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Abstract: Three new 2-component unsubstituted (4P), diiodo- (5P), and dibromo- (6P) distyryl-BODIPY-bridged cy-
clotriphosphazene dimers were designed and synthesized. The newly synthesized BODIPY-cyclotriphosphazene systems
were characterized by 1 H, 13 C, and 31 P NMR spectroscopy. The photophysical properties of the distryl-BODIPYs
(4–6) and BODIPY-cyclotriphosphazene dyads (4P–6P) were studied by UV-Vis absorption and fluorescence emission
spectroscopy. In these derivatives, the bino-type cyclotriphosphazene derivative bearing unsubstituted BODIPY unit 4
P exhibited high fluorescence and no singlet oxygen generation due to the lack of spin converter. The attachment of heavy
atoms (iodine and bromine) enabled the production of singlet oxygen. The bino-type BODIPY-cyclotriphosphazenes (5P
and 6P) were also used as triplet photosensitizers in the photooxidation of 1,3-diphenylisobenzofuran to endoperoxide
via generation of the singlet oxygen in dichloromethane. The singlet oxygen production of these compounds was also
investigated via a direct method and produced a singlet oxygen phosphorescence peak at 1270 nm.
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1. Introduction
Phosphazenes are one of the most studied classes of inorganic heterocyclic molecules [1]. The significance of
this class is due to their wide application areas, such as medicine, biology, flame-retardant additives, mem-
branes, microlithography, and ionic crystals [2–5]. In these studies, cyclotriphosphazenes are widely used as a
core platform to develop tailor-made systems, because cyclotriphosphazene can easily be tuned by nucleophilic
substitution reactions [6]. The readily available reactive phosphorus-chloride bonds provide an immense range
of different molecular systems for targeted applications [7–9]. Moreover, phosphazenes possess thermal and
chemical stabilities under different conditions, which is very important for specific applications areas [10,11].
Nucleophilic substitution reactions of phosphazenes with functional groups (alcohols, amines, thiols, etc.) have
been widely studied [12–15]. Recently, derivatization of a phosphazene core with organic chromophores has
attracted much attention. Specifically, 4 ,4-difluoro-4-bora-3a ,4a-diaza-s-indacene BODIPY-cyclophosphazene
systems were synthesized and characterized by several groups to investigate their photophysical and photo-
chemical properties [16–18].

BODIPYs were proven to be versatile dyes with high molar absorption coefficients, large fluorescence
quantum yields, and good solubility in various solvents [19]. A BODIPY core can be easily functionalized to
tune the photophysical properties, such as the bathochromic shift of the UV-Vis absorbance via a Knoevenagel
condensation reaction .[20]. However, the high fluorescent quantum yield of BODIPYs generally suggests trivial
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intersystem crossing, which hinders their role as triplet photosensitizers. To overcome this obstacle, brominated
or iodinated BODIPY derivatives stand out by using the spin-orbital coupling effect of the heavy atom [19,21,22].

BODIPY-decorated cyclotriphosphazene derivatives have been readily reported as efficient singlet oxygen
generators [23,24]. However, BODIPY-bridged cyclotriphosphazene derivatives, which can provide additional
branching points, have never been reported. Herein, we reported the first examples of BODIPY-bridged cyclot-
riphosphazene dimers (4P–6P). Unsubstituted, iodinated, and brominated distyryl-BODIPY derivatives (4–6)
bearing alkoxy functional groups were reacted with trimer and mono-BODIPY-bridged cyclotriphosphazene
(4P–6P) derivatives were synthesized (Scheme). All of the prepared compounds were characterized by mass,
31P, 1H, and 13C NMR spectroscopy. The photophysical properties of BODIPYs (4–7) and BODIPY-bridged
cyclotriphosphazenes (4P–6P) were studied via UV-Vis and fluorescence emission techniques. Singlet oxygen
generation abilities of BODIPY-bridged cyclotriphosphazenes (4P–6P) were investigated via both indirect and
direct methods.

2. Experimental

2.1. Materials
Chloroform-d (CDCl3) , p-chloroanil, boron trifluoride diethyl etherate, silica gel, acetic acid, triethylamine, tri-
fluoroacetic acid, and piperidine were obtained from Merck (Darmstadt, Germany). Subsequent chemicals were
obtained from Sigma-Aldrich (St. Louis, MO, USA): ethanol, ethyl acetate, iodic acid, N-bromosuccinimide,
dichloromethane, tetrahydrofuran 2,4-dimethyl pyrrole, and glacial acetic acid. 4-Hydroxy-benzaldehyde, ben-
zene, and cesium carbonate were obtained from Alfa Aesar (Haverhill, MA, USA). The rest of the chemicals
used in the synthesis were reagent grade unless otherwise specified.

2.2. Equipment

Absorption spectra of the compounds were inscribed with a Shimadzu 2101 UV spectrophotometer (Kyoto,
Japan) in the UV-Vis region. Fluorescence excitation and emission spectra were obtained with a Varian Eclipse
spectrofluorometer (Palo Alto, CA, USA) (1-cm path-length cuvette, RT). Singlet oxygen phosphorescence
around 1270 nm was investigated using a Horiba Jobin-Yvon fluorometer (Kyoto, Japan) with a Hamamatsu
NIR PMT 5509 (Hamamatsu, Japan) at –80 ◦C. The fluorescence lifetime experiments were performed using a
Horiba Jobin-Yvon-SPEX Fluorolog 3-2iHR instrument at excitation wavelengths with time-correlated single-
photon counting (TCSPC) module for signal acquisition. Mass spectra were obtained in linear modes on a
Bruker Daltonics Microflex mass spectrometer (Billerica, MA, USA) equipped with a nitrogen UV-laser at 337
nm. The 31P, 1H, and 13C NMR spectra were provided in solutions (CDCl3) with a Varian spectrometer (500
MHz). Analytical thin-layer chromatographies (TLC) were carried out on silica gel plates (Merck, Kieselgel
60 Å, 0.25-mm thickness with F254 indicator). Suction column chromatographies were made with silica gel
(100–200 mesh).

2.3. Parameters for fluorescence quantum yields

The fluorescence quantum yields (ΦF ) of compounds 4–6 and 4P–6P were calculated by the relative procedure
in Eq. (1) [25]:

ΦF = ΦFStd
F×AStd×n2

FStd×A×n2Std
, (1)
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where the areas under the fluorescence emission curves of the compounds (4–6 and 4P–6P) and the standard are
F and FStd , respectively. A and AStd represent the absorbances of compounds 4–6 and 4P–6P, respectively.
η values, as the refractive indices of the solvents, were considered in the determination of the fluorescence
quantum yields in different solvents. Cresyl violet (ΦF = 0.54/methanol) [26] was used as the standard.

Scheme. Synthesis of BODIPY-bridged cyclotriphosphazenes (4P–6P).

2.4. Parameters for singlet oxygen

Singlet oxygen (Φ∆) phosphorescence measurements were carried out using a Horiba Jobin-Yvon fluorometer
with a Hamamatsu NIR PMT 5509. The intensity of singlet oxygen formation was obtained according to Eq.
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(2):

Φ∆=Φ∆ (std)
I∆ (compound)×A(std)

I∆ (std)×A(compound)
(2)

Singlet oxygen quantum yields of compounds 4–6 and 4P–6P were determined by employing DPBF as
a trap molecule and methylene blue (MB) as a reference. Singlet oxygen generations were monitored by the
decrease in absorbance of DPBF. A 630-nm (4.0 mW/cm2) LED bulb was used as a light source and exposed
from a cuvette distance of 5 cm, and absorbances were recorded at intervals for each irradiation (Eq. (3)):

Φ∆(compound) =Φ∆(ref)

[
k(compound)

k(ref)

] [
F(ref)

F(compound)

] [
PF(ref)

PF(compound)

]
. (3)

Here, compound and ref designate the BODIPYs and BODIPY-cyclotriphosphazene (4–6 and 4P–6P)
and MB, respectively. k is the slope of the change in maximum absorbance of DPBF (414 nm) with the
irradiation time. F is the absorption correction factor (F = 1−10−OD , where OD is absorption at the irradiation
wavelength), and PF is the light intensity (energy flux, mW/cm2) .

2.5. Synthesis

Compounds 1–4 were synthesized with respect to the literature (Scheme) [27–29].

2.5.1. Synthesis of compound 5

Compound 2 (100 mg, 0.173 mmol) and 4-hydroxybenzaldehyde (49 mg, 0.401 mmol) were dissolved in benzene
(40 mL) under an argon atmosphere. Piperidine (0.3 mL) and glacial acetic acid (0.3 mL) were added to
the solution and the reaction mixture was refluxed using a Dean-Stark apparatus until it was concentrated.
The reaction was followed by TLC until the major product was a dark blue-colored compound. The reaction
mixture was extracted from dichloromethane and water. Next, compound 5 was purified by silica gel column
chromatography using dichloromethane and methanol (98:2) (yield: 73%).

Spectral data of 5: MS (MALDI-TOF) (DIT) m/z (%): calc. for C33H25BF2 I2N2O2 : 784.19; found:
784.15 [M+ ]. 1H NMR (500 MHz, CDCl3 , 293 K, δ ppm): 8.00 (d, 3JH−H = 16.62 Hz, 2H, trans-CH), 7.41
(d, 3JH−H = 15.71, 2H, trans-CH), 7.40 (d, 3JH−H = 8.37, 6H, Ar-CH), 7.25 (br, 1H, Ar-CH), 7.17 (dd,
3JH−H = 6.29, 3JH−H = 6.30, 2H, Ar-CH) 6.75 (d, 3JH−H = 8.52 Hz, 4H, Ar-CH), 1.32 (s, 6H, -CH3) . 13C
NMR (126 MHz, CDCl3 , 293 K, δ ppm): 162.43, 154.48, 149.59, 143.46, 142.09, 139.18, 136.66, 133.28, 132.44,
132.29, 129.33, 115.75, 119.71, 29.53.

2.5.2. Synthesis of compound 6

Compound 3 (100 mg, 0.207 mmol) and 4-hydroxybenzaldehyde derivative (64 mg, 0.518 mmol) were dissolved in
benzene (40 mL) under an argon atmosphere. Piperidine (0.3 mL) and glacial acetic acid (0.3 mL) were added to
the solution and the reaction mixture was refluxed using a Dean-Stark apparatus until it was concentrated. The
reaction was followed by TLC until the major product was a dark blue-colored compound. The reaction mixture
was extracted from dichloromethane and water. Compound 6 was purified by silica gel column chromatography
using dichloromethane and methanol (97:3) (yield: 58%).
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Spectral data of 6: MS (MALDI-TOF) (DHB) m/z (%): calc.: 690.19; found: 690.06 [M+ ]. 1H NMR
(500 MHz, CDCl3 , 293 K, δ ppm): 8.02 (d, 3JH−H = 16.6 Hz, 2H, trans-CH), 7.50 (d, 3JH−H = 16.9, 2H,
trans-CH), 7.46 (m, 7H, Ar-CH), 7.22 (m, 2H, Ar-CH), 6.80 (d, 3JH−H = 8.2 Hz, 4H, Ar-CH), 1.33 (s, 6H,
-CH3) . 13C NMR (126 MHz, CDCl3 , 293 K, δ ppm): 158.47, 148.41, 140.85, 139.19, 134.80, 131.79, 129.39,
129.33, 129.27, 128.66, 128.31, 115.73, 115.19, 29.55, 25.40, 13.50.

2.5.3. Synthesis of compound 4P

A 100-mL round-bottomed flask was charged with tetrahydrofuran (50.0 mL) and purged with Ar for 15 min.
Compound 4 (100 mg, 0.19 mmol) and cesium carbonate (159 mg, 0.49 mmol) were added to the reaction flask
and stirred for 30 min. Trimer (163.0 mg, 0.47 mmol) was poured into the reaction mixture and the reaction
mixture was stirred for 16 h at room temperature. The precipitated salt (CsCl) was filtered off and the solvent
was removed at reduced pressure. The resulting white solid was subjected to column chromatography using
n-hexane and ethyl acetate (3:2) as the mobile phase (yield: 55%).

Spectral data of 4P: MS (MALDI-TOF) (NOM) m/z (%): calc.: 1154.77; found: 1154.18 [M+ ]. 31P
NMR (202 MHz, CDCl3 , δ ppm): 22.47 (d, 2JP−P = 60.59 Hz, 2P, PCl2) , 12.12 (t, 2JP−P = 60.59 Hz,
1P, PClOPh) spin system: A2X. 1H NMR (500 MHz, CDCl3 , 293 K, δ ppm): 7.72 (d, 3JH−H =16.5 Hz,
2H, trans-CH), 7.68 (d, 3JH−H =7.8 Hz, 4H, Ar-CH), 7.53 (m, 3H, Ar-CH), 7.34 (m, 6H, Ar-CH), 7.24 (d,
3JH−H =16.9 H, 2H, trans-CH), 6.66 (s, 2H, -CH), 1.48 (s, 6H, -CH3) . 13C NMR (126 MHz, CDCl3 , 293 K,
δ ppm): 152.27, 149.51, 149.41, 142.60, 139.72, 135.26, 134.92, 134.44, 133.59, 129.21, 128.94, 128.29, 121.78,
121.73, 120.12, 117.93, 25.62.

2.5.4. Synthesis of compound 5P

A 100-mL round-bottomed flask was charged with tetrahydrofuran (50.0 mL) and purged with Ar for 15 min.
Compound 5 (150 mg, 0.191 mmol) and cesium carbonate (149 mg, 0.459 mmol) were added to the reaction
flask and stirred for 30 min. Trimer (132.7 mg, 0.382 mmol) was poured into the reaction mixture and stirred
for 16 h at room temperature. The precipitated salt (CsCl) was filtered off and the solvent was removed at
reduced pressure. The resulting green solid was subjected to column chromatography using n-hexane and ethyl
acetate (3:1) as the mobile phase (yield: 40%).

Spectral data of 5P: MS (MALDI-TOF) (DIT) m/z (%): calc. for C33H23BCl10F2 I2N8O2P6 : 1406.56;
found: 1406.58 [M+ ]. 31P NMR (202 MHz, CDCl3 , δ ppm): 22.49 (d, 2JP−P = 61.08 Hz, 2P, PCl2) , 11.93
(t, 2JP−P = 61.08 Hz, 1P, PClOPh) spin system: A2X. 1H NMR (500 MHz, CDCl3 , 293 K, δ ppm): 8.06
(d, 3JH−H = 16.58 Hz, 2H, trans-CH), 7.52 (d, 3JH−H = 8.06 Hz, 2H, Ar-CH), 7.49 (d, 3JH−H = 16.57 Hz,
2H, trans-CH), 7.44 (br, 1H, Ar-CH), 7.40–7.37 (m, 4H, Ar-CH), 7.17–7.12 (m, 6H, Ar-CH) 1.43 (s, 6H, -CH3) .
13C NMR (126 MHz, CDCl3 , 293 K, δ ppm): 147.52, 141.84, 107.64, 104.96, 104.93, 66.93, 34.54, 31.99, 29.09,
25.38, 23.71, 23.17.

2.5.5. Synthesis of compound 6P

A 100-mL round-bottomed flask was charged with tetrahydrofuran (50.0 mL) and purged with Ar for 15 min.
Compound 6 (30 mg, 0.04 mmol) and cesium carbonate (34 mg, 0.1 mmol) were added to the reaction flask and
stirred for 30 min. Trimer (30.2 mg, 0.08 mmol) was poured into the reaction mixture and stirred for 16 h at
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room temperature. The precipitated salt (CsCl) was filtered off and the solvent was removed at reduced pressure.
The resulting green solid was subjected to column chromatography using n-hexane and tetrahydrofuran (4:1)
as the mobile phase (yield: 30%).

Spectral data of 6P: MS (MALDI-TOF) (DIT) m/z (%): calc.: 1312.56; found: 1312.091 [M+ ]. 31P
NMR (202 MHz, CDCl3 , δ ppm): 22.5 (d, 2JP−P = 60.88 Hz, 2P, PCl2) , 11.96 (t, 2JP−P = 60.83 Hz, 1P,
PClOPh) spin system: A2X. 1H NMR (500 MHz, CDCl3 , 293 K, δ ppm): 8.07 (d, 3JH−H = 17.1 Hz, 2H,
trans-CH), 7.67 (d, 3JH−H = 8.6, 4H, Ar-CH), 7.62 (d, 3JH−H = 17.2 Hz, 2H, trans-CH), 7.53 (m, 3H, Ar-CH),
7.30 (d, 3JH−H = 8.7 Hz, 6H, Ar-CH), 1.41 (s, 6H, -CH3) . 13C NMR (126 MHz, CDCl3 , 293 K, δ ppm):
129.51, 129.50, 129.15, 129.12, 128.06, 121.74, 121.70, 118.79, 110.56, 67.93, 53.36, 25.49, 13.69.

3. Results and discussion
3.1. Synthesis and structural characterization

The synthetic pathways to prepare the BODIPYs (4–6) and BODIPY-bridged cyclotriphosphazenes (4P–6P)
in this study are shown in the Scheme. Compounds 1–3 were synthesized according to methods in the liter-
ature [27–29]. The synthetic strategy to prepare distyryl-BODIPYs (4–6) bearing the -OH functional group
was also based on methods in the literature and initially included the reactions of BODIPYs 1–3 with 4-
hydroxybenzaldehyde in benzene using a Dean-Stark apparatus via Knoevenagel condensation conditions [27].
BODIPYs (4–6) in tetrahydrofuran solutions were then reacted with an excess of hexachlorocyclotriphosp-
hazene (trimer) in the presence of Cs2CO3 to prepare BODIPY-bridged cyclotriphosphazenes (4P–6P) from
nucleophilic displacement reactions. The progress of the reactions was followed by TLC and the products were
purified by silica-gel column chromatography with proper eluent systems (see Section 2). Identifications of the
BODIPYs (1–6) and BODIPY-cyclotriphosphazenes (4P–6P) were performed using 31P, 1H, and 13C NMR
spectroscopy and mass spectrometry. The results confirmed the established formulations, where the proton-
decoupled 31P NMR spectra of BODIPY-bridged cyclotriphosphazenes 4P–6P displayed the expected AX2

spin systems with 2 sets of signals corresponding to the P-OPhCl groups at ∼11.9–12.1 ppm and the PCl2
groups at ∼22.5 ppm.

3.2. Photophysical properties
The electronic UV-Vis absorption spectra of BODIPY-cyclotriphosphazenes 4P–6P were recorded in different
solvents (Figure 1). The absorption profile of compound 4P was observed to be similar in all of the studied
solvents (dichloromethane, acetone, ethanol, chloroform, acetonitrile, tetrahydrofuran, and dimethyl sulfoxide)
with maximum absorptions at ∼622 nm. I2 -BODIPY-cyclotriphosphazene 5P exhibited parallel absorption
peaks with different intensities, where the maximum absorption intensity observed was in dichloromethane
at 638 nm and the lowest was in dimethyl sulfoxide with a slight (∼8 nm) bathochromic shift. Compound
6P was influenced by the solvent and exhibited the most intense absorbances in chloroform, ethanol, and
dichloromethane at 640 nm, whereas the lowest absorption was displayed in acetonitrile with an additional peak
at ∼683, while the other selected solvent intensities were in the middle. Because all three compounds (4P–6P)
displayed optimum absorption characteristics, dichloromethane was selected as the solvent to be studied.

The concentrations of the compounds were fixed at 2 µM and measured at room temperature. Next, the
molar extinction coefficients (ε) of BODIPYs 4–6 and BODIPY-cyclotriphosphazene derivatives 4P–6P were
determined for compounds 4–6 as 7.18, 5.22, and 6.44 M−1 × cm−1 and for compounds 4P–6P as 13.74,
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Figure 1. Absorption spectra of compounds (A) 4P, (B) 5P, and (C) 6P in various solvents.

7.87, and 10.40 M−1 × cm−1 , respectively, in dichloromethane. The photophysical data are summarized
in the Table. The electronic absorption characters of the distyryl-BODIPYs (4–6) and BODIPY-bridged
cyclotriphosphazene derivatives (4P–6P) were studied in dichloromethane (Figure 2A). Maximum absorbance
wavelengths of compounds 4–6 were determined as 638, 655, and 638 nm, which is characteristic for distyryl-
BODIPY derivatives and caused by S0 –S1 transitions [19]. These characteristic transition bands were also
observed for compounds 4P–6P at 625, 658, and 639 nm, respectively. The absorption bands of the BODIPY-
bridged cyclotriphosphazenes were observed to be blue-shifted when compared to the parent BODIPY derivatives
(4–6). Fluorescence emission spectra of the BODIPYs (4–6) and BODIPY-cyclotriphosphazenes (4P–6P) upon
excitation at 580 nm are presented in Figure 2B. BODIPY derivative 4 exhibited strong emission at 634 nm
with an excitation wavelength at 580 nm in dichloromethane. The fluorescence emission of diiodo- and dibromo-
BODIPY derivatives 5 and 6 was ∼678 nm, whereby the fluorescence intensity of dibromo-BODIPY 6 stayed
between that of 4 and 5, as expected [30]. The maximum fluorescence emissions of the BODIPY-bridged
cyclotriphosphazenes (4P–6P) were at 634, 655, and 653 nm with hypsochromic shifts of 17–25 nm compared
to those of related BODIPY derivative fluorescence with a similar but slightly broader spectral shape. The
fluorescence quantum yields were calculated via the relative method using cresyl violet as the reference (Φref

= 0.54/methanol) [26] and quantified as 0.32, 0.01, and 0.01 for compounds 4–6 and 0.25, 0.05, and 0.14 for
4P–6P, respectively (Table). Moreover, the fluorescence lifetimes were obtained using TCSPC and the results
are depicted in Figure 3 and the Table.

3.3. Photochemical properties

Photosensitizers can be described as chemical tools that generate reactive oxygen species (ROS) via light
illumination [31]. As one of the ROS, singlet oxygen is produced through energy delivery from a photosensitizer’s
triplet energy state to triplet oxygen (ground state molecular oxygen, 3O2) [32]. A fashionable strategy to
enhance the efficiency of the triplet energy state for BODIPY chemistry is the covalent attachment of iodine or
bromine to the 2 and 6 positions of the BODIPY core [30]. Herein, singlet oxygen production of the unsubstituted
(4P), diiodo- (5P), and dibromo- (6P) substituted BODIPY-bridged cyclotriphosphazene systems was studied.
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Figure 2. (A) UV-Vis absorption (2 µM) and (B) fluorescence emission (1 µM, λex = 580 nm) features of compounds
4–6 and 4P–6P.

Figure 3. Fluorescence decay profiles of compounds (A) 4–6 and (B) 4P–6P using a laser excitation source of 670 nm.

The singlet oxygen formation abilities of the systems were first identified by chemical method via pursuing
the photooxidation of DPBF [6]. The 2 µM dichloromethane solutions of the BODIPY-cyclotriphosphazenes
(4P–6P) and DPBF (absorbance set to ∼2.3 ± 0.1) were first kept in the dark for 15 min, to eliminate
possible side reactions, and then the solutions were irradiated for 5 s until the DPBF (414 nm) absorption
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Table 1. Photophysical and photochemical features of compounds 4–6 and 4P–6P.

Compound Absorption
wavelength
λab (nm)

Emission
Êwavelength
λem (nm)

∆Stokes

(nm)
∗ε, 104 (M−1 cm−1) ∗∗τF (ns) ∗∗∗ΦF †Φ∆

4 586, 638 651, 711 13 7.18 3.57 0.32 -
5 601, 655 677 21 5.22 1.78 0.01 -
6 591, 638 678 21 6.44 3.22 0.01 -
4P 576, 625 634, 693 10 13.74 4.33 0.25 -
5P 609, 658 655 16 7.87 1.68 0.05 0.24
6P 591, 639 653, 712 14 10.40 4.03 0.14 0.89

*Molar extinction coefficients,
**fluorescence lifetime,
***fluorescence quantum yield,
†singlet oxygen quantum yield via chemical method.

was terminated with red LED (630 nm) systematically. Reductions in the absorption bands of DPBF were
monitored to enable calculation of singlet oxygen generation yields via the indirect method (Figure 4). As
expected, the absorbance of DPBF as a trap molecule (414 nm) did not display any significant alteration upon
irradiation of compound 4P due to the lack of a heavy atom effect, as expected (Figure 4A). In the case of
compounds 5P and 6P, a heavy atom effect (iodine and bromine) was asserted and as soon as irradiation was
initiated, about 80% and 14% of the DPBF absorptions vanished in 25 s (Figures 4B and 4C). Moreover, the
photooxidation experiment of DPBF was performed with MB as the standard (Φ∆ = 0.52 in dichloromethane)
under the same experimental conditions (Figure 4D). Data for the compounds were plotted as the maximum
absorption of the trap molecule versus the irradiation time to obtain the slopes of the graphics. The singlet
oxygen quantum yields were determined via a relative method using MB as the standard, according to Eq. (3)
(see Section 2). The singlet oxygen quantum yields of compounds 5P and 6P were determined as 0.89 and 0.24,
respectively. The iodinated BODIPY-cyclotriphosphazene system 5P exhibited more singlet oxygen yield than
MB and compound 6P. In addition, the photostabilities of the BODIPY-cyclotriphosphazenes (4P–6P) were
studied since photostability upon excitation is an expected behavior [6]. Compounds 4P–6P were excited with
the same LED used in the photooxidation studies of DPBF for 20 min and no significant alteration occurred in
the absorptions (Figure 5).

The singlet oxygen generation characters were then examined by measuring singlet oxygen signature
phosphorescence at 1270 nm for dyads (4P–6P). Compounds 4P–6P and MB were excited at their excitation
wavelengths with a xenon-arc source and detected with a near-IR sensitive detector. Equal absorptivities (0.2)
for all of the compounds and MB in dichloromethane were excited and the BODIPY-bridged cyclotriphosphazene
derivative bearing iodine substituents (5P) gave the strongest phosphorescence at 1270 nm, which was consistent
with the photochemical singlet oxygen experiments. MB and compound 6P also displayed phosphorescence
peaks with reduced intensity (Figure 6).

3.4. Conclusions
Three novel BODIPY-bridged cyclotriphosphazenes composed of 2 cyclotriphosphazene and unsubstituted-
(4P), iodinated- (5P), and brominated- (6P) distyryl BODIPY subunits were designed and prepared via nucle-
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Figure 4. Absorbance spectra of DPBF after each irradiation in the presence of compounds (A) 4P, (B) 5P, (C) 6P,
and (D) MB in dichloromethane (2 µM).

Figure 5. The photostabilities of BODIPY-cyclotriphosphazene conjugates (4P–6P).

ophilic substitution reaction. Photophysical properties, such as UV-Vis absorption, fluorescence emission, fluo-
rescence quantum yield, and lifetime of the parent BODIPY derivatives (4–6) and BODIPY-cyclotriphosphazenes
(4P–6P) were studied. Absorption bands of the BODIPY-bridged cyclotriphosphazenes (4P–6P) were found
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Figure 6. Singlet oxygen phosphorescence with sensitization of compounds 4P–6P and MB in dichloromethane
(maximum absorptions were set to 0.2 for all compounds).

to have shifted to blue relative to the parent BODIPY derivatives. The singlet oxygen generation efficiencies
and photostabilities of compounds 4P–6P were investigated by both direct and indirect (chemical) methods by
comparing them with MB as the standard. The dimer, containing unsubstituted BODIPY-cyclotriphosphazene
4P, exhibited no singlet oxygen generation, as expected, while the heavy atom-substituted iodine (5P) and
bromine (6P) were found to have generated singlet oxygen with both methods. Iodination of BODIPY was
found to be more effective than bromination to generate triplet photosensitization, and the singlet oxygen quan-
tum yields were calculated with the indirect method and found as 0.89 and 0.24 for 5P and 6P, respectively.
We suggest that BODIPY-bridged cyclotriphosphazenes exhibit excellent capacity as photosensitizers and can
be used for the development of novel systems.

References

1. Allen CW. Regiochemical and stereochemical control in substitution-reactions of cyclophosphazenes. Chemical
Reviews 1991; 91 (2): 119-135. doi: 10.1021/cr00002a002

2. Ozturk E, Okumus A, Kilic Z, Kilic A, Kayalak H et al. Phosphorus-nitrogen compounds. Part 44. The syntheses of
N,N-spiro bridged cyclotriphosphazene derivatives with (4-fluorobenzyl) pendant arms: structural and stereogenic
properties, DNA interactions, antimicrobial and cytotoxic activities. Inorganica Chimica Acta 2019; 486: 172-184.
doi: 10.1016/j.ica.2018.10.028

3. Asmafiliz N, Kilic Z, Civan M, Avci O, Gonder LY et al. Phosphorus-nitrogen compounds. Part 36. Syntheses,
Langmuir-Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New Journal of
Chemistry 2016; 40 (11): 9609-9626. doi: 10.1039/c6nj02052f

4. Akbas H, Karadag A, Destegul A, Cakirlar C, Yerli Y et al. Synthesis, and spectroscopic, thermal and dielectric
properties of phosphazene based ionic liquids: OFET application and tribological behavior. New Journal of
Chemistry 2019; 43 (5): 2098-2110. doi: 10.1039/c8nj04948c

5. Allcock HR. Chemistry and Applications of Polyphosphazenes. Hoboken, NJ, USA: Wiley-Interscience, 2003.
6. Okutan E, Eserci H, Senkuytu E. New perylenebisimide decorated cyclotriphosphazene heavy atom free conjugate

as singlet oxygen generator. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 222:
117232. doi: 10.1016/j.saa.2019.117232

84



ESERCİ et al./Turk J Chem

7. Caminade AM, Hameau A, Majoral JP. The specific functionalization of cyclotriphosphazene for the synthesis of
smart dendrimers. Dalton Transactions 2016; 45 (5): 1810-1822. doi: 10.1039/c5dt03047a

8. Chandrasekhar V, Nagendran S. Phosphazenes as scaffolds for the construction of multi-site coordination ligands.
Chemical Society Reviews 2001; 30 (3): 193-203. doi: 10.1039/b004872k

9. Rao MR, Gayatri G, Kumar A, Sastry GN, Ravikanth M. Cyclotriphosphazene ring as a platform for multipor-
phyrin assemblies. Chemistry - A European Journal 2009; 15 (14): 3488-3496. doi: 10.1002/chem.200802413

10. Van der Huizen AA, Van de Grampel JC, Rusch JW, Wilting T, Van Bolhuis F et al. Aziridinolysis patterns of
(NPCl2)3 and (NPCl2)4; crystal structures of trans-N3P3(NC2H4)2Cl4 and 2,trans-4-N4P4(NC2H4)2Cl6. Journal
of the Chemical Society, Dalton Transactions 1986; (7): 1317-1327. doi: 10.1039/DT9860001317

11. Van der Huizen AA, Wilting T, Van de Grampel JC, Lelieveld P, Van der Meer-Kalverkamp A et al. Isomer-
dependent cytostatic activity of bis(1-aziridinyl)cyclophosphazenes. Journal of Medicinal Chemistry 1986; 29 (8):
1341-1345. doi: 10.1021/jm00158a003

12. Ibisoglu H, Besli S, Yuksel F, Un I, Kilic A. Investigation of nucleophilic substitution pathway for the reactions
of 1,4-benzodioxan-6-amine with chlorocyclophosphazenes. Inorganica Chimica Acta 2014; 409: 216-226. doi:
10.1016/j.ica.2013.09.030

13. Uslu A, Ozcan E, Dural S, Yuksel F. Synthesis and characterization of cyclotriphosphazene derivatives bearing
azole groups. Polyhedron 2016; 117: 394-403. doi: 10.1016/j.poly.2016.06.009

14. Besli S, Coles SJ, Davies DB, Kilic A, Okutan E et al. A cis-directing effect towards diols by an exocyclic P-NHR
moiety in cyclotriphosphazenes. Inorganic Chemistry Communications 2009; 12 (8): 773-777.
doi: 10.1016/j.inoche.2009.06.014

15. Qian YC, Huang XJ, Xu ZK. Synthesis of polyphosphazene derivatives via thiol-ene click reactions in an aqueous
medium. Macromolecular Chemistry and Physics 2015; 216 (6): 671-677. doi: 10.1002/macp.201400545

16. Sarikaya SY, Yesilot S, Kilic A, Okutan E. NIR BODIPY-cyclotriphosphazene-fullerene assemblies: photophy-
isical properties and photosensitized generation of singlet oxygen. Dyes and Pigments 2019; 162: 734-740. doi:
10.1016/j.dyepig.2018.11.011

17. Senkuytu E, Ecik ET. Octa-BODIPY derivative dendrimeric cyclotetraphosphazenes; photophysical properties and
fluorescent chemosensor for Co2+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
2017; 173: 863-870. doi: 10.1016/j.saa.2016.10.052

18. Sarikaya SY, Yesilot S, Kilic A, Okutan E. Novel BODIPY-cyclotriphosphazene-fullerene triads: synthesis, char-
acterization and singlet oxygen generation efficiency. Dyes and Pigments 2018; 153: 26-34.
doi: 10.1016/j.dyepig.2018.02.001

19. Loudet A, Burgess K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chemical
Reviews 2007; 107 (11): 4891-4932. doi: 10.1021/cr078381n

20. Huang L, Yu XR, Wu WH, Zhao JZ. Styryl BODIPY-C-60 dyads as efficient heavy-atom-free organic triplet
photosensitizers. Organic Letters 2012; 14 (10): 2594-2597. doi: 10.1021/ol3008843

21. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY et al. BODIPY dyes in photodynamic therapy. Chemical
Society Reviews 2013; 42 (1): 77-88. doi: 10.1039/c2cs35216h

22. Zhao JZ, Wu WH, Sun JF, Guo S. Triplet photosensitizers: from molecular design to applications. Chemical Society
Reviews 2013; 42 (12): 5323-5351. doi: 10.1039/c3cs35531d

23. Senkuytu E, Cebesoy Z, Ciftci GY, Ecik ET. Study on the synthesis, photophysical properties and singlet oxygen
generation behavior of BODIPY-functionalized cyclotriphosphazenes. Journal of Fluorescence 2017; 27 (2): 595-
601. doi: 10.1007/s10895-016-1987-9

85



ESERCİ et al./Turk J Chem

24. Ecik ET, Senkuytu E, Cebesoy Z, Ciftci GY. BODIPY decorated dendrimeric cyclotriphosphazene photosensitizers:
synthesis and efficient singlet oxygen generators. RSC Advances 2016; 6 (53): 47600-47606. doi: 10.1039/c6ra07171f

25. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar
stationery products. Journal of Chemical Education 1999; 76 (9): 1260-1264. doi: 10.1021/ed076p1260

26. Brouwer AM. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report).
Pure and Applied Chemistry 2011; 83 (12): 2213-2228. doi: 10.1351/Pac-Rep-10-09-31

27. Okutan E, Tumay SO, Yesilot S. Colorimetric fluorescent sensors for hemoglobin based on BODIPY dyes. Journal
of Fluorescence 2016; 26 (6): 2333-2343. doi: 10.1007/s10895-016-1929-6

28. Song F, Zhang H, Wang DG, Chen T, Yang S et al. Imine-linked porous organic polymers showing mesoporous
microspheres architectures with tunable surface roughness. Journal of Polymer Science Part A: Polymer Chemistry
2018; 56 (3): 319-327. doi: 10.1002/pola.28902

29. Gao HC, Gao Y, Wang C, Hu DH, Xie ZQ et al. Anomalous effect of intramolecular charge transfer on the
light emitting properties of BODIPY. ACS Applied Materials & Interfaces 2018; 10 (17): 14956-14965. doi:
10.1021/acsami.7b13444

30. Zhao JZ, Xu KJ, Yang WB, Wang ZJ, Zhong FF. The triplet excited state of BODIPY: formation, modulation
and application. Chemical Society Reviews 2015; 44 (24): 8904-8939. doi: 10.1039/c5cs00364d

31. Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T. Highly efficient and photostable photosensitizer based on
BODIPY chromophore. Journal of the American Chemical Society 2005; 127 (35): 12162-12163.
doi: 10.1021/ja0528533

32. DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews
2002; 233: 351-371. doi: 10.1016/S0010-8545(02)00034-6

86


	Introduction
	Experimental
	Materials
	Equipment
	Parameters for fluorescence quantum yields
	Parameters for singlet oxygen 
	Synthesis
	Synthesis of compound 5
	Synthesis of compound 6
	Synthesis of compound 4P
	Synthesis of compound 5P
	Synthesis of compound 6P


	Results and discussion
	Synthesis and structural characterization
	Photophysical properties
	Photochemical properties
	Conclusions


