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Abstract: In this work, phthalonitrile (3) and zinc(II) phthalocyanine (4) were prepared. To determine the photody-
namic therapy potential of compound 4, singlet oxygen quantum yield, DNA binding and cleavage, and topoisomerase I
inhibition experiments were performed. The singlet oxygen quantum yield value of compound 4 was found higher than
that of the standard unsubstituted zinc(II) phthalocyanine compound (Std-ZnPc). The binding experiments showed that
compound 4 interacted with ct-DNA strongly via nonintercalation mode. pBR322 plasmid DNA cleavage activity of the
compound was investigated using agarose gel electrophoresis. The results showed that the compound 4 had important
DNA cleavage activity. The E. coli DNA topoisomerase I inhibition effects of compound 4 were investigated using
agarose gel electrophoresis. Compound 4 had an E. coli topoisomerase I inhibitory effect at increasing concentrations.
The results showed that compound 4 has photosensitizer potential in photodynamic therapy.
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1. Introduction
Cancer is a common fatal disease caused by uncontrolled cell division [1,2]. The prevention of this division is
the most important stage for cancer treatment. The common side effects of conventional treatment methods
inspired scientists to find new cancer treatment methods [3,4]. Photodynamic therapy (PDT) is a new and
alternative cancer treatment method. PDT is based on the production of singlet oxygen by a photosensitizer
compound under light irradiation and the resulting singlet oxygen breaks down cancerous tissues [5,6]. PDT has
advantages such as being noninvasive, having low side effects and high selectivity to tissues, and possessing the
ability to be combined with other treatments. These advantages make PDT superior to other cancer treatment
methods [7,8].

Phthalocyanines (Pcs) are aromatic macrocyclic compounds formed by isoindole units. Thanks to
their strong π conjugation, high chemical stabilities, and optical properties they are used in many different
applications [9–15]. Photodynamic therapy (PDT) is a new cancer treatment method. It takes place with the
irradiation of the photosensitizer compound by light in the presence of oxygen. The singlet oxygen formed
during the irradiation breaks down the cancerous tissues. [16]. Therefore, the singlet oxygen quantum yield is
very important for a photosensitizer compound. Their visible region absorptions, low toxicity in the dark, and
high singlet oxygen yields allow phthalocyanines to be used in PDT [17].

Topoisomerase I is an enzyme that dissolves DNA supercoiling during replication and transcription [18,19].
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The level of topoisomerase I in cancerous cell is much higher than in normal cells [20,21]. The inhibition of
topoisomerase I is one of the important points of cancer treatment because it can cause DNA damage and stop
DNA replication [22]. To stop the proliferation of cancerous cells by preventing uncontrolled cell division, the
inhibition of topoisomerase I is a useful treatment method [23].

DNA binding experiments are very important to understand the interaction of compounds with DNA. The
interaction of compounds with DNA gives important information about their potential to be used in anticancer
applications. DNA photocleavage experiments are important for determination of the anticancer potential of a
compound with the breakdown of the DNA of the cancerous cells [24,25].

In this study, it was planned to synthesize peripherally tetra 4-(1-phenoxypropan-2-yloxy)-substituted
novel zinc(II) phthalocyanine and investigate its photosensitizer potential in photodynamic therapy. To de-
termine this potential, singlet oxygen quantum yield experiments, DNA binding studies (to investigate the
interaction with DNA), DNA cleavage studies (to investigate the photonuclease activity), and topoisomerase I
inhibition properties of the novel zinc(II) phthalocyanine were determined.

2. Experimental
All information about the used equipment, materials, synthesis, singlet oxygen, DNA binding, DNA photocleav-
age, E. coli topoisomerase formulas, and parameters is given in the Supplementary information.

3. Results and discussion
3.1. Synthesis and characterization

The synthetic pathway of the novel compounds is shown in Figure 1. The phthalonitrile compound 4-(1-
phenoxypropan-2-yloxy)phthalonitrile (3) was prepared with a reaction between 1-phenoxy-2-propanol (1) and
4-nitrophthalonitrile (2) in DMF in the presence of K2CO3. The novel phthalonitrile compound (3) was
characterized by a combination of 1H and 13C NMR, FT-IR, and mass spectral data. In the IR spectrum,
new vibrations monitored at 2229 cm−1 demonstrated that compound 3 has nitrile groups. In the 1H NMR
spectrum of compound 3, aromatic and aliphatic protons showed the expected signals. In the 13C NMR
spectrum, the nitrile carbon signals at 115.698 and 115.276 ppm indicated that substitution was achieved. In
the mass spectra the [M+H]+ peak confirmed the proposed structure of compound 3.

Zinc(II) phthalocyanine 4 was prepared with a reaction between starting compound 3 and zinc acetate in
n-pentanol. Novel phthalocyanine 4 was characterized by a combination of 1H NMR, FT-IR, UV-Vis, and mass
spectral data. The evanescence of -C≡N vibrations in the IR spectrum of compound 4 confirmed completion
of the cyclotetramerization reaction. In the 1H NMR spectrum of compound 4 aromatic and aliphatic protons
showed the expected signals. In the mass spectrum of compound 4 the observed [M+H]+ peak confirmed the
proposed structure. In the UV-Vis spectrum, the Q band of compound 4 was monitored at 679 nm and the
B band was monitored at 353 nm. All characterization data are in accordance with the literature about the
metallophthalocyanines [26,27].

3.2. Singlet oxygen quantum yields
For the PDT performance of a photosensitizer, singlet oxygen generation is very important. An energy transfer
takes place between the triplet state of a photosensitizer and the ground state molecular oxygen when the
photosensitizer is irradiated by light and singlet oxygen is produced. Therefore, the singlet oxygen quantum
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Figure 1. Synthetic route of novel compounds 3 and 4.

yield value is the most important parameter to determine the potential of compounds as photosensitizers in PDT
for cancer. The singlet oxygen quantum yield (Φ∆) value of compound 4 was determined in DMSO by using
1,3-diphenylisobenzofuran (DPBF) as a singlet oxygen quencher. DPBF absorbance at 417 nm decreased due to
the singlet oxygen generation. The Q band intensity of compound 4 did not change (Figure 2) and this showed
that compound 4 did not undergo any decomposition during the experiment. The Φ∆ value of compound
4 (0.71) was found to be higher than that of the standard zinc(II) phthalocyanine (0.67). This showed that
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the substitution of 4-(1-phenoxypropan-2-yloxy) groups on the phthalocyanine ring make compound 4 more
effective than standard Znpc for PDT applications. The experimental results showed that compound 4 has
higher singlet oxygen quantum yield than the zinc(II) phthalocyanine derivatives in literature [28,29].

Figure 2. The determination of the singlet oxygen quantum yield of compound 4 in DMSO at 1 × 10−5 M (inset:
plots of DPBF absorbance versus time).

3.3. DNA binding studies

UV-Vis absorption experiments allow the determination of the DNA binding ability of complexes. When
compounds interact with ct-DNA in intercalation mode, hypochromic and bathochromic effects are observed.
On the other hand, the binding of metal complexes to ct-DNA via nonintercalative mode causes hyperchromic or
low hypochromic effects. In this work, the DNA interaction mode of compound 4 was investigated as described
in previous studies [30,31]. The results of DNA binding studies are given in the Table. As shown in Figure 3,
the maximum absorbance of compound 4 was at 681 nm. The UV-Vis spectrum of the compound demonstrated
a hypochromic effect (27.97%) after the addition of ct-DNA. According to the Wolfe–Shimmer equation (Eq.
3), the binding constant (Kb) of compound 4 was calculated as 1.73 ± 0.50 × 104 M−1 .

Table 1. ct-DNA binding data of compound 4.

Compound λ (nm) Change in Abs. Shift (nm) Kb(M−1) H%
Compound 4 681 Hypochromism 0 1.73 ± 0.50 × 104 27.97

To confirm the interaction mode between compound 4 and ct-DNA, an EB competitive binding study
was performed as described previously [32,33]. The EB-(ct-DNA) complex was formed by adding EB:ct-DNA
(75 µM : 75 µM) solution and gradually varying the concentrations of compound 4, measured as the changes
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Figure 3. Absorption spectrum of compound 4 in the absence and presence of increasing amounts of ct-DNA.

in the absorption spectra in the range of 425–550 nm. The result is shown in Figure 4. The UV spectrum of
the EB competitive binding study was measured in the range of 550–425 nm and maximum absorbance was at
481 nm. After addition of ct-DNA, absorbance decreased and a red shift was observed. This result showed that
EB interacted with ct-DNA via intercalation and formed the EB-(ct-DNA) complex. The absorbance did not
change upon addition of varying concentrations of compound. This suggested that compound 4 interacts with
ct-DNA via nonintercalation mode.

Figure 4. Absorption spectra of free EB and EB bound to ct-DNA in the absence and presence of increasing amounts
of compound 4.

1650



DEMİRBAŞ/Turk J Chem

3.4. pBR322 plasmid DNA cleavage activities

pBR322 plasmid DNA cleavage properties of compound 4 were investigated using agarose gel electrophoresis
without/with irradiation. The DNA photocleavage experiments were carried out with white light irradiation
(17.5 mW cm−2 , 10 min). When one-strand cleavage of supercoiled plasmid DNA (Sc) generates the nicked form
(Nc), two-strand cleavage of Sc occurs in linear form (Ln) that moves between Sc and Nc [34,35]. The results
of cleavage properties of compound 4 are shown in Figures 5 and 6. As shown in Figure 5, no concentrations of
compound 4 showed any cleavage effect. On the other hand, Figure 6 shows that Nc increased in the presence
of the compound at 12.5, 25, and 50 µM. This result reveals that compound 4 showed DNA cleavage activities
due to its singlet oxygen quantum yield. In addition, H2O2 was used as an oxidative activator to begin the
DNA cleavage process. The results of oxidative cleavage experiments are presented in Figures 7 and 8. These
results showed that the presence of H2O2 did not affect the DNA cleavage effects of compound 4 in the dark
but the DNA photocleavage of the compound was significantly increased with light irradiation in the presence
of H2O2 because the band intensity of Nc and Ln increased.

Figure 5. Agarose gel electrophoresis of pBR322 plasmid
DNA in the absence and presence of compound 4 without
irradiation. Lane 1: DNA control; lanes 2–5: DNA +
compound 4 (6.25, 12.5, 25, and 50 µM).

Figure 6. Agarose gel electrophoresis of pBR322 plasmid
DNA in the absence and presence of compound 4 with
white light irradiation. Lane 1: DNA control; lanes 2–5:
DNA + compound 4 (6.25, 12.5, 25 and 50 µM).

Figure 7. Oxidative pBR322 plasmid DNA cleavage in
the presence of H2 O2 without irradiation. Lane 1: DNA
control; lanes 2–5: DNA + compound 4 (6.25, 12.5, 25,
and 50 µM) + H2 O2 (0.4 M).

Figure 8. Oxidative pBR322 plasmid DNA cleavage in
the presence of H2 O2 with white light irradiation. Lane 1:
DNA control; lanes 2–5: DNA + compound 4 (6.25, 12.5,
25, and 50 µM) + H2 O2 (0.4 M) + 10 min irradiation.

3.5. E. coli topoisomerase I inhibition

The E. coli DNA topoisomerase I inhibition effect of compound 4 was investigated using agarose gel elec-
trophoresis and the result was analyzed using a computer program. The results are shown in Figure 9. E.
coli topoisomerase I (2 units) and pBR322 plasmid DNA were mixed and incubated at 37 ◦C for 1 h as a
negative control as shown in Figure 9, lane 2. This result showed that Sc converted to Nc (7.60%) and Ln
(59.10%). Compound 4 had low E. coli topoisomerase I inhibitory effects at increasing concentrations (Figure
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9, lanes 3–5). At 12.5, 25, and 50 µM, the band intensity of Ln was calculated as 56.00%, 53.50%, and 46.20%,
respectively.

Figure 9. The inhibitory properties of E. coli topoisomerase I. Lane 1: DNA control; lane 2: DNA + 2 units of
topoisomerase; lanes 3–5: DNA + 2 units of topoisomerase + compound 4 (12.5, 25 and 50 µM).

3.6. Conclusions
Phthalonitrile compound 3 was prepared with a reaction between 1-phenoxy-2-propanol (1) and 4-nitrophthalonitrile
(2). Peripherally tetra-substituted zinc(II) phthalocyanine complex 4 was prepared with the cyclotetrameriza-
tion reaction of compound 3 in n-pentanol. Novel compounds 3 and 4 were characterized by a combination of
different spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR, UV-Vis, and mass analysis. The singlet
oxygen quantum yield (Φ∆) value of compound 4 was determined in DMSO by using 1,3-diphenylisobenzofuran
(DPBF) as a singlet oxygen quencher. The Φ∆ value of compound 4 (0.71) was found higher than that of stan-
dard zinc(II) phthalocyanine (0.67), suggesting the effect of the substitution of 4-(1-phenoxypropan-2-yloxy)
groups on the phthalocyanine skeleton. UV-Vis absorption experiments were performed to determine the DNA
binding ability of the compounds. UV-Vis absorption titration and EB competitive binding experiments showed
that compound 4 interacted with ct-DNA strongly via nonintercalation mode. pBR322 plasmid DNA cleav-
age activities of the compound were investigated using agarose gel electrophoresis without/with irradiation.
The results revealed that compound 4 showed DNA cleavage activities due to its singlet oxygen quantum
yield. The E. coli DNA topoisomerase I inhibition effects of compound 4 were investigated using agarose gel
electrophoresis and the results were analyzed using Image Lab Version 4.0.1. The compound had E. coli topoi-
somerase I inhibitory effects at increasing concentrations. The results showed that compound 4 can be used as
a photosensitizer agent in photodynamic therapy.
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Supplementary information 

1. Materials and equipment 

 

All reactions were performed under an inert nitrogen atmosphere. 1-Phenoxy-2-

propanol (1), 4-nitrophthalonitrile (2), 1,8-diazabicyclo[4.5.0]undec-7-ene, 1,3-

diphenylisobenzofuran (DPBF), calf thymus-DNA (ct-DNA), ethidium bromide (EB), 

agarose, acetic acid, ethylenediaminetetraacetate (EDTA), β-mercaptoethanol (ME), 

bromophenol blue, xylene cyanol,  glycerol, hydrogen peroxide (H2O2), potassium acetate, 

Tris-acetate, magnesium acetate, bovine serum albumin (BSA), and sodium dodecyl sulfate 

(SDS) were obtained from Sigma-Aldrich. Supercoiled pBR322 plasmid DNA was obtained 

from Thermo Scientific (SD0041). E. coli topoisomerase I enzyme was purchased from NEB 

(M0301L). All chemicals and reagents used were of analytical grade or higher. 

1H NMR spectra were recorded on a Varian XL-400 NMR spectrometer and chemical 

shifts were reported (δ) relative to Me4Si (tetramethylsilane) as an internal standard. IR 

spectra were recorded on a PerkinElmer Spectrum One FT-IR spectrometer. The MS spectra 

were measured with a BRUKER Microflex LT by MALDI-TOF (matrix-assisted laser 

desorption ionization-time of flight) mass spectrometer technique using 2,5- 

dihydroxybenzoic acid (DHB) as a matrix. Methanol and chloroform were used as solvents in 

mass analysis and all mass analyses were conducted in positive ion mode. Melting points 

were measured by an electrothermal apparatus. The UV-Vis absorption spectra were recorded 

on a PerkinElmer Lambda 25 UV-Vis spectrophotometer at room temperature. The DNA 

cleavage and topoisomerase experiments were photographed using the Bio-Rad Gel Doc XR 

system and the results were calculated by the Image Lab Version 4.0.1 software program. The 

power density was measured using a power meter (Ophir sensor Nova II).  

 

 

2. Synthesis 

 

2.1. 4-(1-Phenoxypropan-2-yloxy)phthalonitrile (3) 

 

 1-Phenoxy-2-propanol (1) (3.00 g, 19.71 mmol) and 4-nitrophthalonitrile (2) (3.41 g, 

19.71 mmol) were dissolved in dried DMF (20 mL). Anhydrous K2CO3 (4.08 g, 29.57 mmol) 

was added within 2 h to the reaction mixture. The mixture was stirred at 50 °C for 4 days and 

then it was poured into 250 mL of ice water, stirred for 1 h at room temperature, and filtered 



 

 

off. The product was crystallized from ethanol. Yield 2.63 g (48%), mp 230–232 °C, 

C17H14N2O2. IR υmax/cm–1: 3078, 2985, 2937, 2229 (C≡N), 1590, 1489, 1321, 1239, 1172, 

1054, 971, 847, 759, 692. 1H NMR (CDCl3) (δ: ppm): 7.710 (d, 1H, aromatic proton), 7.42–

7.24 (m, 3H, aromatic protons), 7.098–6.870 (m, 4H, aromatic protons), 4.907, (m, H, -CH, 

aliphatic proton), 4.170 (m, 2H, -CH2, aliphatic protons), 1.487 (d, 3H, -CH3, aliphatic 

protons). 13C NMR (CDCl3) (δ: ppm): 161.774, 158.034, 135.199, 129.637, 129.527, 121.523, 

120.347, 119.533, 116.024, 115.698 (C≡N), 115.276 (C≡N), 114.516, 114,446, 107.255, 

74.025 (-CH), 70.751 (-CH2), 16.683 (-CH3). MALDI-TOF-MS (m/z): Calculated: 278.11; 

Found: 279.106 [M+H]+. 

 

 2.2. Peripherally tetra-substituted zinc(II) phthalocyanine (4) 

 

A mixture of phthalonitrile compound 3 (0.6 g, 2.16 mmol), n-pentanol (10 mL), 1,8-

diazabicyclo[4.5.0]undec-7-ene (DBU) (5 drops), and equivalent amounts of anhydrous 

Zn(CH3COOH)2 was heated to 160 °C and stirred for 24 h at this temperature. After cooling 

at room temperature, the reaction mixture was precipitated by the addition of hexane and 

filtered off. After washing with ethyl acetate, acetone, and ethanol the solid product was 

purified with column chromatography using silica gel. Solvent system for column 

chromatography was chloroform:methanol (100:2). Yield: 330 mg (52%), mp >300 °C, 

C68H56N8O8Zn. IR (ATR) υmax/cm-1: 3059, 2973, 2928, 1598, 1486, 1393, 1336, 1223, 1116, 

1086, 1044, 963, 880, 822, 744, 690. 1H NMR (DMSO-d6) (δ: ppm): 8.146–7.258 (bm, 32H, 

Ar-H, aromatic protons), 4.601 (bs, 4H, -CH, aliphatic protons), 4.161 (bs, 8H, -CH2, 

aliphatic protons), 1.467 (bs, 12H, -CH3, aliphatic protons). UV-Vis (DMF, 1 × 10–5 M): 

λmax/nm (log ε): 679 (5.04), 611 (4.38), 353 (4.82). MALDI-TOF-MS, (m/z): Calculated:  

1176.35, Found: 1177.056 [M+H]+. 

 

 

3. Singlet oxygen quantum yield (ΦΔ) 

 

Singlet oxygen quantum yield () determinations were carried out using the experimental 

set-up described in the literature [1]. Typically, 3 mL of the respective phthalocyanine (4) 

solutions (concentration  =  1 × 10−5 M) containing the singlet oxygen quencher was 

irradiated in the Q band region with the photoirradiation set-up described in the literature [1]. 

The  value was determined in air using the relative method with Std-ZnPc (in DMSO) as a 



 

 

standard. DPBF was used as a chemical quencher for singlet oxygen in DMSO. The  

values of the studied phthalocyanine was calculated using Eq. 1: 

 

                                                                 ,  (1)        

 

where  is the singlet oxygen quantum yield for the standard.  Std-ZnPc (
Std = 0.67 in 

DMSO) [2] was used as standard. R and RStd are the DPBF photobleaching rates in the 

presence of the compound 4 and the standard, respectively. Iabs and  are the rates of light 

absorption by compound 4 and the standard, respectively. Iabs was determined by using Eq. 2: 

  

                                                                                           ,                                                    (2) 

 

To avoid chain reactions induced by DPBF in the presence of singlet oxygen [3], the 

concentration of quencher (DPBF) was lowered to 3 × 10−5 M. Solutions of sensitizer 

(concentration = 1 × 10−5 M) containing DPBF were prepared in the dark and irradiated in the 

Q band region using the setup described in the literature [1].  DPBF degradation at 417 nm 

was monitored. The light intensity used for  determinations was found to be 6.60 × 1015 

photons s–1 cm-2. 

 

4. DNA binding experiments 

 A solution of ct-DNA was prepared in 5 mM Tris-HCl and 50 mM NaCl (pH 7.2) 

followed by stirring for 3 days and kept at 4 °C for 1 week. In order to evaluate the percentage 

hypochromicity and intrinsic binding constant (Kb) of compound 4, experiments were carried 

out using fixed concentrations of the compounds while varying the concentrations of ct-DNA. 

Increasing amounts of ct-DNA solution including the compounds were incubated for 10 min 

at room temperature and changes in the absorption spectra were monitored. EB was used as a 

positive control. The percentage of hypochromicity of compound 4 was calculated from Eq. 3: 

     𝐻𝑦𝑝𝑜𝑐ℎ𝑟𝑜𝑚𝑖𝑐𝑖𝑡𝑦 % = (
(Ɛ𝑓−Ɛ𝑏)

Ɛ𝑓
 × 100).   (3) 

 

 The Kb of compound 4 was calculated using Eq. 4:  

                                    
[𝐷𝑁𝐴]

(𝜀𝑎−𝜀𝑓)
=

[𝐷𝑁𝐴]

(𝜀𝑏−𝜀𝑓)
+

1

𝐾𝑏(𝜀𝑏−𝜀𝑓)
, (4)   
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where [DNA] is the concentration of ct-DNA. The apparent absorption coefficient εa = 

Aobsd/[compound], εf  is the extinction coefficient of the free compound, and εb is the extinction 

coefficient of the compound when fully bound to DNA, respectively. In plots of 

[DNA]/(εa−εf) versus [DNA],  Kb is given by the ratio of the slope to the intercept [4]. 

 

Competitive binding experiments of compound 4 with EB were performed using UV-Vis 

spectroscopy. The EB-(ct-DNA) complex was formed by adding EB:ct-DNA (75 µM : 75 

µM) solution and gradually varying the concentrations of compound 4, measured as the 

changes in the absorption spectra in the range of 425–550 nm [5]. 

 

 

5. DNA cleavage experiments 

DNA cleavage properties of the compound were monitored by agarose gel 

electrophoresis using supercoiled pBR322 plasmid DNA without/with irradiation. The DNA-

photocleavage studies were performed under light irradiation using light (white, 17.5 

mW/cm2, 10 min). Briefly, supercoiled pBR322 plasmid DNA was treated with increasing 

concentrations of compound 4 (6.25–50 µM) in buffer containing 50 mM Tris-HCl (pH 7.0). 

All samples were incubated at 37 °C for 1 h. Then loading buffer (bromophenol blue, xylene 

cyanol, glycerol, EDTA, SDS) was added and the mixtures were loaded onto 0.8% agarose 

gel with EB staining in TAE buffer (Tris-acetic acid-EDTA). Electrophoresis was carried out 

at 100 V for 90 min and the results were visualized by the Bio-Rad Gel Doc XR system and 

analyzed using Image Lab Version 4.0.1 [6].  

 

To determine cleavage effects of compounds with oxidative agents, supercoiled 

pBR322 plasmid DNA and the compound were treated by adding oxidative agents such as 

hydrogen peroxide (H2O2), ascorbic acid (AA), and 2-mercaptoethanol (ME) without or with 

irradiation and analyzed according to the procedure described above [6]. 

 

6. E. coli topoisomerase I inhibition assay 

E. coli topoisomerase I assays were carried out as described previously with 

modifications [7]. Camptothecin was used as a positive control. A mixture containing 

supercoiled pBR322 plasmid DNA and 2 units of E. coli topoisomerase I was incubated 

with/without compound 4 at 37 °C for 1 h in buffer including 50 mM potassium acetate, 20 

mM Tris-acetate, 10 mM magnesium acetate, and 100 µg/mL BSA (pH 7.9 at 25 °C). Then 



 

 

loading buffer was added to the reaction mixture. These reaction mixtures were loaded onto 

0.8% agarose gel with EB staining in TAE and electrophoresed at 45 V for 3 h, and the image 

was photographed using the Bio-Rad Gel Doc XR system and calculated using Image Lab 

Version 4.0.1. 
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