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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia
in the elderly population. Since the treatment of AD has been associated with the activity of acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE), their inhibitors remain the main focus of AD investigations. In this study
we evaluated cholinesterase inhibitory activity of 14 bicyclo[3.2.1]octene/octadiene derivatives and naturally occurring
sesquiterpene alcohol cedrol. These 14 compounds have been efficiently and ecologically prepared by a photochemical
approach in batch photochemical reactors. Various compounds with the bicyclo[3.2.1]octene skeleton have already been
successfully evaluated for treatment of central nervous system disorders and AD. Among the tested polycyclic derivatives,
compounds 4-[(9S) -tricyclo[6.3.1.02,7 ]dodeca-2,4,6,10-tetraen-9-yl]pyridine (3) and (11S) -11-(4-chlorophenyl)-12-[(E) -
2-(4-chlorophenyl)ethenyl]tricyclo[6.3.1.02,7 ]dodeca-2,4,6,9-tetraene (6) showed the best inhibitory activity on BChE
(IC50 = 8.8 µM) and AChE (IC50 = 17.5 µM), respectively.

Key words: Acetylcholinesterase inhibition, butyrylcholinesterase inhibition, benzobicyclo[3.2.1]octenes, benzobicy-
clo[3.2.1]octadienes, polycycles

1. Introduction
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders and causes of dementia in
Western society, mostly affecting the elderly population. The World Health Organization (WHO) estimates that
AD affects over 50% of people older than 85 [1–3]. The most prominent symptom of this disease is a progressive
decrease in cognitive function, which in turn leads to changes in behavioral patterns and a decrease in the
functional capacity of the affected individuals. Low concentrations of the acetylcholine (ACh) neurotransmitter
in the brain and the genesis of amyloid plaques are considered as the hallmarks of AD. Acetylcholinesterase
(AChE, EC 3.1.1.7) plays a fundamental role in the unaffected cholinergic synapses by hydrolyzing the ACh
and terminating the neurotransmission, and while butyrylcholinesterase (BChE, EC 3.1.1.8) function remains
elusive, it can act as a surrogate in the case of AChE deficiency [3,4]. Since the amyloid plaque decrease and
ACh concentration increase are both connected to the AChE and BChE enzymes, an inhibitor that could inhibit
both of these enzymes would be useful [5]. Inhibition of these enzymes currently represents the backbone of AD
pharmacotherapy that is able to increase the neurotransmitter ACh in the brain and decrease amyloid plaque.
Hence, the search for novel cholinesterase (ChE) inhibitors remains crucial for the treatment of AD [3,6–9].
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Although AChE and BChE are encoded on different chromosomes they show 65% amino acid sequence
homology and they contain a catalytic triad that comprises the amino acid residues of serine (Ser), histidine
(His), and glutamic acid (Glu), which are located at the bottom of a 20-Å gorge [10–12]. The active site of AChE
is a deep, narrow gorge (300 Å3) , while the active site of BChE looks more like a bowl (500 Å3) and contains
about 40% fewer aromatic residues than that of AChE, which are substituted with smaller aliphatic or even
polar residues [4]. The amino acids lining this gorge seem to determine the substrate selectivity as the entryway
to AChE is narrower than that to BChE. This is mainly due to the aromatic residues Tyr-124 and Trp-286,
which are located at the gorge entrance and which are occupied by glutamine (Gln-119) and alanine (Ala-277)
in BChE. Inside the gorge, there is a difference in the acyl binding site residues, which in AChE consist of two
aromatic phenylalanine residues (Phe-295 and Phe-297), while BChE contains the smaller aliphatic residues
leucine (Leu-286) and valine (Val-288) [11,12]. All of this allows BChE to bind bulkier substrates into the active
site. Tyrosine (Tyr-337) (Ala-328 in BChE) in AChE also hinders bulkier substrates from interacting with the
catalytic triad.

The bicyclo[3.2.1]octane skeleton is a common subunit in many natural products. It is present in diterpene
families of compounds, such as the kaurenes and the gibberellins, and also in many sesquiterpenes [13]. One
of the more interesting properties of the bicyclo[3.2.1]octane skeleton is its rigidity, which promotes specific
coordination of two or more ligands on it, which can be of great value to medicinal chemists in the search
for biological activity [14–17]. This structural moiety forms a basic framework of numerous biologically active
natural compounds and their metabolites [18–20]. More importantly, compounds with the bicyclo[3.2.1]octene
skeleton are proving to be potent inhibitors of dopamine and serotonin transporters and also play a crucial role
in the treatment of central nervous system (CNS) disorders and AD [21,22].

Various syntheses of compounds containing bicyclo[3.2.1]octane/octene/octadiene cores are documented
in the literature [23–27]. The benzobicyclo[3.2.1]octadiene skeleton can be constructed using different synthetic
pathways, one of which is the photochemical approach that has been developed by our group in batch photo-
chemical reactors [28–45]. Photochemically induced organic reactions provide an important and easy path to
complex products from simple starting materials. The unsaturated bicyclo[3.2.1]octene structure can be even
more useful than the saturated bicyclo[3.2.1]octane skeleton, as it can easily be transformed further by adding
various functional groups to the isolated double bond. Our group obtained a whole library of complex polycyclic
compounds with various functional groups by utilizing photochemical synthetic paths.

Compounds 1–14, which were tested for cholinesterase inhibitory activity, make a core group selected from
this vast library on the basis of preliminary basic in silico docking tests that were performed [35,41–43,45]. As far
as the authors know, this is the first report on cholinesterase inhibitory activity using bicyclo[3.2.1]octadienes 1–
11 and their (photo)transformation products 12–14 as potential inhibitors. Cedrol (15), a naturally occurring
representative of these compounds, has also been tested for comparison. AChE/BChE inhibitory potential was
also compared to standard AChE/BChE inhibitor huperzine A (hupA, 16).

Antioxidant properties of these compounds (1–15) were investigated as a part of this study but were
proven to be negligible and hence will not be discussed in great detail. The table with the results is given in
the Supporting material (Table S1).
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2. Results and discussion
Structures of tested bicyclo[3.2.1]octanes 1–14, cedrol (15), and huperzine A (hupA, 16) are given in Figure
1. The synthetic compounds are presented in small subgroups according to their structural similarities ending
with naturally occurring compound cedrol (15) and standard AChE/BChE inhibitor hupA (16).

Figure 1. Structures of the tested polycyclic photoproducts 1–14, the natural sesquiterpene alcohol cedrol (15), and
alkaloid hupA (16).

To the best of our knowledge, the present paper reports the first investigation on ChE inhibitory activity
of benzobicyclo[3.2.1]octadienes 1–11 and their (photo)transformation products 12–14. AChE and BChE
inhibitory activities were evaluated for 14 polycyclic photoproducts and a naturally occurring alcohol from
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essential oils, cedrol (15), using the slightly modified Ellman method. The results are given in Table 1 and
reported as IC50 values, where achieved, and as maximal inhibition at maximal concentration tested, where all
concentrations are expressed in µM values. The calculated ADME characteristics of all 15 tested compounds
are given in Table 2.

Table 1. Inhibitory activity of polycyclic photoproducts 1–14, cedrol (15), and hupA (16) on two cholinesterases.

Compound AChE BChE
IC50 (µM) Inhibition (%)[a] IC50 (µM) Inhibition (%)[a]

1 54.0 75.36 (127.8) 74.8 84.22 (127.8)
2 - 7.16 (204.5) 74.2 81.06 (204.5)
3 - 26.50 (23.1) 8.8 78.65 (23.1)
4 318.8 93.42 (954.5) 510.3 87.31 (954.5)
5 - 3.90 (9.6) - 34.90 (9.6)
6 17.5 52.95 (18.8) - 4.18 (18.8)
7 - 2.15 (428.2) - n.d. (428.2)
8 - 6.05 (398.2) - 8.49 (398.2)
9 - 11.20 (405.5) - n.d. (405.5)
10 36.2 67.20 (53.5) - 2.31 (53.5)
11 - 29.51 (691.4) 615.9 54.99 (691.4)
12 - 26.86 (19.1) - 19.45 (19.1)
13 - 37.21 (350.9) 31.7 95.49 (350.9)
14 - 38.75 (1471.4) 335.7 77.83 (1471.4)
15 - 23.6 (218.7) 159.6 57.46 (218.7)
16 0.53 78.24 (1.88) 1350 60.73 (1875.8)

-, not determined; n.d., not detected; [a] numbers given in parentheses represent maximal concentrations tested in µM.

Among the 14 bicyclo[3.2.1]octenes/octadienes tested, all the compounds showed some inhibitory activity
on both enzymes except for compounds 7 and 9, which did not inhibit BChE at the concentrations tested.

Some compounds exhibited lower solubility in the final assay and therefore could not be tested at higher
concentrations, i.e. 1, 3, 5, 6, 10, 12, 13, and 15. This was a limiting factor for the compounds 3, 5, and 12,
which showed potentially good inhibitory activity against AChE (26.50% at 23.1 µM), BChE (34.90% at 9.6
µM), and AChE (26.86% at 19.1 µM), respectively.

IC50 values were calculated for compounds 1, 4, 6, and 10 for the AChE enzyme and compounds 1–4,
11, and 13–15 for the BChE enzyme.

The strongest inhibitor of AChE is compound 6, having an IC50 value of 17.5 µM, while compound 3
showed the strongest inhibition of BChE, reaching an excellent IC50 value of 8.8 µM. Compounds 1 and 4 are
the only compounds that inhibited both enzymes, reaching IC50 values of 54.0 and 318.8 µM (for AChE) and
74.8 and 510.3 µM (for BChE), respectively. It can be seen that these compounds showed stronger inhibitory
activity against AChE than BChE and in both cases compound 1 showed up to six times stronger inhibitory
activity.

When comparing compounds 1–6, having the same benzobicyclo[3.2.1]octadiene core with different
substituents, it can be concluded that the chlor-phenyl moiety (compounds 1 and 6) seems to be favorable
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Table 2. Calculated ADME properties of the tested polycyclic photoproducts 1–14 and the natural sesquiterpene
alcohol cedrol (15).

Compound LogP Solubility [mg/mL] Permeability [10−6 cm/s] PPB [%] CNS
1 5.53 0.001 195 98 –2.76
2 4.80 0.01 236 97 –2.50
3 4.12 0.03 244 95 –2.32
4 4.12 0.03 244 95 –2.32
5 2.58 0.03 237 76 –1.81
6 6.80 0.0003 37 99 –3.36
7 7.75 0.00001 5 100 –4.21
8 3.64 0.08 237 88 –2.02
9 3.20 0.03 234 85 –2.02
10 2.10 0.08 198 82 –2.15
11 4.42 0.01 242 92 –2.12
12 5.51 0.009 197 96 –2.41
13 4.55 0.02 240 96 –2.40
14 2.09 1.64 225 61 –1.76
15 5.05 0.19 198 77 –1.68

for AChE inhibitory activity. Compound 6, a substituted analogue of compound 1, exhibited three times
stronger inhibitory activity (IC50 = 17.5 µM) and was the strongest inhibitor of the AChE enzyme among
all of the tested compounds. This could be attributed to the “double” chlor-phenyl substitution in contrast to
compound 1 (having only one). Also, compound 5 having “double” methoxy-phenyl substituents exhibited only
negligible activity on AChE. On the other hand, compounds with pyridine moieties (2 and 3) are more favorable
for BChE inhibition. The nitrogen position in the pyridine moiety represents a differentiating characteristic,
making compound 3 almost nine times stronger an inhibitor of BChE than compound 2 and by far the strongest
inhibitor of BChE among all of the polycycles tested.

Compounds 1–6 and 11, which showed generally good inhibitory activity on both AChE and BChE, have
two double bonds inside the 7-membered ring and a double bond inside the bicyclic ring, which was considered
to be a favorable trait when evaluating ChE inhibition in earlier research [46,47].

When looking at the structures of compounds 7–11, it can be seen that all of them have some type of
heterocycle condensed to the basic benzobicyclo[3.2.1]octadiene core. Among this group of compounds, only
compound 10, having a tiophene ring condensed to the basic core, showed great inhibitory activity on AChE,
with an IC50 of 36.2 µM. On the other hand, compound 11 exhibited relatively good inhibition of BChE, with
an IC50 of 615.9 µM. Compounds 10 and 11 both have double bonds inside the polycyclic structure. All of
the other compounds showed weak inhibitory activity for both of the enzymes (including 10 for BChE activity
and 11 for AChE activity).

The phototransformation group of compounds 12–14 is structurally similar to previous compound sub-
sets. Compound 13, a phototransformation product of compound 3, generally showed lower activity on both
enzymes, although it had very good inhibitory activity for BChE with an IC50 of 31.7 µM. Figure 2 shows
compounds 3 and 13 in a BChE active site.
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Figure 2. Compounds 3 (left) and 13 (right) at the active site of BChE (BChE-As). Member of the active site triad
His 438 is given in pink.

Nevertheless, the activity was reduced by three times as a direct consequence of “tricycyclo” functional-
ization, which appears to have a negative effect on the inhibition of both enzymes.

Functionalized bicyclic compound 14 suits the inhibitory activity of BChE better than the closed ring
as in 11 since it showed about one and a half times better activity, while compounds 7 and 8 showed only
negligible BChE inhibitory activity.

Although compound 12 showed relatively weak activity among this subset of compounds, a closer
reevaluation revealed that this compound showed potentially good inhibitory activity, showing about 20%
inhibition at 19.1 µM on both enzymes, which we could not investigate further due to its solubility limits in
the final assay.

Cedrol (15), as the only natural representative of bicyclo[3.2.1.]octanes, showed relatively weak activity
on AChE and relatively good activity on BChE having an IC50 of 159.6 µM, making it the fifth best inhibitor
among all compounds tested.

Huperzine A (hupA, 16) is a known AChE/BChE inhibitor isolated from the Chinese medicinal herb
Huperzia serrata (Thunb.) Trevis. with significantly high selectivity towards AChE [48–50] and with diverse
inhibitory potential for BChE, depending on the source of the enzyme used [48,51,52]. When comparing the
AChE inhibitory activity of the tested compounds (1–15) to hupA (16) it can be seen that compounds 6 and 1
are up to 30 and 100 times weaker inhibitors, respectively, which was expected due to high hupA selectivity for
AChE. In the case of BChE inhibitory activity, hupA showed the weakest inhibitory potential of all compounds
tested in this study, having an IC50 of 1350 µM. In comparison, the two strongest BChE inhibitors among the
tested compounds, compounds 3 and 13, showed 150 and 40 times stronger inhibitory activity.

In this study, the structure–property relationships [53–55] with predictive models (see Supporting mate-
rial) for tested compounds 1–15 have been analyzed (Table 2). Physicochemical and ADME properties have
been calculated, especially LogP, solubility, permeability across biological membranes, plasma protein binding
(PPB), metabolic stability, and CNS penetration.
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The ability to design drugs capable of penetrating the blood–brain barrier (BBB) and affecting the desired
biological response is a formidable challenge. On the other hand, peripherally acting drugs need to possess
specific physicochemical properties that prevent them from crossing the BBB. Fundamental physiochemical
features of CNS drugs are related to their ability to penetrate the BBB affinity and exhibit CNS activity [54].
CNS drugs show characteristics of low molecular weight and lipophilicity and are hydrogen bond donors and
acceptors that in general have a smaller range than general therapeutics.

As was mentioned before, some compounds having the same bicyclo[3.2.1]-core, as in the structures of
1–11, 14, and 15, have proved to be potent inhibitors of dopamine and serotonin transporters and also play a
crucial role in treatment of CNS disorders and AD [7]. Analyzing the obtained calculated values (Table 2), it
is evident that almost all the compounds show significant CNS penetration properties, especially compounds 5,
8, 9, 14, and 15.

Lipophilicity [53] was the first of the descriptors to be identified as important for CNS penetration.
An analysis of small drug-like molecules suggested that for better brain penetration and for good intestinal
permeability the LogP values need to be greater than 0 and less than 3. In silico analysis showed the best
lipophilicity properties for structures 5, 10, and 14, which means that they could possess good BBB penetration
capability.

Commonly, the promising value of CNS penetration is higher than –3 and up to zero (see Table S2 in the
Supporting material). Additionally, compounds 2–5, 8, 9, 11, 13, and 14 have better PPB (Table 2) values
than 1, 6, 7, 10, 12, and 15. Taking all ADME characteristics into account, it is evident that compound 14
has the best ADME properties among all of the compounds, although it showed inhibitory activity only towards
BChE, and as such it could be a potential candidate for further research of BChE inhibition.

Preliminary docking experiments were performed with the SeeSAR software package (SeeSAR version
7.3; BioSolveIT GmbH, Sankt Augustin, Germany, 2018; www.biosolveit.de/SeeSAR). In silico experiments were
done only for docking into the active sites of both AChE and BChE. From this it was seen that the software was
unable to fit some of the molecules into the active pockets of AChE, those being 1, 3, 5, 6, and 11. All of the
other molecules could be placed into the active pockets with varied binding energies. We have given screenshots
of all of the docking experiments performed in the supporting material (Figures S1–S12). In Figures 3 and 4,
screenshots of compounds 1 and 4 docking into the active pockets of AChE and BChE are given. These ligands
inhibited both enzymes, while compound 1 inhibited both enzymes six times more strongly than compound 4.

When comparing the tested compounds to the study of Miyazawa and Yamafuji, who tested the AChE
activity of 17 bicyclic monoterpenoid compounds, their achieved IC50 values were in range of 200 to 900 µM,
while our compounds showed at least ten times stronger activity, falling into the range of 17.5–318.8 µM [46].
Another similar study by Gurjar et al. dealt with in silico studies and ChE inhibition characteristics of 22
imidazole analogues while trying to identify potential ChE inhibitors. In this study only ten analogues were
identified having various degrees of activity towards either AChE or BChE, while only two were identified as
most potent ones, reaching IC50 values of 5.33 µM for AChE and 4.99 µM for BChE, which represents results
comparable to ours [56].

In conclusion, generally, more compounds inhibited BChE and achieved better IC50 values than those
for AChE, the reason for which could be the fact that there are differences in the active site geometries and
volumes of the two enzymes.

Compounds 3 and 6 showed the best inhibitory activity on BChE (IC50 = 8.8 µM) and AChE (IC50
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Figure 3. Compound 1 at the active site of BChE (BChE-As, left) with its structure given (right).

   

Figure 4. Compound 4 at the active site of AChE (AChE-As, left) and BCHE (BChE-As, right) with its structure
given on the far right.

=1 7.5 µM), respectively, among all tested compounds. In comparison to hupA (16), compound 3 is about 150
times a better BChE inhibitor, while 6 is about 30 times weaker an AChE inhibitor, which also underlines the
affinity of these compounds towards the BChE enzyme.

The structure–activity relationship principle reveals that pyridine substitution on the benzobicyclo[3.2.1]octadiene
core is positively related to the BChE inhibitory strength and that the nitrogen position inside the pyridine
ring plays an active role in BChE inhibition. Further cyclization of compounds with pyridine moiety, as in the
case of 3–13, seems to have a negative effect on the inhibition of both enzymes.

Chlor-phenyl substitution is positively related to the strength of AChE inhibition, especially when a
“double” substitution occurs, while thiophene substitution of the benzobicyclo[3.2.1]octadiene core seems to
decrease the inhibitory activity of both enzymes.
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Bearing in mind that a single inhibitor capable of inhibiting both AChE and BChE would be preferable
in the case of AD treatment, compounds 1 and 4 represent good starting points in the further development of
ChE inhibitors.

3. Experimental

All reagents and solvents used were of analytical grade. Acetylcholinesterase (AChE, from Electrophorus elec-
tricus – electric eel, type V-S, C2888), butyrylcholinesterase (BChE, from equine serum, C7512), acetylth-
iocholine iodide (ATChI), butyrylthiocholine iodide (BTChI), 5,5-dithiobis (2-nitrobenzoic acid) (DTNB, Ell-
man’s reagent), (1S , 2R , 5S , 7R , 8R) -2,6,6,8-tetramethyltricyclo[5.3.1.01,5 ]undecan-8-ol (cedrol, 15), and
(1R ,9R ,13E) -1-amino-13-ethylidene-11-methyl-6-azatricyclo[7.3.1.02,7 ]trideca-2(7),3,10-trien-5-one (huperzine
A, 16) were purchased from Sigma-Aldrich GmbH (Steinheim, Germany). Absorbance measurements were per-
formed using a Synergy HTX S1LFA multimode microplate reader (BioTek Instruments, Inc., Winooski, VT,
USA). All the tested polycyclic derivatives, (11S) -11-(4-chlorophenyl)tricyclo[6.3.1.02,7 ]dodeca-2,4,6,9-tetraene
(1), 3-[(9S) -tricyclo[6.3.1.02,7 ]dodeca-2,4,6,10-tetraen-9-yl]pyridine (2), 4-[(9S) -tricyclo[6.3.1.02,7 ]dodeca-2,4,6,
10-tetraen-9-yl]pyridine (3), 3-[(9S) -tricyclo[6.3.1.02,7 ]dodeca-2(7),3,5,10-tetraen-9-yl]thiophene (4), (11S) -11-
(4-methoxyphenyl)-12-[(E) -2-(4-methoxyphenyl)ethenyl]tricyclo[6.3.1.02,7 ]dodeca-2,4,6,9-tetraene (5), (11S) -
11-(4-chlorophenyl)-12-[(E) -2-(4-chlorophenyl)ethenyl]tricyclo[6.3.1.02,7 ]dodeca-2,4,6,9-tetraene (6), 3-oxatet-
racyc-lo[6.6.1.02,6 .09,14 ]pentadeca-2(6),4,9(14),10,12-pentaen-4-ol (7), 3-oxatetracyclo[6.6.1.02,6 .09,14 ]pentade-
ca-2(6),4,9(14),10,12-pentaene-7-peroxol (8), 2-hydroxy-3-thiatetracyclo[6.6.1.02,6 .09,14 ]pentadeca-5,9(14),10,12-
tetraen-4-one (9), 5-thiatetracyclo[6.6.1.02,6 .09,14 ]pentadeca-2(6),3,9(14),10,12-pentaene (10), (2S) -3-oxa-5-
azatetracyclo[6.6.1.02,6 .09,14 ]pentadeca-4,6,9,11,13-pentaene (11), 2-[(10S) -tetracyclo[7.2.1.02,11 .03,8 ]dodeca-
3(8),4,6-trien-10-yl]thiophene (12), 4-[(10S) -tetracyclo[7.2.1.02,11 .03,8 ]dodeca-3,5,7-trien-10-yl]pyridine (13),
and (9S) -10-oxotricyclo[6.3.1.02,7 ]dodeca-2,4,6-trien-9-yl formate (14), were prepared as described previously
[35,41–43,45].

3.1. Acetylcholinesterase/butyrylcholinesterase inhibitory activity

AChE/BChE inhibitory activity measurements were carried out by a slightly modified Ellman assay as described
before [57]. The results are expressed as percentage inhibition of enzyme activity or IC50 .

3.2. In silico docking experiments

Docking experiments were performed in silico with the SeeSAR package (SeeSAR version 7.3; BioSolveIT GmbH,
Sankt Augustin, Germany, 2018; www.biosolveit.de/SeeSAR). Docking was performed for the active site of the
acetylcholinesterase (AChE-As extracted from 4M0E) and the active site of the butyrylcholinesterase (BChE-As
extracted from 1P0I) [11,58]. The software could not fit some of the molecules (1, 4–7) into the active pockets
of the acetylcholinesterase, but for all of the other ligands that were tested screenshots of the best docking hits
are given in the Supporting material (Figures S1–S12).

3.3. ADME characteristics determination
ADME characteristics for tested compounds 1–14 and cedrol (15) were predicted by Pass (in silico) software
[http://www.way2drug.com/PASSOnline/]. An explanation of all parameters evaluated is given in Table S2 in
the Supporting material.
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Supplementary materials 
 
Docking experiments were performed in silico with the  SeeSAR package, version 7.3	
(BioSolveIT  GmbH,  Sankt  Augustin,  Germany,  2018;  www.biosolveit.de/SeeSAR).	
Experiments were performed for the active sites of acetylcholinesterase (AChE-As)	and 
butyrylcholinesterase (BChE-As). The software could not fit some of the molecules	(1, 4–7) 
into the active site of acetylcholinesterase. Screenshots of the best docking	hits are given 
below for all compounds tested. Green haloes show places of bonding	(negative binding 
energies, energy released) and red ones show places of antibonding. 

	
	

	

	
	

Figure S1. Compound 1 at the active site of butyrylcholinesterase (BChE-As). 
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure S2. Compound 2 at the active site of acetylcholinesterase	(AChE-As, left) and 
butyrylcholinesterase (BChE-As, right). 
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Figure S3. Compound 3 at the active site of AChE-As (left) and BChE-As (right). 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure S4. Compounds 4 (left) and 5 (right) at the active site of BChE-As. 
	
	
	

                          
	

Figure S5. Compounds 6 (left) and 7 (right) at the active site of BChE-As. 
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Figure S6. Compound 8 at the active site of AChE-As (left) and BChE-As (right). 
	
	

                
	

Figure S7. Compound 9 at the active site of AChE-As (left) and BChE-As (right). 
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Figure S8. Compound 10 at the active site of AChE-As (left) and BChE-As (right). 
	
	
	

                         
	

Figure S9. Compound 11 at the active site of AChE-As (left) and BChE-As (right). 
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Figure S10. Compound 12 at the active site of AChE-As (left) and BChE-As (right). 
	

   
	

Figure S11. Compound 13 at the active site of AChE-As (left) and BChE-As (right). 
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Figure S12. Compound 14 at the active site of AChE-As (left) and BChE-As (right). 
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Antioxidant properties of these compounds were also tested as a part of this study but	were 
proven to be negligible. The table with the results is given below. 
	
	
	
Table S1. Antioxidant properties of polycyclic photoproducts 1–14 and cedrol (15)	using 
DPPH and FRAP methods. 
	
	

	
Polycycle 

DPPH FRAP 
	
Inhibition % a Equiv. Fe2+ µM b 

	
1 n.d. (at 540) n.d. (at 8.8) 

	

2 
	

9.18 (at 210) 
	

n.d. (at 150) 
	

3 
	

45.51 (at 390) 
	

n.d. (at 260) 
	

4 
	

0.87 (at 1000) 
	

322.44 (at 680) 
	

5 
	

17.90 (at 160) 
	

n.d. (at 6.88) 
	

6 
	

n.d. (at 160) 
	

n.d. (at 13.75) 
	

7 
	

0.86 (at 450) 
	

n.d. (at 300) 
	

8 
	

5.06 (at 420) 
	

n.d. (at 280) 
	

9 
	

n.d. (at 420) 
	

n.d. (at 290) 
	

10 
	

2.15 (at 1520) 
	

1233.06 (at 1520) 
	

11 
	

1.68 (at 720) 
	

139.94 (at 490) 
	

12 
	

n.d. (at 200) 
	

13.64 (at 140 
	

13 
	

3.53 (at 370) 
	

n.d. (at 250) 
	

14 
	

3.25 (at 1540) 
	

291.19 (at 1040) 
	

15 
	

4.83 (at 202) 
	

33.73 (at 144) 

n.d., not detected; a concentrations for maximal effect measured are given in parentheses in	
µM; b concentrations for maximal effect measured are given in parentheses in µM. 
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Table S2. General values for prediction of physicochemical and ADME properties. 
	

< –2.0 Very hydrophilic 
	

–2.0 to –1.0 Hydrophilic 
	

LogP –1.0 to 4.2 Optimal 
	
4.2 to 5.0 Lipophilic 
	
> 5.0 Very lipophilic 

	
< 0.01 Highly insoluble 

	
Solubility 0.01 to 0.10 Insoluble 

	
> 0.10 Soluble 

	
< 1.0 Poorly permeable 

	
Permeability 1.0 to 7.0 Moderately permeable 

	
> 7.0 Highly permeable 

	
< 10% Not bound 

	
10% to 40% Weakly bound 

	
PPB 40% to 80% Moderately bound 

	
80% to 90% Strongly bound 
	
> 90% Extensively bound 

	
< –3.5 Nonpenetrant 

	
CNS –3.50 to –3.0 Weakly penetrant 

	
> –3.0 Penetrant 
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