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Abstract: Starting from a chiral secondary alcohol, novel enantiopure 1,4-aminoalkylphenols (AAPs) were prepared by
exploiting conventional organic transformations such as the Mitsunobu reaction, Eschweiler–Clarke N -methylation, and
demethylation of anisoles. The catalytic activity of the 1,4-AAPs was investigated in enantioselective Et2 Zn addition to
benzaldehyde. They were found to accelerate the Et2 Zn addition to benzaldehyde. High yields and enantioselectivities
(e.g., 95% yield and 82% ee) were achieved.
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1. Introduction
In asymmetric catalysis, the design and synthesis of novel structural motifs are vitally important for the
development of new chiral ligands or catalysts exhibiting high levels of activity and enantioselectivity.1,2

In this context, aminoalcohols constitute an important part of the field. In contrast, aminoalkylphenols
(AAPs), the isosteres of aminoalcohols, have been rarely utilized as catalysts although some records have
demonstrated that they are very promising for catalysis. For example, the Betti base3,4 and its derivatives are
the traditional representatives of chiral AAPs and have been used as catalysts in the enantioselective addition
reactions of diethylzinc (Et2Zn)3 and as hydrogen-bond donor organocatalysts for hetero Diels–Alder reactions5

and the asymmetric acyl-Strecker reaction.6 Other well-known examples of this class are the demethylated
derivatives of cinchona alkaloids that have been found to be useful in certain asymmetric reactions, such as
[4+2] cycloaddition reactions,7 Morita–Baylis–Hillman (MBH) reactions,8 aza MBH reactions,9 conjugate
additions to α ,β -unsaturated systems,10−16 enantioselective addition to activated carbonyl compounds,17−19

enantioselective transamination,20,21 and some other asymmetric transformations as well.22,23 In addition,
Maruoka et al. developed a binaphthyl-based axially chiral secondary amine/phenol bifunctional organocatalyst
for the highly anti-diastereo- and enantioselective Mannich reaction.24 A remarkable 7:1 anti/syn diastereomeric
ratio and a 98% enantiomeric excess (ee) have been reported. Furthermore, Hirose et al. recently prepared some
enantiopure 1,3-AAPs by resolution of their enantiomers via diastereomeric salt formation, and they exhibited
high activity and selectivity in the asymmetric addition of Et2Zn to benzaldehyde.25,26 It is also noteworthy
that AAPs are models for proton-coupled electron transfer.27

Recently, we developed the synthesis of chiral alcohols of type 1 in enantiomerically pure forms.28,29
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We reasoned that these chiral alcohols could be suitable precursors for the synthesis of enantiopure 1,4-AAPs
as potential catalysts (Scheme 1). Herein, we present the synthesis of novel chiral 1,4-AAPs as well as their
catalytic performance in enantioselective Et2Zn addition to benzaldehyde.

Scheme 1. Synthetic proposal for enantiopure 1,4-aminoalkylphenols (1,4-AAPs).

2. Results and discussion
First, the enantiomerically pure secondary alcohols 1a–1c were subjected to the Mitsunobu reaction by em-
ploying phthalimide as the nucleophilic partner (Scheme 2). Thus, the stereo-inversed phthalimide derivatives
2a–2c were obtained in satisfactory yields (75%–72%). Their enantiomeric excesses were measured on a HPLC
instrument equipped with a chiral column (Chiralpak AD-H) and determined to be >99%. Aminolysis of 2a–2c
with hydrazine hydrate provided the primary amines 3a–3c in yields of 91%–68%. Tertiary amines 4a–4c were
prepared from the corresponding amines 3a–3c by treating them with formic acid and aqueous formaldehyde
under reflux. Similarly, 3b was then treated with 1,4-diiodobutane as the alkylating agent. This provided us
with the pyrrolidine derivative 5b in 70% yield after column chromatography. The secondary amine 6b was
synthesized from 3b in 76% overall yield, via a two-step reaction: 3b was first treated with benzaldehyde to
give the corresponding imine, which was then reduced to 6b with sodium cyanoborohydride.

Next, we tried the well-established demethylation procedures in order to access 1,4-AAPs. Boron
tribromide (BBr3) was first employed using different solvents (e.g., toluene, THF, and DCM), by changing
the reaction temperatures. However, formation of unknown side products was observed in most cases. On
the other hand, ethanethiol-sodium tert-butoxide mixture in DMF turned out to be the most suitable for
the demethylation of the aminoalkylanisoles (4a–4c, 5b, 6b), thus providing the corresponding 1,4-AAPs
(7a–7c, 8b, 9b) in good yields (99%–89%). Synthesis of the 1,4-AAP 10 possessing a primary amine group
was presented by us in a previous publication.30 Thus, the synthesis of AAPs bearing primary, secondary,
and tertiary amine groups was accomplished. The structures of all compounds were characterized by nuclear
magnetic resonance spectroscopy. It should be mentioned that the compounds 2c, 3c, 4c, and 7c that carry
2,4-bis(1,1-dimethylbenzyl)-anisole or -phenol as the building unit feature remarkable patterns in their NMR
spectra. Their 1,1-dimethyls, which are adjacent to the methoxyl or phenolic hydroxyl groups, resonate at
different fields, i.e. their chemical shifts are different. That is, they are diastereotopic. Considering the presence
of an asymmetric center in these molecules, this phenomenon must arise from the restricted or completely
hindered rotation about the C(aryl)-C(benzyl) bond.

The secondary alcohol 11 was also considered as the precursor for the synthesis of further 1,4-AAPs
bearing a tert-butyl group adjacent to the chiral center, which would make them sterically more demanding
(Scheme 3). However, all attempts to convert 11 into 12 derivatives by employing the known modifications
of the Mitsunobu reaction failed. In most cases, the elimination product 13 was detected as the sole product,
instead of the expected product (12). This result can be apparently attributed to the very close presence of the
bulky tertiary alkyl group to the reaction center as well as the conjugated position of the leaving group, which
in turn accounts for the elimination.
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Scheme 2. Preparation of AAPs. NPhth = Phthalimido. Reagents and conditions: (a) Ph3 P (4.0 equiv.), HNPhth
(3.0 equiv.), DIAD (4.0 equiv.), THF, 0 °C to rt, 12 h; (b) H2 NNH2 •H2 O (10.0 equiv.), EtOH, reflux, 6 h; (c) HCOOH,
HCHO (aq.), reflux, 12 h; (d) 1,4-diiodobutane, K2 CO3 , ACN, reflux, 12 h; (e) (1) PhCHO (1.0 equiv.), MgSO4 , DCM,
rt, 16 h, (2) NaCNBH3 (2.0 equiv.), AcOH (4.0 equiv.), MeCN, 0 °C to rt, 18 h; (f) NaO t Bu (ca. 3.0 equiv.), EtSH
(ca. 8.0 equiv.), DMF, 120 °C, 2 h.

Scheme 3. Attempts at Mitsunobu-type reactions with sterically demanding alcohol 11.

After the effective preparation of 1,4-AAPs, they were evaluated as catalysts in the Et2Zn addition
of benzaldehyde (14), a widely accepted test combination for evaluating the catalytic performance of new
ligands in terms of both activity and enantiodiscrimination (Table).31−35 At this point, it should be men-
tioned that a number of 1,4-aminoalcohols were shown to accelerate this transformation with high levels of
enantioselectivity.36−40 Initially, 10 mol% of 7b was used as the catalyst in order to determine the general
catalytic profile of the 1,4-AAPs (Table, entries 1–6). The combination of AAP 7b with Ti(O iPr)4 entirely
removed the enantioselectivity (entry 1), while AAP 7b performed the asymmetric Et2Zn addition to ben-
zaldehyde with 70% yield and 80% ee (entry 2). Significantly, changing the solvent from Et2O to toluene
hampered the catalytic activity of 7b (entry 3). Of the various solvents tried (e.g., Et2O, THF, DCM, hexane),
hexane resulted in the highest enantioselectivity (82% ee, entries 2–6). Although 8b is sterically more hindered
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Table. Enantioselective diethylzinc addition to benzaldehyde (14) accelerated by 1,4-AAPs.a

Entry AAP Solvent Yield (%)b ee (%)c
1 7b Et2O 73 Racemicd
2 7b Et2O 70 80 (S)
3 7b Toluene No reaction –
4 7b THF 75 16 (S)
5 7b CH2Cl2 68 76 (S)
6 7b Hexane 80 82 (S)
7 8b Et2O 82 58 (S)
8 7c Et2O 83 65 (S)
9 10 Et2O 77 36 (S)
10 10 Toluene 65 46 (S)
11 7a Et2O 76 74 (R)
12 9b Et2O 95 70 (S)

a Reaction conditions: Reactions were run by employing 14 (0.5 mmol, 1.00 equiv.), Et2Zn (1.80 equiv), and AAP
(10 mol%) in a solvent (2 mL).
b Yield% of the NMR-pure product (15).
c Determined by chiral GC (CP-Chirasil-Dex-CB).
d Ti(OiPr)4 was used.

around the nitrogen atom in comparison to 7b, it catalyzed the Et2Zn addition to benzaldehyde with a lower
enantioselectivity (58% ee vs. 80% ee, entries 7 and 2). Similarly, increasing the steric hindrance around the
phenolic hydroxyl group of the AAPs (7c vs. 7b) resulted in a decrease in enantiomeric excess, 65% ee vs.
80% ee, respectively (entries 8 and 2). More interestingly, a reversal of enantioselectivity was observed when
AAP 7a was employed as the catalyst instead of 7b (entries 11 and 2). This might be due to the preferential
coordination of Et2Zn to the oxygen atom of the zinc complex formed from 7a and Et2Zn. On the other hand,
oxygen atoms of the zinc complexes expected to be formed in situ from Et2Zn and the other AAPs should be
more crowded, which can hinder coordination of Et2Zn to the oxygen atoms of those zinc complexes. This
result also hints that the reaction mechanism can be switched by changing the substituents adjacent to the
phenolic hydroxyl group. AAP 10, which bears a primary amine group, was also determined to be an effective
catalyst. However, it afforded only 36% and 46% ee depending on the solvent used (entries 9 and 10). Among
the AAPs tested so far, AAP 9b, having a secondary amine moiety, appeared to be the most effective, thus
providing addition product 15 in 95% yield albeit with 70% ee (entry 12). The highest activity of 9b might be
interpreted in different ways. However, there is likely an additional interaction between the zinc complex and
benzaldehyde during the course of the reaction, e.g., π · · · π interaction between benzaldehyde and the benzyl
group attached to the nitrogen atom. From the results of these catalytic studies, it is difficult to conclude that
there is a correlation between the steric bulkiness of the AAPs and the enantioselectivity. It is generally ac-
cepted that the stereoselectivity of a catalytic system mainly depends on a subtle interplay between the catalyst
and the reaction partners. The same seems to hold for our AAPs.

In summary, we prepared novel enantiopure 1,4-aminoalkylphenols by exploiting conventional organic
transformations such as the Mitsunobu reaction, Eschweiler–Clarke N -methylation, and demethylation of
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anisoles. Their catalytic activity in Et2Zn addition to benzaldehyde was investigated. Thus, they were
determined to be very promising catalysts for Et2Zn addition to benzaldehyde, thereby affording high activity
and enantioselectivity (up to 95% yield and 82% ee). We think that these AAPs will serve as catalysts in further
asymmetric transformations.

3. Experimental

3.1. General
Dry nitrogen atmosphere was provided during the execution of the air-sensitive transformations. Gas-tight
syringes were used for the addition of reagents and solvents under N2 . Thin-layer chromatography (TLC)
sheets were made visual by staining with ethanolic phosphomolybdic acid (10%, w/v) and/or by UV light.
Flash chromatography using silica gel (230–400 mesh) was applied for purification of the products. The melting
point (mp) measurements were performed in a capillary tube and are uncorrected. A PerkinElmer Spectrum
One FTIR spectrometer was used for recording the infrared (FTIR) spectra, ν̃max , in cm−1 . HR mass spectra
were obtained in MeOH with the aid of electrospray ionization. A 500 MHz NMR spectrometer was utilized
for recording the NMR spectra. Chemical shift values (δ) are given in ppm. The sample concentrations in the
specific rotations ([α ]) were given in units of g/100 mL. Et2O and THF were dried by refluxing with ketyl
radicals generated from sodium/benzophenone and distilled under N2 . DMF and dichloromethane (DCM) were
dried with CaH2 and distilled under N2 .

3.2. General procedure I (Mitsunobu reaction of alcohols with phthalimide): (R)-2-(2-(2-methoxy-
phenyl)-1-phenylethyl)isoindoline-1,3-dione (2a)

(S) -2-(2-Methoxyphenyl)-1-phenylethanol (1a) (1.0 g, 4.4 mmol), PPh3 (4.60 g, 17.6 mmol), and phthalimide
(1.94 g, 13.2 mmol) were put into a Schlenk flask (250 mL). After evacuating and back-filling the flask with
nitrogen, dry THF (180 mL) was added using a syringe. Then diisopropyl azodicarboxylate (DIAD) (3.50 mL,
3.56 g, 17.6 mmol) was dropwise transferred into the tube with the aid of a syringe, under cooling with an ice
bath. The consumption of 1a was followed by thin-layer chromatography (rt, 12 h). Then the THF was distilled
under reduced pressure. Column chromatographic separation on silica gel furnished oily product 2a (1.75 g,
3.3 mmol, 75%). TLC: Rf = 0.52 (silica gel; hexanes/EtOAc, 8:2). [α]

22
D = +96 (c = 0.5, CHCl3) . HPLC:

Daicel Chiralpak AD-H (4.60 mm ID ×250 mm column length); n -hexane/iPrOH (98:2), 0.5 mL/min; 254 nm
(UV/Vis); tR = 11.7 min (ent-2a), tR = 13.8 min (2a). 1H NMR (500 MHz, CDCl3) : δ = 7.72–7.78 (m, 2H),
7.60–7.68 (m, 4H), 7.34–7.41 (m, 2H), 7.28–7.33 (m, 1H), 7.15 (td, J = 8.1, 1.7 Hz, 1H), 7.09 (dd, J = 7.4, 1.5
Hz, 1H), 6.83 (d, J = 8.1 Hz, 1H), 6.74 (td, J = 7.4, 0.9 Hz, 1H), 5.85 (dd, J = 10.9, 5.1 Hz, 1H), 3.93 (dd,
J = 13.5, 10.9 Hz, 1H), 3.84 (s, 3H), 3.61 (dd, J = 13.5, 5.1 Hz, 1H). 13C NMR (APT, 125 MHz, CDCl3) :
δ = 168.3 (C), 157.8 (C), 139.9 (C), 133.8 (CH), 131.8 (C), 130.8 (CH), 128.4 (CH), 128.0 (CH), 128.0 (CH),
127.7 (C), 126.4 (C), 123.1 (CH), 120.3 (CH), 110.3 (CH), 55.3 (CH3) , 54.1 (CH), 32.4 (CH2) .

3.3. (R)-2-(2-(3,5-Di-tert-butyl-2-methoxyphenyl)-1-phenylethyl)isoindoline-1,3-dione (2b)

Following general procedure I as described above, 1b (3.40 g, 10.0 mmol), PPh3 (10.50 g, 40.0 mmol), DIAD
(7.90 mL, 8.00 g, 40.0 mmol), phthalimide (4.40 g, 30.0 mmol), and 400 mL of THF were employed. After
column chromatographic separation on silica gel, the title compound (2b) (3.5 g, 7.5 mmol, 75%) was obtained
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as a colorless oil. TLC: Rf = 0.25 (silica gel; hexanes/EtOAc, 95:5). [α]
22
D = +140 (c = 0.5, CHCl3) . HPLC:

Daicel Chiralpak AD-H (4.60 mm ID ×250 mm column length); n -hexane/iPrOH (98:2), 0.5 mL/min; 254 nm
(UV/Vis); tR = 17.1 min (ent-2b), tR = 19.4 min (2b). 1H NMR (500 MHz, CDCl3) : δ = 7.69 (dd, J =

5.3, 3.1 Hz, 2H), 7.64–7.56 (m, 4H), 7.35 (t, J = 7.5 Hz, 2H), 7.28 (d, J = 7.3 Hz, 1H), 7.06 (d, J = 2.1 Hz,
1H), 6.95 (d, J = 2.0 Hz, 1H), 5.72 (dd, J = 11.2, 4.8 Hz, 1H), 3.98 (dd, J = 13.8, 11.4 Hz, 1H), 3.79 (s, 3H),
3.50 (dd, J = 13.9, 4.8 Hz, 1H), 1.26 (s, 9H), 1.07 (s, 9H). 13C NMR (APT, 125 MHz, CDCl3) : δ = 168.0
(C), 156.3 (C), 145.5 (C), 142.0 (C), 139.7 (C), 133.6 (CH) 132.0 (C), 130.8 (C), 128.5 (CH), 128.1 (CH), 127.7
(CH), 126.4 (CH), 122.9 (CH), 122.8 (CH), 61.8 (CH), 54.8 (CH3) , 35.2 (C), 34.2 (C), 32.8 (CH2) , 31.3 (CH3) ,
31.0 (CH3) .

3.4. (R)-2-(2-(2-Methoxy-3,5-bis(2-phenylpropan-2-yl)phenyl)-1-phenylethyl)isoindoline-1,3-dione
(2c)

Following general procedure I as described above, 1c (4.60 g, 10.0 mmol), PPh3 (10.50 g, 40.0 mmol), DIAD
(7.90 mL, 8.00 g, 40.0 mmol), phthalimide (4.40 g, 30.0 mmol), and 400 mL of THF were employed. After
column chromatographic separation on silica gel, the title product (2c) (4.3 g, 7.2 mmol, 72%) was isolated as
a colorless oil. TLC: Rf = 0.29 (silica gel; hexanes/EtOAc, 95:5). [α]

22
D = +118 (c = 0.5, CHCl3) . HPLC:

Daicel Chiralpak AD-H (4.60 mm ID ×250 mm column length); n -hexane/iPrOH (98:2), 0.5 mL/min; 254 nm
(UV/Vis); tR = 16.2 min (ent-2c), tR = 19.8 min (2c). 1H NMR (500 MHz, CDCl3) : δ = 7.1, 3.5 Hz, 2H),
7.67–7.61 (m, 2H), 7.53 (d, J = 7.4 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.27–7.19 (m, 4H), 7.11 (ddd, J =

14.9, 10.5, 3.9 Hz, 5H), 7.05–7.00 (m, 3H), 6.93 (d, J = 2.2 Hz, 1H). 5.66 (dd, J = 11.1, 5.0 Hz, 1H), 3.81 (dd,
J = 13.8, 11.2 Hz, 1H), 2.65 (s, 3H), 3.34 (dd, J = 13.9, 5.0 Hz, 1H), 1.46–1.53 (m, J = 12.5 Hz, 9H), 1.27 (s,
3H). 13C NMR (APT, 125 MHz, CDCl3) : δ = 167.9 (C), 155.7 (C), 151.9 (C), 150.80 (C), 145.0 (C), 142.4
(C), 139.5 (C), 133.6 (CH), 131.9 (C), 130.8 (C), 128.4 (CH), 128.1 (CH), 128.0 (CH), 127.8 (CH), 127.8 (CH),
127.6 (CH), 126.6 (CH), 126.1 (CH), 125.4 (CH), 125.1 (CH), 124.5 (CH), 122.8 (CH), 59.6 (CH3) , 54.6 (CH),
42.6 (CH2) , 42.1 (C), 32.7 (C), 30.8 (CH3) , 30.7 (CH3) , 29.82 (CH3) , 29.80 (CH3) .

3.5. General procedure II (preparation of tertiary aminoalkylanisoles): (R)-2-(2-methoxyphenyl)-
N,N-dimethyl-1-phenylethan-1-amine (4a)

First, 2a (0.95 g, 2.7 mmol) was placed into a two-necked flask (100 mL). The flask was filled with dry N2 .
Ethanol (40 mL) and hydrazine hydrate (1.30 mL, 1.34 g, 27 mmol) were added consecutively. Refluxing was
conducted for 6 h under N2 . The consumption of 2a was followed by TLC (6 h). For quenching the reaction,
water (20 mL) was added. After the ethanol was distilled under reduced pressure, the organic components were
separated from the aqueous residue by extraction with DCM (3 ×60 mL). After the usual work-up procedures,
including drying over Na2SO4 and filtration as well as concentration in vacuo, colorless solid product 3a (500
mg, 2.2 mmol, 81%) was obtained. This product was directly used in the next step because it was determined
not to be stable enough to isolate and store. Then 3a (500 mg, 2.2 mmol) was put into a Schlenk tube
(10 mL). After evacuating and back-filling the tube with nitrogen, formic acid (0.90 mL, 1.1 g, 24.0 mmol)
and aqueous formaldehyde (37%, 360 µL, 391 mg, 4.8 mmol formaldehyde) were transferred into the tube
successively. After the tube was equipped with a reflux condenser, refluxing was carried out for 12 h under
N2 . The consumption of 3a was followed by TLC (12 h). Upon the completion of the conversion, the tube
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was cooled down. The pH value was adjusted to 9–10 by adding saturated aqueous NaHCO3 . The organic
components were separated from the aqueous residue by extraction with DCM (3 ×60 mL). After the additional
work-up procedures, including drying over Na2SO4 and filtration as well as concentration in vacuo, column
chromatographic separation on silica gel furnished colorless oily product 4a (300 mg, 1.17 mmol, 53%). TLC:
Rf = 0.17 (silica gel; hexanes/EtOAc/TEA, 9:1:0.5). 1H NMR (500 MHz, CDCl3) : δ = 7.20–7.25 (m, 2H),
7.13–7.19 (m, 3H), 7.06–7.11 (m, 1H), 6.73–6.78 (m, 2H), 6.68 (td, J = 7.4, 1.0 Hz, 1H), 3.77 (s, 3H), 3.52 (dd,
J = 9.7, 4.8 Hz, 1H), 3.44 (dd, J = 13.0, 4.8 Hz, 1H), 2.90 (dd, J = 13.0, 9.7 Hz, 1H), 2.29 (s, 6H). 13C NMR
(APT, 125 MHz, CDCl3) : δ = 157.4 (C), 140.5 (C), 130.9 (CH), 128.7 (CH), 127.8 (C), 127.5 (CH), 126.9
(CH), 126.7 (CH), 119.9 (CH), 110.0 (CH), 70.8 (CH3) , 55.1 (CH), 43.1 (CH3) , 34.1 (CH2) .

3.6. (R)-2-(3,5-Di-tert-butyl-2-methoxyphenyl)-N,N-dimethyl-1-phenylethylamine (4b)

Following general procedure II as described above, 2b (2.82 g, 6.0 mmol), 90 mL of ethanol, hydrazine hydrate
(2.90 mL, 3.00 g, 60.0 mmol), formic acid (1.70 mL, 2.07 g, 45.0 mmol), and aqueous formaldehyde (37%,
672 µL, 730 mg, 9.0 mmol formaldehyde) were employed. Column chromatographic separation on silica gel
furnished the title compound (4b) (950 mg, 2.59 mmol, 64%) as a colorless oil. TLC: Rf = 0.22 (silica gel;
hexanes/EtOAc/TEA, 9.5:0.25:0.25). 1H NMR (500 MHz, CDCl3) : δ = 7.12–7.17 (m, 2H), 7.06–7.12 (m, 3H),
7.01 (d, J = 2.5 Hz, 1H), 6.56 (s, 1H), 3.79 (s, 3H), 3.51 (ddd, J = 18.0, 11.6, 4.8 Hz, 2H), 2.87 (dd, J =

13.3, 9.9 Hz, 1H), 2.30 (s, 6H), 1.34 (s, 9H), 1.08 (s, 9H). 13C NMR (APT, 125 MHz, CDCl3) : δ = 155.9 (C),
144.8 (C), 141.3 (CH), 140.7 (C), 131.7 (C), 128.6 (CH), 127.7 (CH), 126.8 (CH), 126.7 (CH), 121.8 (CH), 71.3
(CH3) , 61.6 (CH), 43.3 (CH3) , 35.4 (CH2) , 35.2 (s), 34.2 (C), 31.3 (CH3) , 31.1 (CH3) . HR MS (ESI): m/z

[M+H]+ calcd for C25H38NO: 368.2953; found: 368.2926.

3.7. (R)-2-(2-Methoxy-3,5-bis(2-phenylpropan-2-yl)phenyl)-N,N-dimethyl-1-phenyl ethan-1-amine
(4c)

According to general procedure II as described above, 2c (3.60 g, 6.00 mmol), 90 mL of ethanol, hydrazine
hydrate (2.90 mL, 3.00 g, 60.0 mmol), formic acid (1.70 mL, 2.07 g, 45.0 mmol), and aqueous formaldehyde
(37%, 672 µL, 730 mg, 9.0 mmol formaldehyde) were employed. Column chromatographic separation on silica
gel furnished the title compound (4c) (1.6 g, 3.24 mmol, 79%) as a colorless oil. TLC: Rf = 0.2 (silica gel;
hexanes/EtOAc, 7:3). 1H NMR (500 MHz, CDCl3) : δ = 7.19–7.13 (m, 4H), 7.12–7.00 (m, 7H), 6.98–6.90 (m,
J = 9.1, 4.4, 1.8 Hz, 5H), 6.46 (d, J = 2.4 Hz, 1H), 3.40 (dd, J = 10.4, 4.7 Hz, 1H), 3.23 (dd, J = 13.4,
4.8 Hz, 1H), 2.69 (dd, J = 13.3, 10.6 Hz, 1H), 2.63 (s, 3H), 2.15 (s, 6H), 1.49 (s, 3H), 1.42 (d, J = 7.7 Hz,
6H), 1.36 (s, 3H). 13C NMR (APT, 125 MHz, CDCl3) : δ = 155.26 (C), 152.09 (C), 150.98 (C), 144.19 (C),
141.77 (C), 131.51 (C), 128.60 (CH), 127.81 (CH), 127.75 (CH), 127.66 (CH), 126.77 (CH), 126.67 (CH), 126.00
(CH), 125.30 (CH), 125.03 (CH), 123.42 (CH), 70.69 (CH3) , 59.40 (CH), 43.22 (CH3) , 42.45 (C), 42.10 (C),
35.31 (CH2) , 30.80 (CH3) , 30.70 (CH3) , 30.66 (CH3) , 29.44 (CH3) . HR MS (ESI): m/z [M+H]+ calcd for
C35H42NO: 492.3266; found: 492.3243.

3.8. (R)-1-(2-(3,5-Di-tert-butyl-2-methoxyphenyl)-1-phenylethyl)pyrrolidine (5b)

The amine 3b (1.40 g, 4.1 mmol) and anhydrous K2CO3 (1.30 g, 9.4 mmol) were put into a two-necked flask
(250 mL). The flask was filled with dry N2 . Dry acetonitrile (ACN, 25 mL) and 1,4-diiodobutane (540 µL,
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1.27 g, 4.1 mmol) were sequentially added to the flask. Then refluxing was conducted for 12 h under N2 . The
resulting mixture was then stirred under reflux for 12 h under N2 . The consumption of 3b was monitored by
TLC. Upon completion of the conversion, the tube was cooled. For quenching the reaction, water (60 mL) was
added. The organic components were separated from the aqueous residue by extraction with DCM (3 ×110 mL).
After further work-up procedures, which included drying over Na2SO4 and filtration as well as concentration in
vacuo, column chromatographic separation on silica gel furnished colorless oily product 5b (1.13 g, 2.87 mmol,
70%). TLC: Rf = 0.24 (silica gel; hexanes/EtOAc/TEA, 9.5:0.25:0.25). 1H NMR (500 MHz, CDCl3) : δ =

7.04–7.13 (m, 5H), 7.01 (d, J = 2.5 Hz, 1H), 6.44 (d, J = 2.5 Hz, 1H), 3.78 (s, 3H), 3.55 (dd, J = 13.2, 4.3
Hz, 1H), 3.41 (dd, J = 10.3, 4.3 Hz, 1H), 2.80 (dd, J = 13.2, 10.3 Hz, 1H), 2.67 (t, J = 6.4 Hz, 2H), 2.50
(dd, J = 9.7, 3.9 Hz, 2H), 1.78–1.81 (m, 4H), 1.34 (s, 9H), 1.07 (s, 9H). 13C NMR (APT, 125 MHz, CDCl3) :
δ = 156.0 (C), 144.7 (C), 143.0 (CH), 141.3 (C), 131.5 (C), 128.1 (CH), 127.6 (CH), 127.2 (CH), 126.5 (CH),
121.7 (CH), 71.6 (CH3) , 61.6 (CH), 53.0 (CH2) , 38.4 (CH2) , 35.1 (C), 34.1 (C), 31.3 (CH3) , 31.1 (CH3) , 23.4
(CH2) . HR MS (ESI):m/z [M+H]+ calcd for C27H40NO: 394.3110; found: 394.3132.

3.9. (R)-N-Benzyl-2-(3,5-di-tert-butyl-2-methoxyphenyl)-1-phenylethyl-amine (6b)

The amine 3b (340.00 mg, 1.00 mmol) was put into a Schlenk tube (25 mL). Dry DCM (5 mL), MgSO4 (240
mg, 2.00 mmol), and benzaldehyde (14, 102 µL, 106 mg, 1.0 mmol) were added to the tube sequentially. After
magnetic stirring for 16 h at ambient temperatures, the reaction mixture was filtered and thus MgSO4 was
removed. DCM was distilled and the residue was transferred into another Schlenk tube (25 mL). It was flushed
with dry nitrogen. Dry ACN (7 mL) was added. Under cooling of the resulting homogeneous mixture, sodium
cyanoborohydride (105 µL, 126 mg, 2.0 mmol) was added and then it was stirred at 0 °C for 15 min. After
the addition of glacial acetic acid (229 µL, 240 mg, 4.0 mmol), the resulting homogeneous mixture was further
stirred at ambient temperature for 18 h. Upon completion of the reaction, the mixture was poured into a 100-
mL beaker containing 2% methanolic (v/v) DCM (40 mL) and it was shaken with 1.0 N aqueous NaOH (3 ×30
mL). After filtration and drying over Na2SO4 , the organic phase was concentrated. Column chromatographic
purification on silica gel furnished colorless solid product 6b (0.34 g, 0.79 mmol, 79%). Mp: 101–102 °C. TLC:
Rf = 0.46 (silica gel; hexanes/EtOAc/TEA, 9:0.8:0.2). 1H NMR (500 MHz, CDCl3) : δ = 7.46–7.41 (m, 2H),
7.37 (t, J = 7.5 Hz, 2H), 7.32–7.18 (m, 5H), 7.11 (d, J = 6.9 Hz, 2H), 6.93 (d, J = 2.2 Hz, 1H), 4.02 (dd,
J = 8.6, 5.2 Hz, 1H), 3.79 (s, 3H), 3.70 (d, J = 13.7 Hz, 1H), 3.50 (d, J = 13.7 Hz, 1H), 3.09 (dd, J = 13.7,
8.8 Hz, 1H), 2.97 (dd, J = 13.9, 5.2 Hz, 1H), 1.84 (s, 1H), 1.43 (s, 9H), 1.27 (s, 9H). 13C NMR (APT, 125
MHz, CDCl3) : δ = 156.2 (C), 145.4 (C), 144.4 (C), 141.9 (C), 140.6 (C), 131.4 (C), 128.3 (CH), 128.2 (CH),
127.8 (CH), 127.4 (CH), 126.9 (CH), 126.6 (CH), 126.2 (CH), 122.5 (CH), 62.7 (CH), 61.7 (CH3) , 51.4 (CH2) ,
40.5 (C), 35.3 (C), 34.3 (CH3) , 31.5 (CH3) , 31.2 (CH3) . HR MS (ESI): m/z [M+H]+ calcd for C30H40NO:
430.3110; found: 430.3147.

3.9.1. General procedure III (demethylation of anisoles): (R)-2-(2-(dimethylamino)-2-phenyl-
ethyl)phenol (7a)

Dry DMF (10 mL) and ethanethiol (1.20 mL, 994 mg, 16.00 mmol) were put into a Schlenk tube (25 mL). The
tube was flushed with dry N2 . To the ice-cooled tube was added NaO tBu (576 mg, 6.00 mmol). After the tube
was stirred at 0 °C for 15 min, 4a (510 mg, 2.00 mmol) was then added. The mixture was stirred at 120 °C
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for 4 h. Upon completion of the conversion, the tube was cooled to 0 °C. The pH value was adjusted to 9–10
by adding 1.0 N HCl. The organic components were separated from the aqueous admixture by extraction with
Et2O (3 ×80 mL). After further work-up procedures, which included drying over Na2SO4 and filtration as well
as concentration in vacuo, column chromatographic separation on silica gel furnished colorless solid product
7a (430 mg, 1.78 mmol, 89%). Mp: 154–155 °C. TLC: Rf = 0.56 (silica gel; hexanes/EtOAc/TEA, 8:2:0.5).

[α]
23
D = −164 (c = 0.5, CHCl3) . FTIR (KBr): ν̃max (cm−1) = 3444 (w), 3041 (w), 2520 (w), 1770 (w), 1609

(w), 1582 (s), 1481 (s), 1420 (w), 1267 (s), 1152 (w), 1039 (w), 993 (w), 915 (w), 841 (w), 782 (s), 704 (s), 606
(s). 1H NMR (500 MHz, CDCl3) : δ = 13.58 (s, 1H), 7.44–7.32 (m, 3H), 7.25–7.19 (m, 2H), 7.18–7.12 (m,
1H), 6.93 (ddd, J = 12.8, 7.7, 1.3 Hz, 2H), 6.73 (td, J = 7.4, 1.2 Hz, 1H), 3.94 (d, J = 10.6 Hz, 1H), 3.71
(dd, J = 15.0, 10.8 Hz, 1H), 2.79 (d, J = 15.0 Hz, 1H), 2.29 (s, 6H). 13C NMR (APT, 125 MHz, CDCl3) :
δ = 157.7 (C), 135.6 (C), 131.2 (CH), 129.0 (CH), 128.3 (CH), 128.1 (CH), 127.9 (CH), 126.7 (C), 118.7 (CH),
117.6 (CH), 69.8 (CH), 40.2 (CH2) , 37.5 (CH3) . HR MS (ESI): m/z [M+H]+ calcd for C16H20NO: 242.1545;
found: 242.1532.

3.9.2. (R)-2,4-Di-tert-butyl-6-(2-(dimethylamino)-2-phenyl-ethyl)phenol (7b)

According to general procedure III as described above, 4b (735 mg, 2.00 mmol), ethanethiol (1.20 mL, 994
mg, 16.00 mmol), NaO tBu (576 mg, 6.00 mmol), and 10 mL of dry DMF were employed. After column
chromatographic separation on silica gel, the title compound (7b) (690 mg, 1.96 mmol, 98%) was obtained
as a colorless solid. Mp: 146–147 °C. TLC: Rf = 0.28 (silica gel; hexanes/EtOAc, 7:3). [α]

23
D = −130 (c =

0.5, CHCl3) . FTIR (KBr): ν̃max (cm−1) = 3415 (w), 3062 (m), 3029 (m), 2992 (s), 2961 (s), 2871 (s), 2794
(m), 2696 (m), 1960 (w), 1825 (w), 1597 (m), 1448 (s), 1391 (m), 1357 (s), 1294 (s), 1233 (s), 1116 (m), 1039
(m), 998 (m), 883 (m), 780 (m), 704 (s), 595 (m), 520 (w). 1H NMR (500 MHz, CDCl3) : δ = 12.67 (s, 1H),
7.33–7.41 (m, 3H), 7.20–7.24 (m, 3H), 6.82 (d, J = 2.4, 1H), 3.91 (d, J = 10.4, 1H), 3.69 (dd, J = 10.5, 14.6,
1H), 2.73 (d, J = 14.6, 1H), 2.26 (s, 6H), 1.46 (s, 9H), 1.25 (s, 9H). 13C NMR (APT, 125 MHz, CDCl3) : δ =

153.9 (C), 140.2 (C), 136.8 (C), 136.3 (C), 129.2 (CH), 128.1 (CH), 127.8 (CH), 127.4 (C), 126.0 (CH), 122.6
(CH), 70.5 (CH), 40.3 (CH3) , 38.1 (CH2) , 35.2 (C), 34.11 (C), 31.7 (CH3) , 29.8 (CH3) . HR MS (ESI): m/z

[M+H]+ calcd for C24H36NO: 354.2797; found: 354.2806.

3.9.3. (R)-2-(2-(Dimethylamino)-2-phenyl-ethyl)-4,6-bis(2-phenylpropan-2-yl)phenol (7c)

Following general procedure III as described above, 4c (492 mg, 1.0 mmol, 1.00 equiv), ethanethiol (0.60 mL,
487 mg, 8.0 mmol), NaO tBu (288 mg, 3.0 mmol), and 5 mL of dry DMF were employed. After column
chromatographic separation on silica gel, the title compound (7c) (430 mg, 0.9 mmol, 90%) was obtained as
a colorless solid. Mp: 63–64 °C. TLC: Rf = 0.44 (silica gel; hexanes/EtOAc, 7:3). [α]

23
D = –106 (c = 0.5,

CHCl3) . FTIR (KBr): ν̃max (cm−1) = 3436 (w), 2964 (w), 1599 (w), 1493 (s), 1461 (m), 1442 (w), 1360 (w),
1283 (w), 1202 (w), 1030 (w), 764 (w), 699 (s). 1H NMR (500 MHz, CDCl3) : δ = 12.06 (s, 1H), 7.35–7.27 (m,
3H), 7.26–7.19 (m, 8H), 7.18–7.04 (m, 5H), 6.67 (d, J = 2.4 Hz, 1H), 3.68 (d, J = 9.8 Hz, 1H), 3.49 (dd, J =

14.4, 10.2 Hz, 1H), 2.61 (d, J = 14.0 Hz, 1H), 1.98 (s, 6H), 1.70 (s, 3H), 1.64 (d, J = 2.0 Hz, 6H), 1.63 (s, 3H).
13C NMR (APT, 125 MHz, CDCl3) : δ = 153.4 (C), 152.1 (C), 151.4 (C), 139.6 (C), 136.5 (C), 136.5 (C), 128.9
(CH), 127.89 (CH), 127.82 (CH), 127.76 (CH), 127.67 (C), 127.60 (CH), 127.4 (CH), 126.7 (CH), 125.7 (CH),
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125.2 (CH), 124.46 (CH), 124.42 (CH), 70.8 (CH), 42.3 (C), 40.4 (CH3) , 37.6 (CH2) , 31.1 (CH3) , 31.0 (CH3) ,
30.6 (CH3) , 28.8 (CH3) . HR MS (ESI): m/z [M+H]+ calcd for C34H40NO: 478.3110; found: 478.3109.

3.9.4. (R)-2,4-Di-tert-butyl-6-(2-phenyl-2-(pyrrolidin-1-yl)ethyl)phenol (8b)

According to general procedure III as described above, 5b (760 mg, 2.00 mmol), ethanethiol (1.20 mL, 974
mg, 16.0 mmol), NaO tBu (576 mg, 6.0 mmol), and 10 mL of dry DMF were employed. After column
chromatographic separation on silica gel, the title compound (8b) (740 mg, 1.98 mmol, 99%) was obtained
as a colorless solid. Mp: 116–117 °C. TLC: Rf = 0.26 (silica gel; hexanes/EtOAc, 9:1). [α]

23
D = −42 (c = 0.5,

CHCl3) . FTIR (KBr): ν̃max (cm−1) = 3430 (w), 3055 (m), 3032 (m), 2950 (s), 2910 (s), 2862 (s), 2482 (m),
2193 (m), 1815 (w), 1596 (m), 1452 (s), 1385 (m), 1358 (m), 1235 (s), 1200 (m), 1099 (m), 949 (m), 861 (m),
764 (m), 705 (s), 590 (m). 1H NMR (500 MHz, CDCl3) : δ = 12.65 (s, 1H), 7.28–7.36 (m, 3H), 7.17–7.20 (m,
3H), 6.75 (d, J = 2.3, 1H), 4.09 (d, J = 9.9, 1H), 3.64 (m, 1H), 2.84 (d, J = 14.5, 1H), 2.78 (d, J =8.4, 2H),
2.49 (d, J = 7.9, 2H), 1.73 (m, 4H), 1.45 (s, 9H), 1.23 (s, 9H). 13C NMR (APT, 125 MHz, CDCl3) : δ = 153.9
(C), 140.2 (C), 137.5 (CH), 136.8 (C), 129.1 (CH), 128.0 (CH), 127.5 (CH), 127.3 (C), 126.1 (CH), 122.4 (CH),
67.0 (CH), 48.4 (CH2) , 39.1 (CH2) , 35.2 (C), 34.0 (C), 31.7 (CH3) , 29.8 (CH3) , 22.7 (CH2) . HR MS (ESI):
m/z [M+H]+ calcd for C26H38NO: 380.2953; found: 380.2949.

3.9.5. (R)-2-(2-Benzylamino)-2-phenyl-ethyl)-4,6-di-tert-butylphenol (9b)

Following general procedure III as described above, 6b (860 mg, 2.0 mmol), ethanethiol (1.20 mL, 974 mg, 16.0
mmol), NaO tBu (576 mg, 6.0 mmol), and 10 mL of dry DMF were employed. After column chromatographic
separation on silica gel, the title compound (9b) (800 mg, 1.92 mmol, 96%) was obtained as a colorless solid.
Mp: 136–137 °C. TLC:Rf = 0.6 (silica gel; hexanes/EtOAc, 9:1). [α]

23
D = +38 (c = 0.5, CHCl3) . FTIR (KBr):

ν̃max (cm−1) = 3433 (w), 3295 (s), 2905 (s), 2582 (w), 1598 (w), 1455 (s), 1439 (s), 1360 (s), 1300 (s), 1240 (s),
1201 (s), 1091 (s), 954 (w), 878 (w), 757 (s), 752 (s), 697 (s), 586 (w), 517 (w). 1H NMR (500 MHz, CDCl3) :
δ = 7.46 (t, J = 7.5 Hz, 2H), 7.26–7.41 (m, 9H), 6.85 (s, 1H), 3.89 (d, J = 9.5 Hz, 1H), 3.70 (s, 2H), 3.35 (dd,
J = 14.6, 9.8 Hz, 1H), 2.88 (dd, J = 14.6, 1.0 Hz, 1H), 1.55 (s, 9H), 1.31 (s, 9H). 13C NMR (APT, 125 MHz,
CDCl3) : δ = 153.2 (C), 140.7 (C), 137.0 (C), 129.0 (CH), 128.7 (CH), 128.6 (CH), 127.7 (CH), 127.6 (CH),
126.2 (CH), 126.1 (CH), 122.7 (CH), 64.4 (CH), 51.8 (CH2) , 43.0 (CH2) , 35.2 (C), 34.1 (C), 31.7 (CH3) , 29.9
(CH3) . HR MS (ESI): m/z [M+H]+ calcd for C29H38NO: 416.2953; found: 416.2923.

3.9.6. Enantioselective diethylzinc addition of to benzaldehyde: (S)-(–)-1-phenylpropan-1-ol (15)

An AAP ligand (10 mol%) was placed in a 10-mL Schlenk tube. The tube was evacuated for 15 min and
back-filled with dry N2 . Then an anhydrous solvent (2 mL) was added, which ensured dissolution of the ligand.
After the solution was cooled to 0 °C, 0.9 mL of 1.0 M solution of Et2Zn in hexanes (0.9 mmol, 1.80 equiv
of Et2Zn) was added dropwise and the mixture was stirred at 0 °C for a further 30 min. Then benzaldehyde
(14) (51 µL, 53 mg, 0.5 mmol, 1.00 equiv.) was added dropwise. The resulting mixture was stirred at 0 °C
for 30 min and then it was left to stir at ambient temperature for 16 h. Saturated aqueous NH4Cl solution
(2 mL) was added and the resulting slurry was extracted with EtOAc (2 ×30 mL). The combined organic
layers were dried over Na2SO4 and concentrated in vacuo. Column chromatographic purification on silica gel
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(hexanes/EtOAc, 9:1) afforded the title compound (15) as a colorless oil.Rf = 0.18 (silica gel; hexanes/EtOAc,
9:1). GC: CP-Chirasil-Dex CB, 25 m, 0.25 mm ID, 0.25 µm film thickness; 190 °C inlet (split mode); 195 °C
detector (FID); He, 2.0 mL/min (constant flow mode); 80 °C (4 min), 10 °C/min, 110 °C (42 min), 10 °C/min,
180 °C (4 min); tR = 21.48 min (ent-15), tR = 22.06 min (15). FTIR (KBr): ν̃max (cm−1) = 3368 (s), 2965
(s), 2933 (s), 2876 (s), 1948 (w), 1809 (w), 1603 (w), 1493 (s), 1453 (s), 1331 (w), 1201 (w), 1096 (w), 1014 (w),
974 (w), 763 (w), 700 (s), 545 (w). 1H NMR (500 MHz, CDCl3) : δ =7.36–7.29 (m, 4H), 7.29–7.23 (m, 1H),
4.55 (t, J = 6.6 Hz, 1H), 2.13 (s, 1H), 1.85–1.76 (m, 1H), 1.76–1.68 (m, 1H), 0.89 (t, J = 7.4 Hz, 3H). 13C
NMR (APT, 125 MHz, CDCl3) : δ = 144.6 (C), 128.3 (CH), 127.4 (CH), 125.9 (CH), 75.9 (CH), 31.8 (CH2) ,
10.1 (CH3) . GC MS: tR = 19.52 min, m/z (%) = 136 ([M]+ , 14), 117 (7), 107 (100), 91 (7), 79 (71), 51 (10).
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