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Abstract: A great wealth of structural information about phosphazenes can be gleaned from the combined spectroscopic
and crystallographic data. When data from 31 P NMR spectroscopy and X-ray crystallography are put together
like pieces in a puzzle, a number of correlations can be obtained for phosphazene derivatives. A systematic study
concerning the correlations among the structural parameters (e.g., 31 P NMR data, endocyclic/exocyclic NPN bond
angles and bond lengths) revealed some characteristics of mono- and di-spirocyclophosphazene derivatives bearing 4-
fluoro/nitrophenylmethyl pendant arm/arms. These correlations include the relationship between the δPspiro shifts,
the values of electron density transfer parameters ∆(P–N), and the endocyclic and exocyclic NPN bond angles of
the cyclophosphazenes. The structural parameters were compared with each other for 19 compounds of 5 different
architectural types of cyclophosphazenes with 5- to 7-membered spiro-rings.

Key words: spiroCyclophosphazene, 4-fluoro/nitrophenylmethyl pendant arm, 31 P NMR, X-ray crystallography, elec-
tron density transfer parameter

1. Introduction
Since 1960, the Cl-replacement reactions of hexachlorocyclotriphosphazene (trimer, N3P3Cl6) and octachloro-
cyclotetraphosphazene (tetramer, N4P4Cl8) with monodentate [1,2] and bidentate [3] reagents have been
extensively studied. The sequential substitution reactions of the Cl-atoms of N3P3Cl6 and N4P4Cl8 with
primary and secondary amines led to the formation of the partly and fully substituted organocyclophosp-
hazenes [4]. The condensation reactions of N3P3Cl6 with bidentate reagents yield some interesting products;
e.g., spiro-, ansa-, dispiro-, trispiro-, spiro-ansa-, spiro-ansa-spiro, and spiro-bino-spiro-cyclotriphosphazenes
[5]. In addition to these compounds, tetramer also gives 2,4-ansa-, 2,4-dispiro-, 2,6-dispiro- and tetraspiro-
cyclotetraphosphazenes with bidentate reagents [6]. The chlorophosphazenes, N3P3Cl6 and N4P4Cl8 , can
undergo regio and stereoselective reactions, as well [7]. In recent years, cyclotri and cyclotetraphosphazenes
have started to attract much attention due to their potential stereogenic properties, and biological activities
such as antibacterial, antifungal and anti-cancer activities [8–12]. Our group has spent many years on desig-
nating and synthesizing novel partly substituted cyclotri and cyclotetraphosphazene derivatives with bidentate
ligands {dibenzo-diaza-crown ethers [13–17], dibenzo N2On (n=2–4) [18–21] and benzo NO [22–28] donor
∗Correspondence: sbilge@science.ankara.edu.tr
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type aminopodands, mono- and bis-ferrocenyldiamines [29–37], sodium (ferrocenylmethylamino)-1-alkoxide [38-
43]}and multidentate N2O2 -donor type dibenzo aminopodands [44–46]. Some interesting phosphazene deriva-
tives such as monotopic and ditopic spiro-crypta phosphazenes, spirocyclic phosphaza (PNP-lariat) ethers, cy-
clophosphazenes possessing 6-membered spiro ring/rings, mono and bisferrocenylspirocyclophosphazenes, and
spiro-ansa-spiro-, spiro-bino-spiro- and ansa-spiro-ansa-phosphazenes were synthesized. Besides this, our re-
search group has long focused on performing substituent exchange reactions of Cl–atoms in partly substituted
derivatives with heterocyclic amines {pyrrolidine, piperidine, morpholine, 1,4-dioxa-8-azaspiro[4,5]decane, 1-(2-
aminoethyl)pyrrolidine, 1-(2-aminoethyl) piperidine, 4-(2-aminoethyl)morpholine}and vanillin side groups, aim-
ing at investigating spectral properties, cytotoxic, antituberculosis and antimicrobial activities, and DNA inter-
actions of the obtained fully substituted cyclophosphazenes. In the last decade, 4-fluorobenzyl pendant armed
monospiro and dispiro phosphazenes were prepared from the separate reactions of N3P3Cl6 and N4P4Cl8
with 4-fluorobenzyl-NN/NO donor type ligands [47–52]. The phosphezenium salts (protic ionic liquids, PILs
or protic molten salts, PMOSs) of fully substituted 4-fluorobenzyl spirocyclotriphosphazenes were also syn-
thesized via reactions of free phosphazene bases with bulky organic acids [53–55]. The spectroscopic and
stereogenic properties, and biological activity (antibacterial, antifungal, and cytotoxic activities) of all the
(4-fluorobenzyl)spirocyclophosphazenes and some of their phosphazenium salts have been investigated by our
research groups [47–55].

Although a large number of papers published by our research group are available on cyclophosphazenes
that provide information on their structures, synthesis, and biological activities; the present study focuses
on correlation among the structural parameters of mono- and di-spirocyclophosphazene derivatives with 4-
fluoro/nitrophenylmethyl pendant arm/arms. In 1986, a systematic study on the relationship between the crys-
tallographic and 31P NMR spectral data on phosphazenes was described for the first time by Shaw [56]. Our
group has published many studies on the correlations among the structural parameters of various types of cyclot-
riphosphazenes bearing structurally analogous motifs. It was found out that in cyclotriphosphazene derivatives,
variations in the 31P NMR shifts depend primarily on the electronic, steric and conformational factors (e.g.,
electron-releasing and withdrawing powers of substituents, the steric hindrance between the exocyclic groups),
and on the differences in the bond lengths and bond angles around the phosphorus atoms, particularly endocyclic
(α) and on exocyclic (α′) bond angles. As a particular interest in our ongoing studies on phosphazene-based
chemistry, the present study primarily focuses on a number of correlations established among the structural pa-
rameters in mono- and di-spirocyclophosphazene derivatives with 4-fluoro/nitrophenylmethyl pendant arm/arms
of the compounds previously synthesized and published by our research group (Table 1) [49–52,57–59]. In this
context, here we report our findings on the relationship among the δPspiro shifts with endocyclic and exocyclic
NPN bond angles, and electron density transfer parameters, and a brief description of the synthesis methods of
5 types and a total of 19 cyclotri/tetraphosphazenes containing 4-fluoro/nitrophenylmethyl pendant arm and
5- to 7-membered spiro-rings.
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2. Results and discussion
2.1. Synthesis

Routes used for the preparation of mono- and di-spirocyclophosphazene derivatives with 4-fluoro/nitrophenylmet
hyl pendant arm were given in Scheme.N -H-R ′ -N ′ -mono(4-fluoro/nitrophenylmethyl)diamines [49,57] and
bis(4-fluorophenylmethyl)diamines [51] were prepared via reducing the corresponding Schiff bases obtained
from the reactions between 4-fluoro/nitrobenzaldehyde and the appropriate N -alkyldiamines and N ,N ′ -
bisalkyldiamines in MeOH. The Cl-replacement reactions of N3P3Cl6 with 4 equimolar amounts of N -H-
R ′ -N ′ -mono(4-fluoro/nitrophenylmethyl)diamines in dry THF at ambient temperature to produce 2 different
types of products, namely partly substituted mono(4-fluoro/nitrophenylmethyl)spirocyclotriphosphazenes (I)
[49,50,57] and cis/trans-bis(4-fluoro/nitrophenylmethyl)dispirocyclotriphosphazenes (III) [50]. The monospiro
(I) and bisdi spiro (III) derivatives were separated via column chromatography. Partly substituted bis(4-
fluorophenylmethyl) spirocyclotriphosphazenes (II) were synthesized by reacting N3P3Cl6 with bis(4-fluorophen
ylmethyl)diamines in dry THF [51]. Fully pyrrolidine substituted phosphazenes (I) were prepared by replacing 4
Cl-atoms on the partly substituted derivatives (I) with excess pyrrolidine in boiling THF [49,57]. On the other
hand, the partly substituted mono(4-fluorophenylmethyl) spirocyclotetraphosphazenes and cis/trans-bis(4-
fluorophenylmethyl)dispirocyclotetraphosphazenes (V) were obtained by reacting N4P4Cl8 with 2 equimolar
amounts of N -H-R ′ -N ′ -mono(4-fluorophenylmethyl)diamines in THF [52]. The 2 different products obtained
were separated via column chromatography using toluene. Fully benzylamine substituted bis(4-fluorophenylmeth
yl) dispirocyclotetraphosphazene was prepared by reacting partly substituted one with excess benzylamine in
dry THF at 25 °C [58]. The PMOS (IV) derivatives were obtained from the reaction of the corresponding
piperidine substituted phosphazenes with gentisic acid in THF [59].

2.2. Correlation among the structural parameters

The endocyclic (α) and exocyclic (α′) NPN bond angles, and the bond lengths (a, a ′ , b, and b ′) on the
general formulae of cyclotri/tetraphosphazenes containing 4-fluoro/nitrophenylmethyl pendant arm/arms and
5-, 6- and 7-membered spiro-ring/rings are given in Table 1. The δPspiro shifts, α and α′ bond angles,
and ∆(P–N) values are listed in Table 2. The corresponding values for the δPspiro shifts of the standard
compounds trimer N3P3Cl6 [60,61] and tetramer N4P4Cl8 [62,63] were taken from the literature. Type I
group members are partly and fully substituted mono(4-fluoro/nitrophenylmethyl)spiro-cyclotriphosphazenes.
The partly substituted bis(4-fluorohenylmethyl) spiro- and dispiro-cyclotriphosphazenes constitute type II and
III compounds, respectively. The phosphezenium salts of fully substituted mono(4-fluorophenylmethyl)spiro-
cyclotriphosphazenes are members of type IV. Members of type V are partly and fully substituted cis/trans-
bis(4-fluorophenylmethyl)dispirocyclotetraphosphazenes.
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2.2.1. The relationship among the δPspiro shifts and the electron density transfer parameters
∆(P–N)

The electron density transfer parameter ∆(P–N) is the difference between the bond lengths of 2 adjacent
endocyclic P-N bonds and is a measure of the electron-releasing and withdrawing powers of the substituents on
cyclophosphazene ring. The ∆(P–N) values were calculated using the appropriate equations presented in Table
2 for spirocyclic phosphazenes with 4-fluoro/nitrophenylmethyl pendant arm/arms. If electron-withdrawing
substituents are bonded to phosphorus atoms, ∆(P–N) values increase. On the other hand, in case of electron-
releasing substituents the ∆(P–N) values decrease. The relationship between the δPspiro shifts and the ∆(P–N)
values is given in Figure 1 for partly and fully pyrrolidine and benzylamine substituted spirocyclic phosphazenes.

Figure 1. The relationship between δPspiro shifts and ∆(P-N) values for partly and fully pyrrolidine and benzylamine
substituted spirocyclic phosphazenes with 4-fluoro/nitrophenylmethyl pendant arm/arms. δPClPCl shift values of
N3 P3 Cl6 and N4 P4 Cl8 are 19.60 [61] and –5.45 [63] ppm, respectively.

The linear correlation between δPspiro shifts and ∆(P–N) values observed in 3 groups of cyclophos-
phazenes are given in Figure 1. When comparing partly substituted types I, II, and III phosphazenes (a)
with the fully pyrrolidine substituted type I phosphazenes (b), an inverse relation is observed in Figure 1.
The ∆(P–N) values could be interpreted by comparing these values with the ones for partly (a) and fully (b)
substituted cyclophosphazenes. While fully pyrrolidine substituted cyclotriphosphazenes (Ie-Ii) have negative
∆(P–N) values, the partly substituted ones (Ia-Id, IIa-IIc and IIIa) have positive values, and the value of
the standard compound N3P3Cl6 is zero indicating that the electron-releasing powers of nitrogen atoms in
pyrrolidine groups to phosphazene ring is greater than those of the Cl-atoms. Moreover, there is a significant
difference between the ∆(P–N) values of cis- and trans-structures of the same compound of type V phosp-
hazenes (c) (0.049 for c-Vb and -0.015 for t-Vb). It is possibly due to the different types of hydrogen bond
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interactions; e.g., intermolecular C-H—F for t-Vb and intramolecular C-H—N for c-Vb [52]. As expected,
the ∆(P–N) value of benzylamine substituted t-Vc is larger than the value of ∆(P–N), which is zero, for the
standard compound N4P4Cl8 .

The Y group (F or NO2) placed at the para position on the benzene ring is an electron-withdrawing
substituent and does not cause a significant change in the ∆(P–N) values. However, the points of the NO2 -
containing compounds (Ib and Id) slightly deviate from the linear trend (Figure 1).

Considering the electron-releasing capacity of the 4-fluorophenylmethyl pendant group for type I-III
partly substituted cyclotriphosphazenes with 6-membered spiro-ring, the following order is established: IIIa
>IIb >Ic. While the compounds Ia and IIb are mono- and bis-4-fluorophenylmethyl spiro-structures, re-
spectively, compound IIIa is bis-4-fluorophenylmethyl di-spiro structure. As expected, the electron-releasing
strength of 2 4-fluorophenylmethyl pendant groups is more than that of 1 4-fluorophenylmethyl pendant group.
However, the same trend is not observed for 5-membered Ia and IIa. This is due to the fact that Ia has 2
independent molecules in the asymmetric unit [50].

There is no significant difference between the ∆(P–N) values of type II phosphazenes containing the spiro-
rings with 6- (IIb) and 7- (IIc) membered. However, the ∆(P–N) values of the phosphazene with 6-membered
spiro-ring (IIa) is slightly larger than that of the phosphazene with 5-membered spiro-ring (IIb). That could
be significantly attributed to the fact that 5-membered spiro-ring of IIa is in the twisted conformation and
6-membered spiro-ring of IIb is in the chair conformation [51].

The relationship between ∆(P–N) and δPspiro shifts strongly indicates the basicity of the nitrogen
atoms in the phosphazene ring. The basicity of the chlorocyclophosphazene ring containing nitrogen atoms is
quite low, and it can be improved by replacing Cl-atoms with electron-releasing substituents on phosphorus.
Therefore, the basicity of the nitrogen atoms on the cyclotriphosphazene ring, which is both adjacent (N2-
Pspiro) and nonadjacent to the spiro-ring (N1-PX2) in fully pyrrolidine substituted cyclotriphosphazenes can
be compared with those in partly substituted ones. The basicity of the N1 atom/atoms in fully substituted
phosphazenes appear(s) to have increased due to electron-releasing power of the heterocyclic amine groups.
However, N2 atoms in partly substituted phosphazenes decreased due to electron-withdrawing power of the Cl-
atoms. Nevertheless, protonation of type I heterocyclic amine substituted free cyclotriphosphazene bases with
bulky organic acids (gentisic and γ -resorcylic acids) took place on the N2-atom [49] (type V) instead of N1-
atom [54,55] of the 4-fluorobenzylspirocyclotriphosphazenes. The H+ ion may be exchanged between the N1-
and N2-atoms of the cyclotriphosphazene ring in the solution at ambient temperature. The 31P NMR spectra
recorded at low temperatures and the observed spin-systems in the 31P NMR spectra of the PMOSs may also
confirm that the H+ ion can be displaced between the nitrogen atoms of the phosphazene ring. Although the
number of type V group members is limited, they could be thought of as reference compounds. It appears that
the δPspiro shifts and the basicity of the ring decrease after PMOS forms.

The double-bond character of the P-N linkage in the cyclophosphazene derivatives is not fully understood.
Negative hyperconjugation and ionic bonding alternatives are exclusive [64]. The natural-bond orbital and topo-
logical electron-density analyses of the phosphazenes have proved the crucial role of negative hyperconjugation
in description of the P-N bond. An increase in the electron-releasing power of heterocyclic amine substituents
seems to cause an increase in the negative hyperconjugation. The electron−withdrawing substituents such as
Cl-atom increase the ∆(P–N) values since they attract electrons from spiro-ring/rings to the phosphorus atom.
However, the electron-releasing substituents such as pyrrolidine group decrease the ∆(P–N) values resulting
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in decreased bond lengths (a and a ′) and increased bond lengths (b and b ′) when the bond lengths of partly
substituted derivatives are compared. Hence, the decrease in the length of the endocyclic P–N bonds and in
electron charge density on the exocyclic P-N bonds are likely to be a measure of the electron-releasing power of
the substituent and the increase in negative hyperconjugation.

2.2.2. The relationship among the δPspiro shifts, endocyclic (α), and exocyclic (α′ ) NPN bond
angles

A cluster of points rather than the linear trend were observed among the δPspiro shifts, and endocyclic (α)
and exocyclic (α′) NPN bond angles. In Figure 2, all types of phosphazene structures were accumulated in
7 regions A, B, C, D, E, F, and G. The points of partly substituted type I-III cyclotriphosphazenes, fully
pyrrolidine substituted type I phosphazenes, and partly substituted type V cyclotetraphosphazenes with 5- and
6-membered spiro-rings were accumulated in regions (A and B), (C and D), and (F and G), respectively. The
points of type IV PMOSs with 5-membered spiro-ring were accumulated in region E.

Figure 2. The relationship between δPspiro shifts and endocyclic (α) (a) and exocyclic α′ (b) NPN bond angles
for partly and fully pyrrolidine and benzylamine ubstituted spirocyclic phosphazenes with 4-fluoro/nitrophenylmethyl
pendant arm/arms. δPClPCl shift values of N3 P3 Cl6 and N4 P4 Cl8 are 19.60 [61] and -5.45 [63] ppm, respectively.
The α and α′ values are 118.3(2) and 101.2(1)° for N3 P3 Cl6 [60], 121.2, and 102.8° for N4 P4 Cl8 [62], respectively.

Furthermore, small changes in α and α′ bond angles lead to significant changes in δPspiro shifts. A
change in the number of members in the spiro-ring causes a major change in both α and α′ bond angles. In
fact, the α and α′ bond angles of cyclophosphazenes with 5-membered spiro-ring are smaller than those with
the 6- and 7-membered ones, and are even smaller than those corresponding to α [118.3(2)°] and α′ [101.2(1)°]
bond angles [60] in the standard compound, N3P3Cl6 . Besides, there is a decrease in δPspiro shifts with
increasing number of members in the spiro-ring. For example, the α′ bond angles of partly substituted Ia with
5-membered spiro-ring (δPspiro = 19.22 ppm, cycle A) and Ic with 6-membered spiro-ring (δPspiro = 14.34
ppm, cycle B) are respectively; 95.46(15) and 94.97(17), and 103.9(2). This indicates that the electron-releasing
power of 5-membered spiro-ring to the phosphazene ring is more than that of the 6-membered spiro-ring. When
partly and fully pyrrolidine substituted type I phosphazenes with the same number of members in the spiro-ring
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(cycles A and C or cycles B and D) are compared, it is seen that the δPspiro shifts increase for fully substituted
ones. While the α′ bond angles decrease, the α bond angles increase. This indicates a change in the substituent
groups leading to significant changes in both α and α′ bond angles. When considering α bond angles, electrons
are transferred from pyrrolidine groups to the cyclotriphosphazene ring in the fully substituted derivatives and
from the cyclotriphosphazene ring to Cl-atoms in partly substituted counterparts. When taking into account the
α′ bond angles, pyrrolidine groups also release electrons to the phosphazene ring, but the Cl-atoms withdraw
electrons not only from the phosphazene ring but also from the spiro-ring. The elongation of the 2 exocyclic
P–N bonds of the spiro-ring is likely the best measure of the electron-withdrawing power of the Cl-atoms and
the decrease in negative hyperconjugation.

On the other hand, in tetrameric phosphazenes, the α bond angle of fully benzylamine substituted 6-
membered phosphazene (Vc) is larger with respect to the value of partly substituted counterpart (Vb). But, the
α′ angle of Vc is larger than the α′ angle of Vb. This situation may be attributed to the basicity or electron-
releasing power of benzylamine substituent, which is a secondary aliphatic amine group after the substitution,
in Vc not as high as pyrrolidine substituent, a tertiary heterocyclic amine group after the substitution. When
compared α and α′ bond angles of type I free phosphazene bases (cycle C) and type IV PMOSs (cycle E)
with 5-membered spiro-ring, it is observed that the formation of PMOSs of free phosphazene bases results in
a decrease in the α bond angles, and increase in the α′ bond angles. In fact, the α′ bond angles of PMOSs (IVa
and IVb) are even larger than the corresponding angles in partly substituted cyclotriphosphazenes (cycle A),
and the standard compound N3P3Cl6 , indicating that the positive charge on the N2-atom withdraws electrons
from the 5-membered spiro-ring in PMOSs.

Besides, the α and α′ angles of cis- and trans-structures of the type V cyclotetraphosphazenes with 2
6-membered spiro-rings (c-Vb and t-Vb) can be compared with each other. The α and α′ angles of c-Vb
are considerably and slightly larger than those of t-Vb, respectively. That could be significantly attributed
to the fact that the N4P4 ring of t -Vb has a twisted conformation and the N4P4 ring of c-Vb has a boat
conformation [52].

3. Conclusions
The results of a systematic study of spiro-cyclotri/tetraphosphazenes with 4-fluoro/nitrophenylmethyl pendant
arm on the basis of correlation between the structural parameters were presented. The main parameters were
obtained from X-ray crystallography and 31P NMR results in order to investigate the relationship between the
δPspiro shift values and endocyclic and exocyclic NPN bond angles, and electron density transfer parameters.
The correlations obtained from the present study ought to be considered as highly informative. Although
there are visual comparisons for assessing the accuracy of the relationships, more values are required to learn
more about the correlations for cyclophosphazenes. In this approach, our research group or one can plot on
the same relationships the new values of the other members of mono- and di-spirocyclophosphazene derivatives
bearing 4-fluoro/nitrophenylmethyl pendant arm.
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