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Abstract: In wastewater treatment, scientific and practical models utilizing numerical computational techniques such
as artificial neural networks (ANNs) can significantly help to improve the process as a whole through adsorption systems.
In the modeling of the adsorption efficiency for heavy metals from wastewater, some kinetic models have been used such
as pseudo first-order and second-order. The present work develops an ANN model to forecast the adsorption efficiency
of heavy metals such as zinc, nickel, and copper by extracting experimental data from three case studies. To do this,
we apply trial-and-error to find the most ideal ANN settings, the efficiency of which is determined by mean square
error (MSE) and coefficient of determination (R2) . According to the results, the model can forecast adsorption efficiency
percent (AE%) with a tangent sigmoid transfer function (tansig) in the hidden layer with 10 neurons and a linear transfer
function (purelin) in the output layer. Furthermore, the Levenberg–Marquardt algorithm is seen to be most ideal for
training the algorithm for the case studies, with the lowest MSE and high R2 . In addition, the experimental results and
the results predicted by the model with the ANN were found to be highly compatible with each other.
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1. Introduction
Increasing awareness regarding the environment has led to the passing of strict regulations in reducing pollutants
in treatment plants, namely of organic carbon, nutrients, and heavy metals. Wastewater contains numerous
heavy metals, such as lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), zinc (Zn), and
copper (Cu), each with countless negative effects on both humans and the environment [1]. Some heavy metals
are the result of industrial operations, such as mine drainage, metal processing, petroleum refining, tanning,
photographic processing, or electroplating; others originate from the environment itself, such as from agricultural
runoff and acid rain [2].

The presence of heavy metals in wastewater in high concentrations is not acceptable due to their toxic
impacts on the environment and inadequacy of biological treatment. Metal removal plays an importance role
in treatment plants; for this reason, it is crucial to be able to define precisely the quantity and quality of these
materials when discharged into receiving waters in order to assess and improve the performance of wastewater
treatment plants.

In particular, heavy metals also have an effect in terms of the biological treatment of wastewater.
Recent studies showed that the heavy metal content in activated sludge systems has an inhibitory effect
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on the heterotrophic growth rate constant and on the lysis rate constant [3]. Another study examined the
inhibitory effects of copper and zinc on the specific growth rate of autotrophic biomass in activated sludge,
suggesting that copper reduces the nitrification process by up to 50% and zinc by 12% [4]. This makes the
removal of such contents from wastewater a necessary task. To do this, heavy metal ions can be decreased by
various conventional techniques, including chemical precipitation, reverse osmosis, electrochemical treatment,
ion exchange, membrane filtration, coagulation, extraction, irradiation, and adsorption [5].

Adsorption technology has many advantages including low cost and high efficiency. For this reason, the
technique has been considered among the best novel technologies available compared to others. In this respect,
traditional sorbents such as activated carbons, clay minerals, chelating materials, and chitosan/natural zeolites
have low sorption capacities. For this reason, nanomaterials are considered as the ideal materials to remove
heavy metal ions in wastewater [6]. There are many factors, such as stability and the size of nanoparticles, which
affect the applications of magnetic nanoparticles. For example, as the stability of these particles increases, the
adsorption increases, whereas once the size of these nanoparticles increases, the adsorption level drops. This
is because these particles perform better in case of nanoparticles being less than 10–20 nm [7]. Due to certain
advantages, the use of nanomaterial to remove heavy metals is efficient, mainly due to increased adsorption [8].

1.1. Nanomaterials for adsorption

Heavy metals can be removed by inorganic material. For example, carbon nanotubes (CNTs) have high sorption
efficiency [6]. There are other types of nanoparticles made of metal oxides, called “inorganic nanomaterials”,
which can reduce heavy metal ions in wastewater, such as silver nanoparticles, iron oxide, manganese oxide,
titanium oxide, magnesium oxide, copper oxide, and cerium oxide. These oxides are characterized by large
surface areas, low solubility, high separation efficiency in wastewater, and no environmental pollution effects. In
particular, recent studies have shown that particle size is very important in order to obtain optimum separation
of heavy metals during wastewater treatment processes [5].

1.2. Optimization of adsorption parameters

Each type of nanoparticle (NP) has its own adsorption capacities depending on the solution pH, temperature,
initial heavy metal concentration, adsorbent dosage, and the presence of other coexisting ions. Therefore, both
the adsorption performance and capacity are likely to increase if these parameters are optimized. According
to the already existing literature on the topic, the adsorption capacity of Fe3O4 NPs increases with elevated
solution pH [9]. Other experimental results revealed that considerable amounts of Cu(II) can be removed using
chitosan-coated magnetic nanoparticles (CMNPs) at pH 6 [10]. Furthermore, the percent removal of Cr(VI)
using Fe3O4@n-SiO2 NPs increases to 2% by only increasing the temperature from 25 to 45 ◦C and keeping
all the other experimental variables constant [11]. The dosage is another factor that influences the adsorption
capacity of nanomaterial. According to previous studies [10], the ratio of Cu(II) ion removal from wastewater
increases with elevating doses of CMNPs. The contact time, on the other hand, offers clues about the equilibrium
time and the kinetics for the removal of heavy metals. For instance, extending the contact time increases the
effectiveness of CMNPs in Cu(II) ion separation.

1.3. Adsorption isotherm

An adsorption isotherm explains how an adsorbent and an adsorbate interact with each other, making it an
important element in process optimization. Numerous adsorption isotherm models are available that describe
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the related equilibrium; some of them are the Langmuir, Freundlich, BET, Toth, Tempkin, Redlich–Peterson,
Sips, Frumkin, Harkins–Jura, Halsey, Henderson, and Dubinin–Radushkevich models. According to the studies
reviewed for the purpose of the present work, the Langmuir and Freundlich isotherm models are the best fitted
models for Cr(VI) adsorption onto iron oxide nanosorbents [11].

1.4. Adsorption kinetics model
Adapting the experimental data to different kinetic models allows us to study the adsorption rate, the process
type, and the product information on the adsorption, the kind of information that is commonly referred to
as ‘physisorption’ or ‘chemisorption’. The most popular kinetic models are Lagergren pseudo first-order and
pseudo second-order kinetics. Among them, the pseudo second-order kinetic model has been regarded as the
best fitted model with aqueous chromium adsorption onto different magnetic nanosorbents [11], aqueous Zn(II)
ion adsorption onto Fe3O4 NPs [9], and aqueous Cu(II) ion adsorption onto CMNPs [10].

1.5. ANN model
In engineering, modeling is a sound and effective way to figure out removal operations [12]. However, doing so
with ordinary mathematical or mechanistic models can be expensive and time-intensive given the vast number
of tests needed. Apart from this, wastewater treatment is complicated and subject to many factors and variants.
As a result, one cannot both model and improve such operations with traditional means [13]. Lately, empirical
models have come to the forefront, such as least squares support vector machines, response surface methodology,
and artificial neural networks (ANNs); the latter is based on biological neurons related to artificial intelligence
and widely used in ventures like intelligent search, autonomous driving, big data, pattern recognition, and
robotics [14].

For almost twenty years, ANNs have been chosen as an option to find out about intricate ties among
factors based on the input and output data and no information as to the removal processes themselves [15].
Thanks to determining very nonlinear behaviors, ANNs are in use in environmental engineering fields such
as wastewater treatment [16–20], membrane processes [21–25], and biosorption [26,27] to predict and model
them. Hence, they are regarded as efficient in complicated removal procedures calling for numerous tests as
well as chemical reagents [28]. However, limited data are available as to their use in forecasting the adsorption
efficiency of heavy metal from aqueous solutions [29,30]. In this respect, ANN modeling is another one of these
applications to determine the optimum conditions of the operating parameters for iron metal removal from other
substances with the help of the sequential quadratic programming optimization algorithm [31]. As proposed
by Fanaie et al. [32], ANNs have also been used in order to predict the efficiency of the biosorption process
to remove 4-chlorophenol from aqueous solutions. The comparison between predicted and experimental results
provided a high level of determination coefficient (R2 = 0.98), which implies that the proposed model was able
to predict the biosorption effectiveness with acceptable accuracy. Other examples of ANN modeling have been
used to determine the optimum conditions for the operating parameters as a complex adsorption system model
developed for metal removal using activated carbon [33], and another model to predict the adsorbed amount of
Co(II) and Ni(II) ion metals from wastewater via carboxymethyl chitosan-bounded Fe3O4 nanoparticles [34].

In view of all the related work cited in the field, the present paper offers a discussion of different types of
nanomaterials, adsorption isotherm models, and adsorption kinetics. As regards the control of the adsorption
process, the present work is concerned with choosing the best ANN model and its related parameters to forecast
the adsorption efficiency of zinc(II), nickel(II), and copper(II) in the selected cases. The model will later be
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used as an error predictor to achieve our purpose; the operating variables mentioned in these studies are applied
as inputs to set up a neural network in order to predict the removal efficacy of heavy metals from wastewater
at any time as an output.

2. Results and discussion
The experimental results show that the NPs offer very high adsorption capacity in the case of heavy metals.
The development of the ANN model may explain the performance of the decontamination process with less
need for experimentation, thereby leading to less chemical substance consumption, less processing time, and a
better understanding of the actual workings of the process.

The developed ANN model could describe the behavior of a complicated process within the extent of
the experimental status. In the present study, an ANN is developed for the removal of heavy metals from
wastewater using nanoabsorbents for three case studies as explained in the following sections.

2.1. Prediction of Zn(II) ion removal

To forecast Zn(II) removal, the best model contains three layers: an input with four operating parameters, a
hidden layer with various neurons, and an output layer to consider removal efficiency. Maintaining all these
parameters at the same level helps in determining ideal training algorithms. Ten, 20, and 30 neurons in the
hidden layer are applied as well as two training algorithms as summarized in Table 1, leading to two different
ANN models. Accordingly, the lowest MSE and highest R2 values are found as 0.008 and 0.98, respectively,
using the Levenberg–Marquardt (LM) algorithm (Trainlm), making it the most ideal algorithm to forecast
Zn(II) removal with 10 neurons.

Table 1. Different training algorithms with different neurons in the hidden layer for predicting Zn(II) removal.

Algorithm Training function Number of neurons
(H)

R2 MSE (average per-
formance)

Levenberg–Marquardt Trainlm 10 0.98 0.008
20 0.96 0.012
30 0.95 0.015

Scaled conjugate gradient Trainscg 10 0.92 0.700
20 0.84 0.891
30 0.82 0.924

With LM being the most ideal algorithm to forecast Zn(II) ion removal with 10 neurons, the results were
compared with those of the scaled conjugate gradient (SCG) algorithm for the same number of neurons (10).
For this purpose, Figure 1 represents the MSE for the two developed ANN models using the training, testing,
and validation data results for the two algorithms. Based on this, the LM algorithm is shown to yield the
lowest MSE for the training, testing, and validation sets, while the average performance of the LM algorithm
is the most ideal in the case of the SCG algorithm at 0.008. For this reason, LM is regarded as the most ideal
algorithm with the lowest MSE at epoch 8 and the best validation performance at 0.01041 with 10 neurons.

The LM and SCG algorithms were evaluated upon comparison of the forecast output results with
experimental ones using separate training, validation, and testing datasets applying R2 . The plots for both
experimental and predicted results appear in Figure 2 for the training, validation, and testing datasets.
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Figure 1. Performance graph between number of epochs and the mean squared error of prediction of Zn(II) ion removal
for LM and SCG algorithm; number of neurons: 10. (a) LM algorithm; (b) SCG algorithm.

Figure 2. (a) Regression plot of Zn(II) ion removal using the correlation coefficient (R-value) for the Levenberg–
Marquardt algorithm; number of neurons: 10. (b) Regression plot of Zn(II) ion removal using the correlation coefficient
(R-value) for SCG algorithm; number of neurons: 10.

1411



BUAISHA et al./Turk J Chem

All these results show that the LM algorithm has better performance than the SCG algorithm with the
R2 value of 0.98. One can say that the ultimate ANN model chosen with the LM algorithm can forecast Zn(II)
ions with the lowest MSE and high R2 with 10 neurons. The level of agreement between the experimental data
and ANN predictions justifies the reliability of the proposed ANN model, as shown in Figure 3.

Figure 3. Comparison between experimental data of Zn(II) ions and ANN prediction as the normalized data using the
LM algorithm.

2.2. Prediction of Ni(II) ion removal

In order to forecast Ni(II) ion removal, the model included three layers again: input with four operating
parameters, hidden layer with various neurons, and output as removal efficiency. Maintaining the parameters at
the same level, one can obtain the best training algorithm with 10, 20, and 30 neurons in the hidden layer. Two
separate algorithms are used as shown in Table 2, offering two ANN models at the end. Accordingly, the lowest
MSE and the highest R2 values are obtained as about 0.075 and 0.84 using the LM (Trainlm), respectively.
This provides the optimum training algorithm to estimate Ni(II) ion removal with 10 neurons.

Table 2. Different training algorithms with different neurons in the hidden layer for estimating Ni(II) removal.

Algorithm Training function Number of neurons (H) R2 MSE (the average
performance)

Levenberg–Marquardt Trainlm 10 0.84 0.075
20 0.79 0.095
30 0.75 0.123

Scaled conjugate gradient trainscg
10 0.58 0.098
20 0.44 0.128
30 0.41 0.223

The LM algorithm being ideal to forecast Ni(II) ion removal with 10 neurons, the corresponding results
for its comparison with the SCG algorithm were done with the same number neurons (10). Figure 4 contains
the MSEs of the two newly developed ANN models with training, testing, and validation data results for the
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algorithms. Based on this, for SCG the training error is far less than that for validation, implying that the
SCG network overfits compared to LM; thus, the latter is chosen as the ideal algorithm with MSE of 0.075 for
performance average. Additionally, the lowest MSE throughout validation occurs at epoch 5, which has the
best validation performance, equal to 0.13819 using 10 neurons.

Figure 4. Performance graph between number of epochs and the mean squared error of prediction of Ni(II) ion removal
for (a) LM and (b) SCG algorithm; number of neurons: 10.

The LM and SCG algorithms were compared in terms of output and experimental results using inde-
pendent training, validation, testing, and all datasets with R2 . Once again, the plots for experimental and
predicted results appear in Figure 5 for training, validation, and testing datasets.

The outcomes reveal that LM has better performance with better R2 (0.84) than SCG. Therefore, the
optimum ANN model with the LM algorithm can estimate Zn(II) ions with the lowest MSE and better R2 with
10 neurons, and conformity between the experimental data and ANN predictions shows the accuracy of our
ANN model (LM algorithm), as shown in Figure 6.

2.3. Prediction of Cu(II) ions removal

To forecast Cu(II) ion removal, a similar model is applied as in the previous cases for the extraction of Zn(II)
and Ni(II) ions. Table 3 shows two different training algorithms. Between them, the LM (Trainlm) is the ideal
algorithm to forecast Cu(II) ion removal with 10 neurons with the lowest MSE (0.002) and the highest R2

values (0.99), and the related outcomes are compared with the SCG algorithm in terms of equal number of
neurons (10).

Table 3. Different training algorithms and neurons in the hidden layer for Cu(II) ion removal.

Algorithm Training function Number of neurons (H) R2 MSE (the average
performance

Levenberg–Marquardt Trainlm 10 0.99 0.002
20 0.93 0.003
30 0.89 0.006

Scaled conjugate gradient trainscg 10 0.85 0.046
20 0.60 0.069
30 0.58 0.098
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Figure 5. (a) Regression plot of Ni(II) ion removal using the correlation coefficient (R2) for Levenberg–Marquardt
algorithm; (b) regression plot of Ni(II) ion removal R2 for SCG algorithm; number of neurons: 10.

Figure 7 highlights the MSE of the two developed ANN models using the training, testing, and validation
results. Evidently, LM shows lower MSE for training, testing, and validation than SCG. Henceforth, LM is
chosen as the ideal training algorithm with the average performance of 0.002. Furthermore, the lowest MSE in
validation occurs at epoch 6, measured as 0.0034145 with 10 neurons as the best validation.

The LM and SCG algorithms are compared in terms of predicted output and experimental results with
separate training, validation, and testing datasets and R2 . The corresponding plots appear in Figure 8.

Based on the outcomes, LM has obviously better performance in terms of R2 (0.99) compared to that of
SCG. Therefore, the chosen ANN model with the LM algorithm can forecast Cu(II) ions with the lowest MSE
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Figure 6. Comparison between experimental data of Ni(II) ions and ANN prediction as the normalized data.

Figure 7. Performance graph between number of epochs and the mean squared error of prediction of Cu(II) ion removal
for LM (a) and SCG algorithm (b); number of neurons: 10.

and the highest R2 with 10 neurons. Based on the conformity of experimental data and ANN predictions, the
accuracy of our ANN model (LM algorithm) can be depicted in Figure 9.

As a result, one can say that the efficiency of the ANN in the second case study was lower compared to
the first and third case studies, which may be attributed to the small sample size of the experimental data in the
second case study causing a lower learning performance for the ANN model [35]. However, the best correlation
coefficients and MSE obtained from the ANN model are summarized in Table 4.

3. Materials and Methods
3.1. Data Collection
For the purpose of the present study, we refer to data formerly obtained in three other works. The extraction of
zinc(II) ions via the bath adsorption process on magnetic Fe3O4 nanoparticles (case study 1) from wastewater
has already been carried out and reported on by Shirsath and Shirivastava [9], who concluded that the process
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Figure 8. (a) Regression plot of Cu(II) ion removal using R2 for LM Algorithm; (b) regression plot of Cu(II) ion
removal using R2 for SCG algorithm; number of neurons: 10.

could be influenced by different factors, such as the pH level, contact time (t), adsorbent dose, and initial
concentration of Zn(II) ions. See Table 5 for a summary of the details. The experimental results showed that
the pseudo second-order kinetic model adapts well to the equilibrium data to adsorb heavy metal by magnetic
nanoparticles. In this case, the operating variables (pH, time, initial, Zn(II) ion, nanoadsorbent concentration)
are applied as inputs while percent removal of Zn(II) is applied as output.

In the second case study, the optimization process parameters for the ablation of Ni(II), Cu(II), and Co(II)
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Figure 9. Comparison between experimental data Cu(II) ions and ANN prediction as the normalized data

Table 4. Comparison of ANN model in three cases.

Case study MSE (the average performance) Coefficient of determina-
tion (R2)

Experimental data for removal of Zn(II) ions 0.008 0.98
Experimental data for removal of Ni(II) 0.075 0.84
Experimental data for removal of Cu(II) 0.002 0.99

Table 5. The experimental data for removal of Zn(II) ions.

pH Time (s) Initial Zn(II) ion concen-
tration (mg L−1)

Nanoadsorbent concentra-
tion (mg L−1)

Percent removal of
Zn(II) (% R)

1–10 0–225 20–100 1–2.5 10–99

doped alginate-coated chitosan nanoparticles (Alg-CS-NPs) from industrial effluents have also been shown to
fit well into the pseudo second-order model proposed by Esmaeili and Khoshnevisan [36], with experimental
data evidently establishing that the percent removal of Ni(II) ion rises up to 94%, as depicted in Table 6. In
this case, the operating variables (pH, time, initial Ni(II) ion, biomass dose) are applied as inputs while percent
removal of Ni(II) is applied as output.

Table 6. The experimental data for removal of nickel(II) ions.

pH Contact time (s) Initial concentration of
Ni(II) (mg L−1)

Biomass dose (g) Percent removal of
Ni(II) (% R)

1–9 0–120 10–90 0.1–0.9 23–94.48

In the third case study, the extraction of Cu(II) ions using magnetic chitosan-coated magnetic nanoparti-
cles from contaminated water has been already carried out and reported on by Neeraj et al. [10], who concluded
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that the process can be influenced by different factors, such as the pH level, contact time (t), adsorbent dose,
temperature, and initial concentration of Cu(II) ions. The experimental results show that the pseudo second-
order kinetic model adapts well to the equilibrium data to adsorb heavy metal by magnetic nanoparticles. In
this case study, the operating variables (initial Cu(II) concentration, contact time, adsorbent dose, temperature,
and pH level) are applied as inputs while percent removal of Cu(II) is applied as output as depicted in Table 7.

Table 7. The experimental data for removal of Cu(II) ions.

Temperature (K) pH Contact time
(min)

Initial concentration of
Cu(II) (mg L−1)

Adsorbent
dose (g L−1)

Percent removal of
Cu(II) (% R)

303–335 2–8 0–30 100–500 0.4–3.2 25–99

3.2. ANN model development

ANN or linkage systems have been used in many fields, such as machine learning, computer science, and
other research areas, focusing on a broad set of basic units known as neurons, with slight similarities to axons
in a biological brain. In these networks, the bonds among the neurons transmit stimulating signals with
different forces. In the same way, in wastewater treatment, scientific and practical models utilizing numerical
computational techniques such as ANNs can significantly help to improve the process as a whole through
adsorption systems.

The origin of ANNs goes back to the principle concept of artificial intelligence in an attempt to copy the
workings of the human brain and the nervous system. For that purpose, learning and memorization processes
were simulated using a set of mathematical correlations. As the outcome, the learning process by ANNs relies
on a set of input variables and matching output applied to specify the relationship between the variables.

There are three different layers in ANNs; these are the input layer, hidden layer, and output layer. A
multilayer ANN is used to generate models of a system using nonlinear combinations of input variables. The
following measures must be taken for the conception and construction of a neural network model: the recording
of the input, the output, and sample datasets, as well as the design, training, and verification of the neural
network. Overall, pairs of input-output datasets are used as described in the three case studies selected (Tables
5–7).

After receiving the sample dataset, the operating parameters are chosen as input variables, and then
heavy metal removal efficiency is chosen as an output variable. The dataset is randomly divided into test
subsets, such as 70% for training, 15% for validation, and 15% to test the network. The ANN proposed in this
study is a feedforward backpropagation network model with the function of a tangent sigmoid transfer (tansig)
between the input and hidden layer with a range of neurons and function of a linear transfer (purelin) at the
output node using an embedded MATLAB code (see supporting information). The training data form the
biggest set and are used by the neural network to learn patterns presented in the data by updating the network
weights. The testing data are used to evaluate the quality of the network. The final check of the performance
and generalization ability of the trained network is made using validation data.

To compute the weight of a neuron in the hidden layer, Eq. (1) can be used:

Wb =
∑k

a=1
wabxa , (1)
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where k is the number of neurons in the input layer, wab is the connection weight between neuron a in the
input layer and neuron b in the hidden layer, and xa is the value of neuron a in the input layer. Similarly, the
weight of a neuron in the output layer can be calculated as follows:

Wc =
∑z

b=1
wbcxb , (2)

where z is the number of neurons in the hidden layer, wbc represents the connection weight between neuron b
in the hidden layer and neuron c in the output layer, and xb stands for the value of neuron b in the hidden
layer. The weight of the neuron in the hidden layer or output layer was used in the activation function, which
produced a predicted output by Eq. (3):

y = f(W +B) (3)

where y, f, W, and B are the output, activation function, weight, and bias in the hidden layer or output layer,
respectively

Since, according to Bishop’s study [37], more than one hidden layer is often not essential, our model has
only one hidden layer. In this study, the training parameters are as specified in Table 8. Two training functions
were examined to choose the one that best fit the collected data. All these parameters are fixed and checked
for each training function with 10, 20, and 30 neurons in the hidden layer.

Table 8. Training parameters.

Training parameters Range
Maximum number of validation checks 6
Maximum number of training epochs 1000
Performance goal 1e-6
Learning rate 0.01
Epochs between displays 25
Maximum time to train in seconds infinity
Minimum performance gradient 1e-10

The final ANN structure has some of the operating variables as input with one hidden layer and the
efficiency of heavy metal removal as the output of the output layer (Figure 10). Normalization is required so
that all of the data are in a comparable range, thus normalizing the input and output datasets in the domain
[–1, 1] prior to the training process. A trial-and-error method is applied to obtain the most favorable conditions,
such as the number of hidden layers and the number of neurons in the hidden layer [38]. In general, different
methods have been used and reported to obtain the optimum number of neutrons in the literature, such as the
Taguchi method [39], genetic algorithm [40], k-fold validation [41], or design of experiment [42]. The trial-and-
error approach is one of the most frequently applied methods [40–50] by researchers. One can use any of them.
Herein, the trial-and-error method is applied to determine the optimal neuron numbers, where the lowest mean
error is provided [46,48,49].

One hidden layer is used during the modeling of the process in order to simplify the system and
consequently to reduce the time and cost of the simulation.

Researchers have proved that any continuous function would be convergent in the case of using one
hidden layer in the network as long as the freedom level is enough [51]. In order to construct the appropriate
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Figure 10. A single hidden layer neural network model with backpropagation for predicting adsorption efficiency.

network architecture, several attempts were made for each group until the most suitable learning rate; number
of neurons and minimum power gradient were all optimized.

Each model is tested by measuring the coefficient of determination (R2) and the MSE values between
the predicted and actual figures in each attempt to determine the best structure with the lowest possible values.
Such parameters show the most ideal training algorithm and the right number of neurons in the hidden layer.
MSE is applied to show error related to the model as follows:

MSE ==
1

N

∑N

j=1
(yP,j − yT,j )

n
, (4)

where Yp,j and yT,j are respectively the model prediction and the corresponding target of the variable and n is
the number of the corresponding targets.

Accordingly, R2 is determined as the square of the correlation (R-value) to reveal the degree of variability
for the model between the input and the intended values for training, validation, and test datasets.

4. Conclusions
Recent studies showed that nanomaterials are suitable for the elimination of heavy metals in processes routinely
carried out in wastewater treatment plants due to their unique properties and high efficacy. Although nanoma-
terials such as CNTs, nanometal oxides, and other organic sorbents have been successfully used for extracting
heavy metal ions in wastewater, several problems still remain. In this respect, wastewater treatment on a large
scale is the most important one.

ANNs provide a range of powerful new techniques for solving problems in sensor data analysis, fault
detection, process identification, and control and have been used in a diverse range of chemical engineering
applications.

The key component of the present paper is modeling based on an ANN, inspired by the neurological
systems functioning in the human brain and attempting to imitate them for use in wastewater treatment.
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Although these models are very different from those applied about the brain, they show an unanticipated
degree of success in the adsorption process, which included the modeling of nonlinear systems.

Therefore, for the control of adsorption process, the ANN technique was applied to compare the predic-
tions obtained with the experimental data extracted from three case studies in the field. The trial-and-error
method was preferred to determine the best conditions and functions for artificial neural networks. Here, ac-
cording to the adsorption tests carried out using different variables, the main purpose was to come up with
a unique model to offer accurate forecasts of adsorption efficiency (AE %) related to zinc(II), nickel(II), and
copper(II) ions. The ANN model suggested is based on feedforward backpropagation with the function of a
tangent sigmoid transfer (tansig) between the input and the hidden layer with a range of neurons and function
of a linear transfer (purelin) at the output node and applying an embedded MATLAB code. Two training
functions are tested to select the best one fitting the data. All factors are kept constant and tested in each
training function with 10, 20, and 30 neurons within the hidden layer.

Two functions were tested with the range of neurons upon the comparison of predicted results versus the
experimental data based on the MSE and R2 . Accordingly, the best ANN model was chosen using the LM
algorithm with ten neurons and was capable of forecasting AE % of zinc(II), nickel(II), and copper(II) ions with
MSE of 0.008, 0.075, and 0.002 and with R2 of 0.98, 0.84, and 0.99, respectively.

Thus, it is can be stated with relative certainty that the proposed ANN model can be used as a tool
for the removal of heavy metals by magnetic nanoparticles in wastewater treatment plants. It is obvious that
using nanotechnology is ideal for the removal of metal ions in sewage treatment. In this respect, theoretical
architectures with ANNs are very important to determine the best model process for optimum results.
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Supporting information. MATLAB codes.
%Solve an Input-Output Fitting problem with a Neural Network
% the code generated by MATLAB
% Created 10-Jun-2018 11:38:54
%
% variables are defined:
%
% p - input data.
% T - target data.
% first case
x=load(’first.dat’);
P=[x(1:37,1:4)];
T=[x(1:37,5)];
% secod case
%x=load(’second.dat’);
%P=[x(1:30,1:4)];
%T=[x(1:30,5)];
%Third case
%x=load(’third .dat’);
%P=[x(1:70,1:5)];
%T=[x(1:70,6)];
% normaliztion data
[pn,minp,maxp,tn,mint,maxt]=premnmx(P’,T’);
s = pn;
t = tn;
% Choose a Training Function
% For a list of all training functions type: help nntrain
% ’trainlm’ is usually fastest.
% ’trainbr’ takes longer but may be better for challenging problems.
% ’trainscg’ uses less memory. Suitable in low memory situations.
% trainFcn =’trainscg’ ; % Scaled Conjugate Gradient
trainFcn = ’trainlm’; % Levenberg-Marquardt backpropagation.
% Create a Fitting Network
% hiddenLayerSize = 20
% hiddenLayerSize = 30
hiddenLayerSize = 10;
net = fitnet(hiddenLayerSize,trainFcn);
% Selection of internal transfer functions
net.layers{1} .transferFcn = ’tansig’;
net.layers{2} .transferFcn = ’purelin’;
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% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainParam.epochs=1000;
net.trainParam.lr=0.01;
net.trainParam.goal =1e-6
net.trainParam.min grad=1e-10
net.trainParam.show=25
net.trainParam.time =inf
% Train the Network
[net,tr] = train(net,s,t);
% Test the Network
y = net(s);
e = gsubtract(t,y);
performance = perform(net,t,y)
% View the Network
view(net)
% Plots
figure, plotperform(tr)
figure, plottrainstate(tr)
figure, ploterrhist(e)
figure, plotregression(t,y)
figure, plotfit(net,s,t)
%weights
IW = net.IW{1,1} %weights for the connection from the first input to the first layer
b1 = net.b{1}%the bias values for the first layer
b2 = net.b{2}%the bias values for the second layer
LW = net.LW{2,1}%weights for the connection from the first layer to the second layer
plot ( 1:number of data , y’,’r’,1: number of data ,tn’,’p’)
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