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Abstract: The excessive activity of acetylcholinesterase enzyme (AChE) causes different neuronal problems, especially
dementia and neuronal cell deaths. Food and Drug Administration (FDA) approved drugs donepezil, rivastigmine,
tacrine and galantamine are AChE inhibitors and in the treatment of Alzheimer’s disease (AD) these drugs are currently
prescribed. However, these inhibitors have various adverse side effects. Therefore, there is a great need for the novel
selective AChE inhibitors with fewer adverse side effects for the effective treatment. In this study, combined ligand-based
and structure-based virtual screening approaches were used to identify new hit compounds from small molecules library
of National Cancer Institute (NCI) containing approximately 265,000 small molecules. In the present study, we developed
a computational pipeline method to predict the binding affinities of the studied compounds at the specific target sites.
For this purpose, a text mining study was carried out initially and compounds containing the keyword “indol” were
considered. The therapeutic activity values against AD were screened using the binary quantitative structure activity
relationship (QSAR) models. We then performed docking, molecular dynamics (MD) simulations and free energy analysis
to clarify the interactions between selected ligands and enzyme. Thus, in this study we identified new promising hit
compounds from a large database that may be used to inhibit the enzyme activity of AChE.

Key words: Binary QSAR modeling, Alzheimer’s disease, virtual screening, AChE, text mining, molecular docking,
molecular dynamics simulations, computational drug design

1. Introduction
Alzheimer’s disease (AD) is a destructive mental disorder with a severe permanent brain disorder that slowly
destroys memory and learning abilities [1–3]. AD is the 6th leading cause of deaths in the US. The number of
people with AD is estimated to be 14 million by 2050 in the US [4]. Thus, new therapies need to be established to
reduce the risk. AD and cognitive problems are a major concern for scientists around the world. Cholinesterase
inhibitors (ChE-Is) are the norm of AD-related disorders treatment and are the main categories of FDA approved
drugs. The most important enzymes in the family of serine hydrolases are acetylcholinesterase (AChE), which
play an important role in memory and cognition [5]. Although the main current treatment of the AD is based
on targeting the AChE, marketed FDA approved AChE inhibitors have many adverse side effects. In recent
years, several attempts have been made to develop inhibitors against various AD targets, including AChE [6-8],
τ -kinase [9,10], β -secretase (BACE1) [11,12], and γ -secretase [13,14]. To date, only 4 drugs licensed by the
FDA (donepezil, galantamine, rivastigmine, tacrine) [15–18] have been identified to alleviate AD symptoms.
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AChE inhibitors have been also evaluated clinically for other indications than AD. For example, phase
III clinical studies of donepezil are ongoing to reduce the adverse side effects of radiation therapy in patients
with brain tumours [19]. It is found that donepezil may improve some aspects of cognitive functions as
well as quality of life in patients with brain tumour. Cholinesterase inhibitors have also been considered in
the treatment of executive function deficits in autism spectrum disorder [20]. Phase II clinical studies are
underway for the treatment of autism by the National Institute of Mental Health. AChE inhibitors were also
considered for the treatment of ischemic stroke [21]. There are many FDA approved drug compounds that
have natural origin or synthesized include indole or indole derivatives [22]. Indole derivatives were considered
in the therapeutic solutions of many different biological problems including cancer, migraine, hypertension and
some neurodegenerative diseases. Among them vincristine, vinblastine, vindesine, vinorelbine, sunitinib, and
osimertinib were successful anti-cancer FDA approved drugs. However, these drugs have many adverse side
effects including peripheral neuropathy, nausea, vomiting, hair loss, gastrointestinal problems, and depression
[23]. Despite extensive medicinal chemistry studies of indole and indole derivatives considering for different
therapeutic solutions, molecular pathways and action mechanisms of these compounds have not been analysed
in detail.

Although there are drugs available for AD, they only provide immediate and inadequate relief without
eliminating the underlying causes of AD. Moreover, these drugs may cause many side effects such as gastroin-
testinal disorders and they have poor bioavailability. The increased death rate due to AD necessitates the
discovery of new AChE inhibitors. Therefore, strong AChE inhibitors are needed to treat AD without any
side effects. Computational methods are very useful techniques to elucidate receptor-ligand interactions at the
atomic level that are difficult to solve using experimental techniques [24–26]. Thus, aim of the study is to
find novel hit compounds against AChE using rigorous virtual screening approaches. Moreover, ligand-AChE
enzyme interactions were investigated using molecular docking and molecular dynamics (MD) simulations for
better understand the effect of identified hit compounds.

2. Results and discussion
The aim of this study is to perform a virtual screening of the National Cancer Institute (NCI) database [27]
of small molecules containing 265,000 compounds for the inhibition of AChE and identify new compounds as
small hits. The NCI Development Therapeutics Program (DTP) provides publicly available files that contain
successively curated structures. This database was used by many different research groups previously in virtual
screening studies for different biological problems [28]. The human liver microsomal stabilities of compounds in
the database were also predicted with QSAR models. Thus, this database was selected in our virtual screening
study. Because many approved therapeutic compounds for different biological problems including AD contain
indole or indole derivative rings, we have focused on compounds containing these fingerprints in this study. To
obtain indol-based compounds using text mining, we searched all compounds in NCI database. Flowchart of
the entire procedure used in the current study is shown in Figure 1.

With the MarvinSketch software [29], all compounds downloaded from the NCI server in .sdf file format
have been converted to .name file format (IUPAC text folder). 2690 compounds containing the ”indol” phrase
(i.e. indoles, indole derivatives, isoindoles, etc.) in the IUPAC text format were detected. Selected 2690
compounds containing the word “indol” were converted to .sdf file format and therapeutic activity analysis of
these compounds was performed in binary QSAR models of MetaCore/MetaDrug platform. These compounds
were then screened at the Alzheimer’s Disease-QSAR model of MetaCore/MetaDrug platform of Clarivate
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Figure 1. Applied virtual screening workflow at the current study.

Analytics. Results showed that 960 compounds within the tested compounds showed activity prediction against
AD in binary QSAR models. These 960 compounds were used in 26 different toxicity QSAR models and
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results showed that 23 compounds do not have any toxicity profiles within all these screened toxicity models.
2D molecular structures of selected 23 hit molecules have been converted to energy-optimized 3D structures
using the LigPrep module of the Maestro molecular modelling package. The total number of molecules was
increased to 85 due to various protonation states, tautomers, and different stereochemistries of selected hit
compounds. The molecular docking was carried out by the grid-based Glide/SP (standard precision) docking
program to obtain the low energy bioactive conformers of selected hit compounds at the binding pocket of
AChE. As target, available 4EY7 PDB coded AChE structure was used. Initially short (10-ns) MD simulations
have been conducted for top-docking poses of all 23 selected compounds. In order to compare the binding free
energies, same protocol was also applied for 4 FDA approved AChE inhibitors. Based on average Molecular
Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy scores, 3 hit compounds as well as
4 FDA approved drugs were used in long (100-ns) MD simulations. The results of molecular docking and MD
simulations of selected 3 hit ligands and 4 FDA approved AChE inhibitors are summarized in Table 1.

Table 1. 2D structures, top-docking scores in Glide/SP and average MM/GBSA scores of
selected 3 hits and FDA approved 4 AChE inhibitors.

Mol Number 2D Structure Docking Score
(kcal/mol)

MM/GBSA
(kcal/mol)

Mol 16 -12.743 -73.798±4.868

Mol 14 -11.619 -60.016±5.108

Mol 9 -10.237 -109.150±4.695
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Table 1. (Continued).

Donepezil -5.552 -60.990±7.777

Rivastigmine -8.980 -41.980±3.419

Tacrine -9.328 -61.360±4.581

Galantamine -9.268 -22.250±10.048

The binding free energies and Z scores are determined using the MM/GBSA analysis and are compared
to positive control compounds. For the 3 hit compounds (Mol-16, Mol-14, and Mol-9) which have therapeutic
activity values of 0.63, 0.66, and 0.53 from MetaCore/MetaDrug with higher MM/GBSA scores than FDA
approved compounds at the binding pocket of the enzyme as well as 4 known drugs, 100-ns MD simulations
were performed. The free binding energies have been recalculated using MM/GBSA (Figure 2). As a result,
the identified 3 hits have similar or even better average MM/GBSA scores than FDA approved drugs.

The root-mean square deviations (RMSD) plots of selected 3 hits are provided in Figure 3. RMSD-time
graphs show that structures of all systems under analysis have smaller structural changes (<3.0 Å) based on the
initial protein-ligand complexes. The Mol-16 clearly showed the largest increment in RMSD during simulations
based on the graphs shown in Figure 3. The average RMSD values of studied compounds are smaller than 3.0
Å and after 50-ns all complex systems show structurally stability.
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Figure 2. MM/GBSA plots for selected 3 hit compounds and 4 FDA approved drugs.

Figure 3. RMSD graphs of selected 3 hit compounds and 4 FDA approved drugs.

Ligand RMSDs were also evaluated as well as protein RMSD plots. Figure 4 shows the LigFitLig
(rotational motions) RMSD plot. In LigFitLig RMSD plots, deviations of coordinates of nonhydrogen atoms of
the ligand, based on initial conformations are plotted. Translational motions of ligands at the binding pocket of
the enzyme were also plotted with LigFitProt RMSDs. LigFitProt RMSD plots represent the RMSD of a ligand
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when the protein-ligand complex is first aligned on the protein backbone as reference point and the RMSDs of
nonhydrogen atoms of the ligand is measured. Table 2 shows the corresponding average RMSD values. Results
showed that most of the studied compounds have small rotational motions at the active site of protein during the
MD simulations. For example, the average LigFitLig RMSD values of Mol-9, Mol-14, and Mol-16 are 1.337 Å,
0.691 Å, and 1.509 Å, respectively. All selected hit ligands have also small LigFitProt RMSD values except the
Mol-16 which has slightly large value (2.868 Å). Corresponding average LigFitProt RMSD values for donepezil,
rivastigmine, tacrine, and galantamine are 2.355 Å, 2.736 Å, 2.326 Å, and 26.502 Å, respectively. As it can be
seen, galantamine has very large average LigFitProt RMSD value that represents the diffusion of this compound
from initial binding position.

Figure 4. LigFitLig RMSD plots of selected 3 hit compounds and 4 FDA approved drugs.

Root-mean square fluctuation (RMSF) values were also measured to investigate the effect of identified hits
to the mobility of backbone atoms of the target protein. In the complex analyzes, RMSF of backbone atoms of
each amino acid residue were produced to identify the fluctuation regions of the target structure. In the RMSF
plots, high RMSF values suggest highly mobile areas and low RMSF values during MD simulations reflect the
low flexibility of the studied system. Figure 5 displays the RMSF graph of 3 identified hit molecules and 4 FDA-
approved drugs. Peaks on this plot indicate protein areas that fluctuate the most during the simulations. It
can be noticed that the tails (N-and C-terminals) are more fluctuating than any other protein parts. Secondary
components of the system such as alpha-helices and beta strands are typically more stable than the unstructured
portion of the protein and thus fluctuate less than the loop regions. When donepezil binds to the binding pocket
of the target, region of residues between 250 to 275 shows higher fluctuations compared to other corresponding
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Table 2. Average RMSD values of 3 hit compounds and 4 approved drugs throughout the MD simulations

Mol Number Cα RMSD (Å) LFPa RMSD (Å) LFLb RMSD (Å)
Mol 16 1.756 2.868 1.509
Mol 14 1.442 1.786 0.691
Mol 9 1.737 1.712 1.337
Tacrine 1.982 2.326 0.456
Donepezil 2.193 2.355 1.277
Rivastigmine 1.918 2.736 1.357
Galantamine 2.000 26.502 0.452

a : LigFitPot; b : LigFitLig

ligand-bound states. Mol-9 bound state also shows higher fluctuations near residue number 490. The effect of
other ligands to the binding pocket as well as to the whole protein structure is depicted at Figure 5.

Interactions that arise in the chosen path over 30% of the simulation time period are shown in Figure 6. In
the nonbonded chemical interactions π -π stacking interactions are crucial for establishing strong interactions
between protein residues and ligand atoms such as, Mol-9 forms 3 π -π stacking interactions with residues
Tyr337, Phe297, and Trp86 at the catalytic domain.

The Figure 7 summarizes a timeline representation of the interactions and contacts (H-bonds, hydropho-
bic, ionic, water bridges). While the top-panel indicates over the number, the maximum number of specific
contacts that the protein creates with the ligand, the bottom-panel represents which residues interact with
the ligand throughout the simulations. Many residues, according to the scale to the right of the map, allow
more than one direct interaction with the ligand, which is defined by a darker orange colour. Figure 7 shows
that Mol-9 constructs critical chemical interactions with residues Asp74, Trp86, and Phe295 which are stable
throughout the simulation time.

2D ligand interactions diagrams of selected 3 hit compounds as well as corresponding 4 FDA approved
drugs were provided at the Supplementary Figures 1 and 2.

In conclusion, in the present work, text mining, virtual ligand screening, and integrated molecular
modelling techniques have been performed to determine the structural properties and binding mechanisms
of indole-based AChE inhibitors. Thus, a molecular library (NCI) of 265,000 molecules that include “indol”
keyword was first filtered using Alzheimer’s disease QSAR model in MetaCore/MetaDrug and compounds that
show high therapeutic activity (>0.5) prediction were filtered within 26 different toxicity QSAR models. Finally,
23 compounds were identified as potent for AD and nontoxic. These compounds were then used in initially short
(10-ns) MD simulations and their binding free energies at the binding pocket were measured with MM/GBSA
approach and compared with FDA approved drugs. With high MM/GBSA scores 3 hit compounds were used
in longer (100-ns) MD simulations. The same procedure was also used for the 4 known FDA approved AChE
inhibitors. Finally, throughout this strict combined screening pipeline method, we identified 3 hit compounds
that can be used to inhibit the activity of AChE. These novel compounds may open new avenues for designing
small inhibitors against AChE. Here, we used an integrated text mining and ligand and target-driven based
approaches for the identification of therapeutic hit compounds from small molecule database. These compounds
will be tested in vitro in our future studies. The used rigorous virtual screening method leads to identify 3 hit
compounds firstly described in this study. Thus, this study showed that virtual screening studies can be useful

581



ŞAHİN and DURDAĞI/Turk J Chem

Figure 5. RMSF graphs for selected 3 compounds and 4 FDA approved drugs.

Figure 6. 2D ligand interactions of selected hit Mol-9. Figure also shows an average interaction fractions of contact
residues.

and fast approaches to identify novel hits when they combined with appropriate pipelines and this pipeline can
also be used for identifying hit compounds for different purposes.
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Figure 7. Time-line representations of Mol-9 contacts at the active site of the enzyme throughout the MD simulations.

3. Materials and methods
3.1. Binary QSAR models

The Clarivate Analytics MetaCore/MetaDrug is a platform designed to investigate the effects on the human
body of small compounds. It uses binary QSAR models and predicts therapeutic activity, pharmacokinetic,
and toxicity properties. This platform includes binary QSAR models for 25 common diseases and 26 different
toxicity models. The quality of binary classifications was evaluated using the sensitivity, specificity, accuracy
and Matthews correlation coefficient (MCC) [30,31]. The used Alzheimer’s disease QSAR model (Training set
N = 261, test set N = 44) has following statistical results: sensitivity = 0.91, specificity = 0.82, accuracy =

0.86, MCC = 0.73. In the current study, 265,000 molecules obtained from NCI database have been prepared
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using Marvinsketch code in IUPAC text file format [29]. To find the compounds that include “indol” phrase,
we used Python-based in-house text mining script. Text mining helps to find molecules of interest by screening
a large database with keywords quickly [32]. Then, selected indole-based molecules were converted to .sdf file
format to predict therapeutic activity values in MetaCore/MetaDrug. In MetaCore/MetaDrug, therapeutic
activity values were normalized between 0 and 1 and values that have bigger than 0.5 may indicate therapeutic
potential.

3.2. Ligand preparation

The identified 23 compounds were prepared using the Maestro molecular modelling LigPrep module [33] with
the OPLS-2005 forcefield [34]. An issue to be considered is the ionization of the ligand in physiological
environments. At the physiological pH of 7.4, the Epik module [35] was used for potential ionization states.
Potential stereoisomers and tautomers were also generated.

3.3. Protein preparation

AChE target was taken from the protein data bank (PDB, 4EY7 [36]). Protein preparation module of Maestro
was used for fixing missing side chains [37]. Water molecules around the binding pocket (<5 Å) were kept for
docking. The PROPKA and OPLS-2005 force fields were used for protonation states, structural optimization
and minimization, respectively [38].

3.4. Protein-ligand docking simulations

Molecular docking studies examine associations in protein-protein and ligand-protein complexes and score
the candidates by method of binding affinity scoring [39]. Docking processes estimate the lowest energy
conformations of screened ligands at the active site. Glide docking program was used to estimate the binding
conformations of ligand at the binding pocket of AChE as well as their corresponding docking scores. The
obtained conformations of ligands during the docking are scored in Glide Standard Precision [40–42]. For each
ligand, a maximum of 100 poses were requested throughout the docking [43,44].

3.5. Molecular dynamics (MD) simulations

Many systems require MD simulations to determine proper binding fit [45]. More and energetically desirable
configurations can be identified in long MD simulations. MD simulations (100 ns) were carried out using
Desmond v 4.9 to investigate the conformational stability of identified hits compounds at the binding site of
the AchE [46]. The complex structures were solvated in the orthorhombic simple point charge (SPC) water
model [47]. The systems were neutralized with counter ions (0.15 M NaCI solution). The system was set as
Lennard-Jones interactions cut off of 10 Å on periodic boundary conditions [48].

2.0 fs time step was used in the integration steps. Nose Hoover thermostat [49] and Martyna-Tobias
Klein protocols [50] were used to control the temperature and pressure of the systems at 1.01325 bar and 310
K, respectively.
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3.6. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)

MM/GBSA also examined protein-ligand complexes to calculate free binding energy. MM/GBSA equations
were extended to complex structures using the Prime module of Maestro [51]. The ligand-protein complex
frames were taken from each complex’s MD trajectory at every 10 ps [30]. VSGB solvation model [52] which is
realistic parametrization of the solvation and OPLS-2005 forcefield [34] were used for protein flexibility.
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