{\text{ring}}$
1019	$(57)\gamma(CH)_{ring}$, $(20)\tau_{ring}$
1021	$(67)\gamma(CH)_{ring}$, $(23)\tau_{ring}$
1028	$(56) \delta(CH_3)$, $(11) \delta_{ring}$
1038	$(57)\gamma(CH)_{ring}$, $(23)\tau_{ring}$
1039	$(33)\gamma(CH)_{ring}$, $(27)CH_2$ twist, $(27)\tau CC$
1040	$(29)\gamma(CH)_{ring}$, $(17)\tau CC$, $(17)CH_2$ twist, $(10)\nu(NN)$
1042	(63) γ (CH) _{ring} , (25) τ _{ring}
1049	(44) v_{ring} , (29) δ_{ring} , (23) δ (CH) _{ring}
1057	(32) v_{ring} , (22) δ_{ring} , (18) δ (CH) $ring$, (13) v (NN)
1104	(42) δ (CH) ring, (38) v_{ring} , (17) δ_{ring}
1109	(39) v_{ring} , (38) δ (CH) $_{ring}$, (18) δ_{ring}
1113	(43) v_{ring} , (29) δ (CH) _{ring} , (10) v (CCl)

1126	(36)CH ₂ rock, (19) ν (CO), (14) ν (CC), (12) δ (CH) _{ring}
1148	(40) δ (CH) _{ring} (23) v _{ring} , (19) δ _{ring}
1196	$(25)\delta(CH)_{ring}$, (16) v_{ring} , (13)CH ₂ twist, (10) $v(CC)$
1198	(43)CH ₂ twist, (12)tetra O7, (10) δ (COH)
1204	(86) δ (CH) _{ring} , (14) v_{ring}
1206	$(34)\delta(CH)_{ring}$, $(15)v_{ring}$, $(11)v(CN)$, $(11)tetra C24$
1207	(86) δ (CH) _{ring} , (14) ν _{ring}
1215	(54) δ (CH) _{ring} , (22) ν _{ring}
1224	(77) δ (CH) _{ring} , (22) ν _{ring}
1269	(39) ν (CO), (26) ν_{ring} , (18) δ (CH) _{ring}
1300	(59) δ (CH) _{ring} , (18) v_{ring}
1315	$(18)\delta(CH)_{ring}$, $(14)\nu(CN)$, $(12)\nu(CN4)$, $(11)\nu(CC)$, $(10)\nu(CN2)$
1324	$(58)\delta(CH)_{ring}$, (14)CH ₂ rock, (11)v(C=C)
1326	$(20) v_{\text{ring}}$, $(20) \delta$ (CH) _{ring} , $(16) v$ (CC), $(12) v$ (CN4), $(11) v$ (CN)
1341	(33)CH $_2$ twist ,(21)tetra O7 ,(18) δ (COH)
1349	(52) δ (CH) _{ring} , (37) ν _{ring}
1352	(54) v_{ring} , (38) δ (CH) _{ring}
1374	(61) v_{ring} , (39) δ (CH) _{ring}
1375	(54) δ (CH) _{ring} , (45) ν _{ring}
1382	$(67) v_{ring}$, $(12) v (CC)$
1390	(97)δ(CH ₃)
1404	(85)CH ₂ wag
1419	(32) v_{ring} , (25) δ (CH) $_{\text{ring}}$
1468	(81)CH ₂ scis
1471	(60) δ (CH) _{ring} , (25) ν _{ring} , (10) δ _{ring}
1477	(56) δ (CH) _{ring} , (24) ν _{ring} , (11) δ _{ring}
1479	(98) δ (CH3)
1481	$(23)v(CN2), (17)\delta(CH)_{ring}, (12)v(CN1)$
1490	$(27)\delta(CH)_{ring}$, $(23)\delta(CH_3)$, $(13)v_{ring}$, $(11)v(CN2)$
1498	(70)δ(CH ₃)
1515	(99)CH _{2 scis}
1518	(60) δ (CH) ring (22) v_{ring}
1523	$(53)\delta(CH)_{ring}$, $(19)v_{ring}$
1547	$(35)v(CN1)(17)v_{ring}$, $(16)\delta(CH)_{ring}$
1596	$(61) v_{ring}$, $(10) v (CN1)$
1625	(71) v_{ring} , (18) δ (CH) $ring$
1628	(73) v_{ring} , (16) δ (CH) $_{\text{ring}}$
1636	(72) v_{ring} , (14) δ (CH) $ring$
1644	(70) v_{ring} , (19) δ (CH) $_{\text{ring}}$
1650	(68) v_{ring} , (20) δ (CH) $_{\text{ring}}$
1707	(69)v(C=C),(14)CH ₂ scis
3055	(100) v (CH ₂)
3091	(100) v (CH ₃)
3121	(100) v (CH ₂)
3161	$(54)\nu(CH)_{ring}$, $(46)\nu(CH_2)$
3178	(55) ν (CH ₂), (44) ν (CH) _{ring}
3192	(100)v(CH) _{ring}

3193	(100) v (CH) ring
3199	(100)v(CH) _{ring}
3203	(100)v(CH) _{ring}
3209	(100) v (CH ₃)
3210	(100)v(CH) _{ring}
3216	(100)v(CH) _{ring}
3221	(99)v(CH) _{ring}
3225	(99)v(CH) _{ring}
3226	(100) v (CH ₃)
3228	(100)v(CH) _{ring}
3234	(99)v(CH) _{ring}
3235	(99)v(CH) _{ring}
3247	(99)v(CH) _{ring}
3255	(100)v(CH) _{ring}
3274	(99) v (CH ₂)
3664	(94)v(OH)

Table S4. Experimental and calculated wavelengths (nm) and oscillator strengths (f) of complex 5.								
Experimental		Calculated						
wavelength (nm)	Wavelength (nm) (scaled by 0.82)	Oscillator strength	Major contributions (≥10%)					
435	443	0.0406	HOMO -> LUMO (90%)					
310	314	0.0731	H-2 -> L+1 (56%), H-1 -> L+1 (32%)					
251	261	0.1846	HOMO -> L+3 (37%), H-3 -> LUMO (23%), H-4 -> LUMO (13%)					
240	235	0.1438	H-4 -> LUMO (51%), HOMO -> L+3 (14%)					

Table S5. Quantum chemical descriptors based on DFT calculations used for SAR studies.									
	L	1	2	3	4	5			
Total energy (a.u.)	-1074.045	-1407.395	-1447.373	-1485.942	-1525.902	-1485.438			
E _{HOMO} (eV)	-6.211	-6.424	-6.204	-5.897	-6.195	-6.181			
E _{LUMO} (eV)	-3.571	-3.144	-3.163	-3.150	-3.147	-3.113			

$\Delta E_{gap} (eV)$	2.640	3.280	3.042	2.748	3.048	3.069
Total dipole moment (D)	3.175	6.791	8.076	8.4084	8.123	7.214
Chemical potential (eV)	-4.891	-4.647	-4.684	-4.524	-4.671	-4.647
Ionization energy (I)	5.741	8.272	7.836	6.585	5.551	7.755
Electron affinity (A)	3.619	2.340	0.870	2.122	3.157	1.034
Mulliken electronegativity (χ) (eV)	4.891	4.647	4.684	4.524	4.671	4.647
Softness (S) (eV)	0.379	0.305	0.329	0.364	0.328	0.326
Hardness (η) (eV)	1.320	1.64	1.521	1.374	1.524	1.535
Electrophilicity index (ω) (eV)	9.061	6.584	7.212	7.448	7.158	7.034
E+	- 1073.834	-1407.091	-1447.085	-1485.700	-1525.698	-1485.153
E–	- 1074.178	-1407.481	-1447.405	-1486.020	-1526.018	-1485.476

Table	S6. Main d	elocaliz	atio	Table S6. Main delocalization energy (in kJ/mol) for Ligand (L)							
Delocalizati	on										
BD(2) O	3 – C	7.	\rightarrow	BD*(2) C 11 - C 12	13.45						
BD(2) N	4 – C	13 ·	\rightarrow	LP (2) N 5	52.80						
BD(2) N	4 – C	13 ·	\rightarrow	BD*(2) N 4 - C 13	0.89						
BD(2) N	4 – C	13 ·	\rightarrow	BD*(2) C 14 - C 19	1.37						
BD(2) N	6 – C	20 .	\rightarrow	LP (2) N 5	57.98						
BD(2) N	6 – C	20 .	\rightarrow	BD*(2) C 22 - C 23	2.77						
BD(2) C	9 – C	10 .	\rightarrow	BD*(2) C 11 - C 12	17.72						
BD(2) C	11 - C	12 ·	\rightarrow	BD*(2) 0 3 - C 7	29.18						
BD(2) C	11 - C	12 ·	\rightarrow	BD*(2) C 9 - C 10	20.63						
BD(2) C	14 - C	19 ·	\rightarrow	BD*(2) N 4 - C 13	2.85						
BD(2) C	14 - C	19 ·	\rightarrow	BD*(2) C 15 - C 16	20.06						
BD(2) C	14 - C	19 ·	\rightarrow	BD*(2) C 17 - C 18	20.78						
BD(2) C	15 - C	16 -	\rightarrow	LP (2) N 5	0.68						
BD(2) C	15 - C	16 -	\rightarrow	BD*(2) C 14 - C 19	21.93						
BD(2) C	15 - C	16 -	\rightarrow	BD*(2) C 17 - C 18	21.46						
BD(2) C	17 – C	18 ·	\rightarrow	BD*(2) C 14 - C 19	21.77						
BD(2) C	17 – C	18 ·	\rightarrow	BD*(2) C 15 - C 16	20.44						
BD(2) C	22 - C	23	\rightarrow	BD*(2) N 6 - C 20	3.50						
BD(2) C	22 - C	23	\rightarrow	BD*(2) C 24 - C 25	21.29						
BD(2) C	22 - C	23	\rightarrow	BD*(2) C 26 - C 27	19.41						
BD(2) C	24 - C	25	\rightarrow	BD*(2) C 22 - C 23	21.05						
BD(2) C	24 - C	25	\rightarrow	BD*(2) C 26 - C 27	21.34						
BD(2) C	26 - C	27	\rightarrow	BD*(2) C 22 - C 23	22.02						
BD(2) C	26 - C	27	\rightarrow	BD*(2) C 24 - C 25	20.55						
$\Delta \text{ET}_{\pi \rightarrow \pi^*}$					455.92						

LP	(2)Cl	1	\rightarrow	BD*(1) C	9 – C	10	3.74
LP	(2)Cl	1	\rightarrow	BD*(1) C	10 - C	11	3.61
LP	(3)Cl	1	\rightarrow	BD*(2) C	9 – C	10	10.75
LP	(2) S	2	\rightarrow	LP (2) N	5		3.14
LP	(2) S	2	\rightarrow	BD*(2) N	6 – C	20	25.23
LP	(2) S	2	\rightarrow	BD*(1) C	21 - н	37	3.09
LP	(2) S	2	\rightarrow	BD*(1) C	21 – Н	38	3.18
LP	(1) 0	3	\rightarrow	BD*(1) C	7 – C	8	2.81
LP	(2) 0	3	\rightarrow	BD*(1) C	7 – C	8	10.85
LP	(2) 0	3	\rightarrow	BD*(1) C	7 – C	12	8.76
LP	(1) N	4	\rightarrow	BD*(1) C	13 - C	14	11.62
LP	(1) N	5	\rightarrow	BD*(1) N	6 – C	20	10.13
LP	(2) N	5	\rightarrow	BD*(2) N	4 – C	13	29.28
LP	(2) N	5	\rightarrow	BD*(2) N	6 – C	20	64.89
LP	(1) N	6	\rightarrow	BD*(1) S	2 – C	20	15.67
LP	(1) N	6	\rightarrow	BD*(1) N	5 – C	20	2.41
LP	(1) N	6	\rightarrow	BD*(2) C	22 - C	23	9.51
LP	(1) N	6	\rightarrow	BD*(1) C	22 - C	27	3.40
LP =	Lone pai	ir; BD ar	nd BD* = bor	nd and antibon	d, respective	ly,	

Table S7. Mai	Table S7. Main delocalization energy (in kI/mol) for $[MoO_2(L)MeOH]$ (1)							
Delocalization	1	<i>0</i> , (
BD (2) N	7 – N	⁸ →	LP*(1) C 16	22.19				
BD (2) N	7 – N	⁸ →	BD*(2) N 9 - C 23	20.33				
BD (2) C	11 - C	12 \rightarrow	LP (1) C 10	29.75				
BD (2) C	11 - C	12 \rightarrow	LP*(1) C 16	26.12				
BD (2) C	11 - C	$12 \rightarrow$	BD*(2) C 13 - C 14	10.16				
BD (2) C	13 - C	$14 \rightarrow$	BD*(2) C 11 - C 12	12.68				
BD (2) C	17 - C	$18 \rightarrow$	BD*(2) C 19 - C 20	10.42				
BD (2) C	17 - C	$18 \rightarrow$	BD*(2) C 21 - C 22	10.65				
BD (2) C	19 - C	$20 \rightarrow$	BD*(2) C 17 - C 18	11.33				
BD (2) C	19 - C	$20 \rightarrow$	BD*(2) C 21 - C 22	10.47				
BD (2) C	21 - C	$22 \rightarrow$	BD*(2) C 17 - C 18	10.78				
BD (2) C	21 - C	$22 \rightarrow$	BD*(2) C 19 - C 20	10.83				
BD (2) C	25 - C	$26 \rightarrow$	BD*(2) C 27 - C 28	10.03				
BD (2) C	25 - C	$26 \rightarrow$	BD*(2) C 29 - C 30	10.40				
BD (2) C	27 – C	$28 \rightarrow$	BD*(2) C 25 - C 26	11.29				
BD (2) C	27 - C	$28 \rightarrow$	BD*(2) C 29 - C 30	10.63				
BD (2) C	29 - C	$30 \rightarrow$	BD*(2) C 25 - C 26	11.14				
BD (2) C	29 - C	$30 \rightarrow$	BD*(2) C 27 - C 28	10.60				
$\Delta \text{ET}_{\pi \to \pi^*}$				249.8				
LP (2) S	3	\rightarrow	BD*(2) N 9 - C 23	14.39				
LP (1) O	4	\rightarrow	LP*(2)Mo 1	22.84				
LP (2) O	4	\rightarrow	LP (1) C 10	24.82				
LP (3) O	4	\rightarrow	LP*(2)Mo 1	47.40				

LP	(1) 0	5	\rightarrow	LP*(1)Mo 1	15.12					
LP	(1) 0	6	\rightarrow	LP*(1)Mo 1	11.85					
LP	(2) 0	6	\rightarrow	BD*(2)Mo 1 - 0 5	27.50					
LP	(1) N	7	\rightarrow	LP*(1)Mo 1	24.76					
LP	(1) N	7	\rightarrow	LP*(3)Mo 1	13.71					
LP	(1) N	7	\rightarrow	BD*(1)Mo 1 - 0 6	17.97					
LP	(1) C	10	\rightarrow	BD*(2) C 11 - C 12	32.43					
LP	(1) C	15	\rightarrow	BD*(2) C 13 - C 14	45.21					
LP	(3) 0	51	\rightarrow	LP*(3)Mo 1	13.79					
LP	(3) 0	51	\rightarrow	BD*(1)Mo 1 - 0 5	17.52					
LP	(2) 0	51	\rightarrow	BD*(1) C 47 - H 49	16.85					
	$LP = Lone pair; BD and BD^* = bond and antibond, respectively.$									

Table S8. Main delocalization e	nergy (in kJ/mol) for [MoO ₂ (L)EtOH] (2).	
Delocalization		
BD (2) N 9 - C 24	→ BD*(2) N 8 - C 17	14.39
BD (2) N 10 - C 26	→ BD*(3) Mo 1 - 0 5	16.52
BD (2) N 10 - C 26	→ BD*(2) N 9 - C 24	75.39
BD (2) C 11 - C 16	→ BD*(2) C 12 - C 13	19.10
BD (2) C 11 - C 16	→ BD*(2) C 14 - C 15	26.77
BD (2) C 12 - C 13	→ BD*(2) N 8 - C 17	27.34
BD (2) C 12 - C 13	\rightarrow BD*(2) C 11 - C 16	23.77
BD (2) C 12 - C 13	→ BD*(2) C 14 - C 15	20.19
BD (2) C 14 - C 15	→ BD*(2) C 11 - C 16	17.50
BD (2) C 14 - C 15	→ BD*(2) C 12 - C 13	25.45
BD (2) C 18 - C 23	→ BD*(2) C 19 - C 20	20.08
BD (2) C 18 - C 23	→ BD*(2) C 21 - C 22	20.72
BD (2) C 19 - C 20	→ BD*(2) C 18 - C 23	21.79
BD (2) C 19 - C 20	→ BD*(2) C 21 - C 22	21.91
BD (2) C 21 - C 22	→ BD*(2) C 18 - C 23	21.94
BD (2) C 21 - C 22	→ BD*(2) C 19 - C 20	19.93
BD (2) C 26 - C 31	→ BD*(2) C 27 - C 28	20.29
BD (2) C 26 - C 31	→ BD*(2) C 29 - C 30	20.70
BD (2) C 27 - C 28	→ BD*(2) C 26 - C 31	22.28
BD (2) C 27 - C 28	→ BD*(2) C 29 - C 30	21.77
BD (2) C 29 - C 30	→ BD*(2) C 26 - C 31	22.01
BD (2) C 29 - C 30	→ BD*(2) C 27 - C 28	20.74
$\Delta \text{ET} \pi \rightarrow \pi^*$		520.58

LP (2) S 3	\rightarrow	BD*(2) N 9 - C 2	24.68
LP (1) O 4	\rightarrow	LP*(2)Mo 1	44.91
LP (2) O 4	\rightarrow	BD*(2) C 11 - C 16	23.88
LP (3) O 4	\rightarrow	LP*(2)Mo 1	96.29
LP (3) O 4	\rightarrow	LP*(3)Mo 1	21.03
LP (3) O 4	\rightarrow	BD*(2)Mo 1-0 6	15.38
LP (3) O 4	\rightarrow	BD*(1)Mo 1 - N 10	18.96
LP (1) O 5	\rightarrow	LP*(1)Mo 1	30.62
LP (1) O 5	\rightarrow	LP*(2)Mo 1	10.83
LP (1) O 5	\rightarrow	LP*(3)Mo 1	20.55
LP (1) O 6	\rightarrow	LP*(1)Mo 1	22.92
LP (2) O 6	\rightarrow	BD*(2)Mo 1 - 0 5	53.19
LP (1) N 8	\rightarrow	LP*(1)Mo 1	52.44
LP (1) N 8	\rightarrow	LP*(3)Mo 1	28.62
LP (1) N 8	\rightarrow	BD*(1)Mo 1 - O	34.92
LP (1) N 9	\rightarrow	BD*(1) N 10 - C 24	11.80
LP (2) O 7	\rightarrow	LP*(3)Mo 1	36.04
LP (2) O 7	\rightarrow	BD*(1)Mo 1 - 0 5	39.08
LP = Lone pair: BD and BD* = be	ond and antil	bond, respectively.	

Tab	Table S9. Main delocalization energy (in kJ/mol) for [MoO ₂ (L)PrOH] (3).						
Del	ocaliz	atio	n				
BD	(2)1	oN	1 - 0	5	\rightarrow	BD*(1)Mo 1 - 0 6	11.66
BD	(2)	Ν	8 – N	9	\rightarrow	LP (1) C 17	22.17
BD	(2)	Ν	8 – N	9	\rightarrow	BD*(2) N 10 - C 24	19.84
BD	(2)	С	11 - C	16	\rightarrow	BD*(2) C 12 - C 13	9.54
BD	(2)	С	11 - C	16	\rightarrow	BD*(2) C 14 - C 15	13.34
BD	(2)	С	12 - C	13	\rightarrow	LP (1) C 17	25.98
BD	(2)	С	12 - C	13	\rightarrow	BD*(2) C 11 - C 16	11.89
BD	(2)	С	12 - C	13	\rightarrow	BD*(2) C 14 - C 15	10.11
BD	(2)	С	14 - C	15	\rightarrow	BD*(2) C 11 - C 16	8.77
BD	(2)	С	14 - C	15	\rightarrow	BD*(2) C 12 - C 13	12.71
BD	(2)	С	18 - C	19	\rightarrow	BD*(2) C 20 - C 21	10.46
BD	(2)	С	18 - C	19	\rightarrow	BD*(2) C 22 - C 23	10.72
BD	(2)	С	20 - C	21	\rightarrow	BD*(2) C 18 - C 19	11.29
BD	(2)	С	20 - C	21	\rightarrow	BD*(2) C 22 - C 23	10.57
BD	(2)	С	22 - C	23	\rightarrow	BD*(2) C 18 - C 19	10.74
BD	(2)	С	22 - C	23	\rightarrow	BD*(2) C 20 - C 21	10.76
BD	(2)	С	26 - C	27	\rightarrow	BD*(2) C 28 - C 29	10.11
BD	(2)	С	26 - C	27	\rightarrow	BD*(2) C 30 - C 31	10.37
BD	(2)	С	28 - C	29	\rightarrow	BD*(2) C 26 - C 27	11.20
BD	(2)	С	28 - C	29	\rightarrow	BD*(2) C 30 - C 31	10.56
BD	(2)	С	30 - C	31	\rightarrow	BD*(2) C 26 - C 27	11.12

BD	(2) C	30 - C	31 →	BD*(2) C 28 - C 29	10.68
ΔET	$\pi \!$				274.59
LP	(2) S	3	\rightarrow	BD*(2) N 10 - C 24	14.12
LP	(1) 0	4	\rightarrow	LP*(2)Mo 1	22.37
LP	(2) 0	4	\rightarrow	BD*(2) C 11 - C 16	11.93
LP	(3) 0	4	\rightarrow	LP*(2)Mo 1	48.26
LP	(3) 0	4	\rightarrow	LP*(3)Mo 1	10.62
LP	(1) 0	5	\rightarrow	LP*(1)Mo 1	15.31
LP	(1) 0	5	\rightarrow	LP*(3)Mo 1	10.28
LP	(1) 0	6	\rightarrow	LP*(1)Mo 1	11.34
LP	(2) 0	6	\rightarrow	BD*(2)Mo 1 - 0 5	26.02
LP	(1) N	8	\rightarrow	LP*(1)Mo 1	26.46
LP	(1) N	8	\rightarrow	LP*(3)Mo 1	14.30
LP	(1) N	8	\rightarrow	BD*(1)Mo 1 - 0 6	17.46
LP	(1) C	17	\rightarrow	BD*(2) N 8 - N 9	376.10
LP	(1) C	17	\rightarrow	BD*(2) C 12 - C 13	22.05
LP	(2) 0	7	\rightarrow	LP*(3)Mo 1	17.86
LP	(2) 0	7	\rightarrow	BD*(1)Mo 1 - 0 5	19.34
LP	(1) C	33	\rightarrow	BD*(1) C 55 - H 56	11.75
LP =	Lone pair	r; BD and B	$D^* = bond and ant$	ibond, respectively.	

Table S10. Main delocalization energy (in kJ/mol) for [MoO ₂ (L)BuOH] (4).								
Delocalization								
BD (2) N	9 - C 24	→ BD*(2) N 8 - C 17	14.43					
BD (2) N	10 - C 26	\rightarrow BD*(3)Mo 1 - 0 5	16.53					
BD (2) N	10 - C 26	→ BD*(2) N 9 - C 24	75.84					
BD (2) C	11 - C 16	→ BD*(2) C 12 - C 13	19.10					
BD (2) C	11 - C 16	→ BD*(2) C 14 - C 15	26.75					
BD (2) C	12 - C 13	→ BD*(2) N 8 - C 17	27.34					
BD (2) C	12 - C 13	→ BD*(2) C 11 - C 16	23.78					
BD (2) C	12 - C 13	→ BD*(2) C 14 - C 15	20.21					
BD (2) C	14 - C 15	→ BD*(2) C 11 - C 16	17.50					
BD (2) C	14 - C 15	→ BD*(2) C 12 - C 13	25.42					
BD (2) C	18 - C 23	→ BD*(2) C 19 - C 20	20.16					
BD (2) C	18 - C 23	→ BD*(2) C 21 - C 22	20.71					
BD (2) C	19 - C 20	→ BD*(2) C 18 - C 23	21.71					
BD (2) C	19 - C 20	→ BD*(2) C 21 - C 22	21.93					
BD (2) C	21 - C 22	→ BD*(2) C 18 - C 23	21.96					
BD (2) C	21 - C 22	→ BD*(2) C 19 - C 20	19.92					
BD (2) C	26 - C 31	→ BD*(2) C 27 - C 28	20.39					
BD (2) C	26 - C 31	→ BD*(2) C 29 - C 30	20.68					
BD (2) C	27 - C 28	→ BD*(2) C 26 - C 31	22.20					
BD (2) C	27 - C 28	→ BD*(2) C 29 - C 30	21.76					

BD (2) C 29 - C 30	→ BD*(2) C 26 - C 31	22.04								
BD (2) C 29 - C 30	→ BD*(2) C 27 - C 28	20.75								
$\Delta \text{ET}_{\pi \to \pi^*}$		521.11								
LP (2) S 3	→ BD*(2) N 9 - C 24	24.90								
LP (1) O 4	→ LP*(2)Mo 1	44.84								
LP (2) O 4	→ BD*(2) C 11 - C 16	23.88								
LP (3) O 4	→ LP*(2)Mo 1	96.46								
LP (3) O 4	→ LP*(3)Mo 1	21.44								
LP (3) O 4	\rightarrow BD*(2)Mo 1 - 0 6	15.42								
LP (3) O 4	\rightarrow BD*(1)Mo 1 - N 10	19.01								
LP (1) O 5	\rightarrow LP*(1)Mo 1	30.65								
LP (1) O 5	→ LP*(2)Mo 1	10.88								
LP (1) O 5	→ LP*(3)Mo 1	20.57								
LP (1) O 6	\rightarrow LP*(1)Mo 1	22.75								
LP (2) O 6	\rightarrow BD*(2)Mo 1 - 0 5	52.80								
LP (1) N 8	\rightarrow LP*(1)Mo 1	52.89								
LP (1) N 8	→ LP*(3)Mo 1	28.72								
LP (1) N 8	\rightarrow BD*(1)Mo 1 - 0 6	34.92								
LP (1) N 9	→ BD*(1) N 10 - C 24	11.82								
LP (2) O 7	→ LP*(3)Mo 1	35.62								
LP (2) O 7	\rightarrow BD*(1)Mo 1 - 0 5	38.69								
$LP = Lone pair; BD and BD^* = bond and antibond, respectively.$										

Table S11. Main delocalization energy (in kJ/mol) for [MoO ₂ (L)allylOH] (5).									
Delocalizati	on								
BD(2) N	9 – C	$24 \rightarrow$	BD*(2) N 8 - C 17	14.40					
BD(2) N	10 - C	26 →	BD*(3)Mo 1 - 0 5	16.40					
BD(2) N	10 - C	26 →	BD*(2) N 9 - C 24	74.95					
BD(2) C	11 - C	16 \rightarrow	BD*(2) C 12 - C 13	19.08					
BD(2) C	11 - C	16 \rightarrow	BD*(2) C 14 - C 15	26.68					
BD(2) C	12 - C	13 \rightarrow	BD*(2) N 8 - C 17	27.32					
BD(2) C	12 - C	13 \rightarrow	BD*(2) C 11 - C 16	23.80					
BD(2) C	12 - C	13 \rightarrow	BD*(2) C 14 - C 15	20.20					
BD(2) C	14 - C	$15 \rightarrow$	BD*(2) C 11 - C 16	17.54					
BD(2) C	14 - C	$15 \rightarrow$	BD*(2) C 12 - C 13	25.45					
BD(2) C	18 - C	23 →	BD*(2) C 19 - C 20	20.13					
BD(2) C	18 - C	$23 \rightarrow$	BD*(2) C 21 - C 22	20.71					
BD(2) C	19 - C	20 →	BD*(2) C 18 - C 23	21.74					
BD(2) C	19 - C	20 →	BD*(2) C 21 - C 22	21.90					
BD(2) C	21 - C	22 \rightarrow	BD*(2) C 18 - C 23	21.96					
BD(2) C	21 - C	22 \rightarrow	BD*(2) C 19 - C 20	19.95					

BD(2) C	26 - C	31 →	BD*(2) C	27 – C	28	20.22
BD(2) C	26 - C	31 →	BD*(2) C	29 - C	30	20.73
BD(2) C	27 – C	28 →	BD*(2) C	26 - C	31	22.33
BD(2) C	27 – C	28 →	BD*(2) C	29 - C	30	21.75
BD(2) C	29 - C	30 →	BD*(2) C	26 - C	31	21.98
BD(2) C	29 - C	30 →	BD*(2) C	27 – C	28	20.74
$\Delta \text{ET}_{\pi \to \pi^*}$						519.96
LP(2) S	3	\rightarrow	BD*(2) N	9 – C	24	24.59
LP(1) O	4	\rightarrow	LP*(2)Mo	1		44.87
LP(2) O	4	\rightarrow	BD*(2) C	11 - C	16	23.85
LP(3) O	4	\rightarrow	LP*(2)Mo	1		96.61
LP(3) O	4	\rightarrow	LP*(3)Mo	1		21.04
LP(3) O	4	\rightarrow	BD*(2)Mo	1 - 0	6	15.32
LP(3) O	4	\rightarrow	BD*(1)Mo	1 - N	10	18.98
LP(1) O	5	\rightarrow	LP*(1)Mo	1		30.54
LP(1) O	5	\rightarrow	LP*(2)Mo	1		10.81
LP(1) O	5	\rightarrow	LP*(3)Mo	1		20.78
LP(1) O	6	\rightarrow	LP*(1)Mo	1		22.66
LP(2) O	6	\rightarrow	BD*(2)Mo	1 - 0	5	51.64
LP(1) N	8	\rightarrow	LP*(1)Mo	1		53.03
LP(1) N	8	\rightarrow	LP*(3)Mo	1		28.55
LP(1) N	8	\rightarrow	BD*(1)Mo	1 - 0	6	34.81
LP(1) N	9	\rightarrow	BD*(1) N	10 - C	24	11.86
LP(2) O	7	\rightarrow	LP*(3)Mo	1		35.81
LP(2) O	7	\rightarrow	BD*(1)Mo	1 - 0	5	38.60
LP = Lone pa	air; BD and BD	$D^* = bond and a$	antibond, respe	ctively.		

Figure S1. Atom numbering scheme of the ligand (L).

Figure S2. Atom numbering scheme of [MoO₂(L)allylOH] (5).

Figure S3. ¹³C NMR spectra of ligand L (top) and detailed assignment (bottom) (solvent: DMSO- d_6).

Figure S4. ¹³C NMR spectra of [MoO₂(L)Allyl alcohol] (**5**) complex (top) and assignment (bottom) (solvent: DMSO-d₆).

Figure S5. ¹H NMR spectrum of the ligand (**L**) and aromatic group peaks an inset (solvent: DMSO-d₆, reference: TMS).

Figure S6. ¹H NMR spectrum of [MoO₂(L)methanol] (1) complex and aromatic group peaks as inset (solvent: DMSO-d₆, reference: TMS).

Figure S7. ¹H NMR spectrum of [MoO₂(L)ethanol] (2) complex and aromatic group peaks as inset (solvent: DMSO-d₆, reference: TMS).

Figure S8. ¹H NMR spectra of [MoO₂(L)propanol] (**3**) complex and aromatic group peaks as inset (solvent: DMSO-d₆, reference: TMS).

Figure S9. ¹H NMR spectra of [MoO₂(L)butanol] (4) complex and aromatic group peaks as inset (solvent: DMSO-d₆, reference: TMS).

Figure S10. ¹H NMR spectra of [MoO₂(L)allyl alcohol] (5) complex and aromatic group peaks as inset (solvent: DMSO-d₆, reference: TMS).

Compound	2-ОН	NH-Ph	Alcohol- OH	S-CH ₃	1	2	3	4	5
L	13.02 (s) (1H)	8.6 (s) (1H)	-	2.65 (s) (3H)	-	-	-	-	-
$[MoO_2(L)methanol]$ (1)	-	-	4.12 (s) (1H)	1.95 (s) (3H)	3.16 (s) (3H)	-	-	-	-
$[MoO_2(L)ethanol]$ (2)	-	-	4.32 (s) (1H)	1.95 (s) (3H)	3.41–3.45 (m) (2H)	$ \begin{array}{c} 1.05 \\ (t) \\ (J = 6.83) \\ (2H) \end{array} $	-	-	-
$[MoO_2(L)propanol]$ (3)	-	-	4.32 (s) (1H)	1.95 (s) (3H)	3.32–3.34 (m) (2H)	1.38–1.42 (m) (2H)	0.82 (t) (J = 7.32) (3H)	-	-
$[MoO_2(L)butanol]$ (4)	-	-	4.29 (s) (1H)	1.95 (s) (3H)	3.34–3.38 (m) (2H)	1.36–1.39 (m) (2H)	1.27–1.30 (m) (2H)	$0.85 \\ (t) \\ (J = 7.32) \\ (3H)$	-
$[MoO_2(L^{II})allyl alcohol]$ (5)	-	-	$\begin{array}{c} 4.69 \\ (t) \\ (J = 5.37 - \\ 5.85) \\ (1H) \end{array}$	1.96 (s) (3H)	3.92 (t) (J = 4.88-5.37) (2H)	5.87–5.97 (m) (1H)	$5.01 \\ (d-d) \\ (J = 1.96-2.44) \\ (2H)$	-	-

Table S12. Chemical shift values of ligand (**L**) and complexes (1–5), ¹H NMR (δ: ppm, d₆-DMSO, reference: TMS).

Compound	а	b	d	e	f	g	h	i	j	k	1	m	n
	6.76	7.33	6.88	7.31	7.51–7.56	7.51–7.56	7.51–7.56	7.31	7.31	7.02	7.02	7.02	7.31
т	(d)	(d)	(t)	(d)	(m)	(m)	(m)	(d)	(d)	(t)	(t)	(t)	(d)
L	(J = 2.92)	(J = 2.44)	(J = 7.32)	(4H)	(3H)	(3H)	(3H)	(4H)	(4H)	(J = 7.32)	(J = 7.32)	(J = 7.32)	(4H)
	(1H)	(1H)	(1H)							(3H)	(3H)	(3H)	
	6.79	7.45	6.99	7.40	7.51–7.56	7.51–7.56	7.51-7.56	7.40	7.33	7.21	7.21	7.21	7.33
[MoO ₂ (L)methanol]	(d)	(d-d)	(d)	(d)	(m)	(m)	(m)	(d)	(t)	(t)	(t)	(t)	(t)
(1)	(J = 2.44)	(J = 2.44)	(J = 8.79)	(J = 6.83)	(3H)	(3H)	(3H)	(J = 6.83)	(J = 7.32 - 8.3)	(J = 7.32)	(J = 7.32)	(J = 7.32)	(J = 7.32 - 8.3)
	(1H)	(1H)	(1H)	(2H)				(2H)	(2H)	(3H)	(3H)	(3H)	(2H)
	6.80	7.45	6.99	7.40	7.51-7.57	7.51-7.57	7.51-7.57	7.40	7.33	7.21	7.21	7.21	7.33
[MoO ₂ (L)ethanol]	(d)	(d-d)	(d)	(d)	(m)	(m)	(m)	(d)	(t)	(t)	(t)	(t)	(t)
(2)	(J = 2.93)	(J = 2.93)	(J = 8.79)	(J = 6.83)	(3H)	(3H)	(3H)	(J = 6.83)	(J = 7.81)	(J = 7.32)	(J = 7.32)	(J = 7.32)	(J = 7.81)
	(1H)	(1H)	(1H)	(2H)				(2H)	(2H)	(3H)	(3H)	(3H)	(2H)
	6.79	7.45	6.99	7.40	7.51–7.57	7.51–7.57	7.51–7.57	7.40	7.33	7.21	7.21	7.21	7.33
[MoO ₂ (L)propanol]	(d)	(d-d)	(d)	(d)	(m)	(m)	(m)	(d)	(t)	(t)	(t)	(t)	(t)
(3)	(J = 2.44)	(J = 2.93)	(J = 8.79)	(J = 6.83)	(3H)	(3H)	(3H)	(J = 6.83)	(J = 7.81)	(J = 7.32)	(J = 7.32)	(J =7.32)	(J = 7.81)
	(1H)	(1H)	(1H)	(2H)				(2H)	(2H)	(3H)	(3H)	(3H)	(2H)
TT .	6.79	7.45	6.99	7.40	7.51–7.57	7.51–7.57	7.51–7.57	7.40	7.33	7.21	7.21	7.21	7.33
$[MoO_2(L^{II})butanol]$	(d)	(d-d)	(d)	(d)	(m)	(m)	(m)	(d)	(t)	(t)	(t)	(t)	(t)
(4)	(J = 2.93)	(J = 2.44)	(J = 8.79)	(J = 6.83)	(3H)	(3H)	(3H)	(J = 6.83)	(J = 7.32 - 8.3)	(J = 7.32)	(J = 7.32)	(J = 7.32)	(J = 7.32 - 8.3)
	(1H)	(1H)	(1H)	(2H)				(2H)	(2H)	(3H)	(3H)	(3H)	(2H)
	6.79	7.45	6.99	7.40	7.50–7.57	7.50–7.57	7.50-7.57	7.40	7.33	7.20	7.20	7.20	7.33
[MoO ₂ (I II)ally]	(d)	(d-d)	(d)	(d)	(m)	(m)	(m)	(d)	(t)	(t)	(t)	(t)	(t)
	(J = 2.92)	(J = 2.93)	(J = 8.79)	(J = 6.83)	(3H)	(3H)	(3H)	(J = 6.83)	(J = 7.32 -	(J = 7.81)	(J = 7.81)	(J = 7.81)	(J = 7.32 -
alcoholj (5)	(1H)	(1H)	(1H)	(2H)				(2H)	8.30)	(3H)	(3H)	(3H)	8.30)
									(2H)				(2H)

Table S13. ¹H NMR chemical shift values of aromatic hydrogens of ligand (L) and complexes (1–5) (δ : ppm, d₆-DMSO, Reference: TMS).

Table S14. The molybdenum-centered bond distances and angles of complex **5**. ⁽¹⁾ indicates axis angles of the octahedron, ⁽²⁾ angles between allyl alcohol oxygen (O4) and the atoms in the meridional positions.

Experimental		Theoretical						
	Allylalcohol	Allylalcohol	Methanol	Ethanol	Butanol	Propanol	Ligand	
	Distance (Å)	Distance (Å)						
Mo1- O1	1.934(2)	1.965	1.939	1.96527	1.96490	1.96592	-	
Mo1-O2	1.684(2)	1.735	1.740	1.73531	1.73528	1.73547	-	
Mo1-O3	1.711(2)	1.745	1.742	1.74506	1.74501	1.74419	-	
Mo1-O4	2.380(2)	2.529	2.271	2.50326	2.49665	2.49703	-	
Mo1-N1	2.245(2)	2.284	2.294	2.28565	2.28444	2.28651	-	
Mo1-N3	2.059(2)	2.076	2.147	2.07768	2.07809	2.07769	-	
N3-C14	1.346(3)	1.36814	1.38311	1.36719	1.36627	1.36673	1.28350	
N2-C14	1.308(3)	1.32701	1.31948	1.32730	1.32776	1.32759	1.45186	
N2-N1	1.393(3)	1.40845	1.40639	1.40874	1.40957	1.40883	1.26602	

N1-C7	1.309(3)	1.32900	1.32506	1.32872	1.32872	1.32843	1.37859
C2-C7	1.466(3)	1.47235	1.47132	1.47266	1.47253	1.47273	1.48455
C7-C8	1.486(3)	1.42840	1.43038	1.42857	1.42867	1.42858	1.47047
C1-O1	1.338(3)	1.36281	1.35948	1.36224	1.36210	1.36225	1.28946
Angle (degrees)							
O4-Mo1-O2 ⁽¹⁾	171.31(9)	176.94	160.59954	176.49365	176.25159	176.17149	-
O3-Mo1-N1 ⁽¹⁾	157.66(8)	154.37	160.66326	154.70289	154.41245	154.83469	-
O1-Mo1-N3 ⁽¹⁾	146.79(8)	146.05	147.67587	146.36964	146.50959	146.32844	-
O4-Mo1-O1 ⁽²⁾	77.26(7)	100.45	95.83609	100.07757	99.98523	78.12956	-
O4-Mo1-O3 ⁽²⁾	82.69(9)	107.31	102.43118	107.19686	107.23806	76.60676	-
O4-Mo1-N1 ⁽²⁾	78.06(8)	97.18	95.42376	96.89878	97.13103	79.60262	-
O4-Mo1-N3 ⁽²⁾	79.08(8)	101.18	102.43118	100.93044	100.79348	79.26179	-
Mo1-N3 ⁽²⁾ -C14	118.1(1)	117.96795	115.50812	117.92013	117.94188	117.92652	-
N3 ⁽²⁾ -C14-N2	124.0(2)	123.13662	123.39468	123.21361	123.19433	123.24865	118.16024
C14-N2-N1	109.1(2)	111.13637	113.18457	111.12199	111.06999	111.09972	115.43981
N2-N1-C7	115.1(2)	115.98808	115.33104	116.04114	109.11436	116.05020	128.38413

C8-C7-C2	117.7(2)	122.80182	121.54697	122.81917	122.80204	122.82209	115.66864
C2-C1-O1	122.1(2)	121.78294	122.46368	121.83497	121.83847	121.84497	119.60861
C1-O1-Mo1	129.7(2)	133.38912	138.22807	133.43659	121.83847	133.42098	-
N2-N1-Mo1	117.0(1)	115.06485	114.58699	115.03026	122.43151	115.01676	-
Mo1-N1-C7	127.9(2)	128.86315	130.02732	128.85626	128.14588	128.85740	-