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Abstract: Electrochemical impedance spectroscopy measurements were performed to capture the physically meaningful
parameters of commercially available 18650 cylindrical and 2032 coin cells by using the equivalent circuit model. The
impedance response of the batteries was systematically investigated and discussed. A detailed analysis was achieved
providing a determination of influential factors on the equivalent circuit parameters. The results suggested that the cell
type tested here influenced the equivalent circuit elements profoundly. Taguchi analysis indicated that state-of-charge
had the highest effect on the cathodic constant-phase-element exponent. The results contribute to full electrochemical
analysis that is required for battery characterization.
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1. Introduction
The growing population of the world and the reduction in conventional energy sources create an ever-increasing
need for energy storage materials [1]. Rechargeable lithium-ion (Li-ion) batteries (LIBs) are currently admitted
as the preferred technology for electrical energy storage and power delivery solutions [2]. LIBs are also a
substantial technology for electric vehicles [3] and choices of this technology extend beyond portable electronics
[4] to electric vehicles [5] and grid energy storage systems [6].

The power capability of a battery is intimately involved in its impedance characteristics [7]. The
impedance of a cell is the potential drop under an alternative current and is related to the frequency and
retention of the applied current [8]. There are multiple methods applied for impedance measurement, and there
is no one-size-fits-all approach. These methods include pulse power test, electrochemical impedance spectroscopy
(EIS), and pulsed multisine signal test [9]. EIS is a nondestructive method for Li-ion cells providing tracking
for the evolution of LIBs [10]. Thus, this powerful technique enables diagnosis and prognosis for batteries.

Recent literature shows that there is a significant effort towards improvement of LIB properties to extend
their use [6,7,9]. The battery characteristics associated with performance parameters depend on a wide range of
factors such as temperature, cell type, cell constituents, applied current, state-of-charge, and cyclic aging [11].
Therefore, it is of great importance to elucidate the relationship between these factors and cell performance
parameters.
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The execution of EIS in improving models for the characterization of electrochemical properties for
distinct battery systems has been seen in the literature. Wang et al. [12] used two different charge protocols at
two different temperatures, 25 °C and 60 °C, to examine the influence of these factors on LIB degradation, while
Schmidt et al. [2] employed high discharge rates to test power capability of cycled cells. In addition, Schmidt
et al. conducted impedance tests to investigate the relationship between cell design and the aging route. In
another study using a commercial Li-ion cell, Ovejas and Cuadras opted to measure the ohmic potential drop,
activation polarization, and concentration polarization under low and medium discharge rates [13]. In a similar
study by Matsuda et al., electrochemical impedance measurements were performed to examine the effects of
temperature on the electrochemical features of commercial Li-ion cells after 700 cycles [3]. Erol and Orazem
developed a novel process model to analyze the impedance response of Li-ion battery at different states-of-charge
(SoC) and temperatures [11]. The developed process model fitted well to the impedance response, suggesting a
detailed interpretation of the performance of commercial Li-ion cells. Moralı and Erol recently measured the
impedances versus the state-of-charge of the commercial batteries to elucidate how the characteristics of the
batteries under different SoCs are related to the alteration in cell parameters [7].

Numerous above-mentioned features of LIBs make performance parameter investigation more compli-
cated. Furthermore, a wide variety of research efforts have compared the features of distinct LIBs and examined
the effect of factors on performance parameters. In terms of optimization, the effective factors and their levels
are often ill-determined in literature. More precise determination of influential factors can provide information
to scientists interested in accurately identifying distinct factor effects on battery systems. Therefore, further
research on battery optimization is essential. Understanding the precise effect of these factors on performance
parameters may provide an avenue for Li-ion cells through effective optimization.

In this study, a comprehensive investigation of alternative current impedance changes as a function of
state-of-charge and cell type was successfully made for a robust characterization of the commercially available
high-power LIB cells by using the Taguchi design method. Since SoC and cell type are factors that can be
controlled during the operation of batteries, comprehending how these two factors together affect cell properties
is essential. That is why it would be interesting to investigate the parameters of LIBs at different SoC and cell
geometry through Taguchi design.

2. Materials and methods
2.1. Experimental protocol

Commercial, rechargeable 18650 cylindrical (https://voltaplex.com ›sony-v3-18650-battery-us18650v3) and 2032
coin (www3.lenovo.com ›MSDS-QA-SDS601553) cell batteries used for EIS measurements were purchased from
Sony Energy Devices Corporation. Their features are as follows: for 18650 cell, nominal voltage is 3.70 V,
nominal capacity is 2600 mAh, maximum charge potential is 4.20 V, and discharge cut-off potential is 2.75 V.
For 2032 cell, nominal voltage is 3.70 V, nominal capacity is 3500 mAh, maximum charge potential is 4.20 V,
and discharge cut-off potential is 3.00 V. The 18650 notation represents that the cell was 18 mm in diameter
and 65 mm in height. Similarly, the 2032 notation shows that the cell was 20 mm in diameter and 3.2 mm in
height. The cathode was a lithium metal oxide, such as LiNiMnCoO2 , and the anode was graphitic carbon for
both batteries. Battery holders (Gamry Instruments) for the cylindrical 18650 and coin 2032 cells were used to
eliminate additional impedances due to cable connections.

Charge tests, as well as EIS measurements, were carried out with Gamry Reference 3000 Potentio-
stat/Galvonastat/ZRA connected to a desktop computer. Once the open circuit potential is adjusted, it should
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not change during EIS analysis. Therefore, the batteries were charged by applying standard constant current,
and following the constant potential (CC-CP) procedure, as stated in the manufacturer’s specification, from
0% SoC to 100% SoC condition. In the CC-CP charge mode, the charge currents were 100 mA and 30 mA for
the 18650 and 2032 cells, respectively. Dwell at the specified SoC levels was maintained while the current was
allowed to decrease to 0.0001 A. All of the CC-CP steps had a 3-min rest between the charge step and EIS
measurement. This procedure allowed the potential at the specific SoC to relax before EIS measurement. The
battery was allowed to stabilize for a period of time for each potential step, in which the current was reduced
to a value that was smaller than 0.1 mA. The amplitude should be adjusted based on a signal to noise ratio and
conserve the linearity, playing an influential role in the accuracy of the result [14]. Thus, the cell impedance
data were collected over a range of frequencies between 100 kHz and 0.01 Hz by applying a 10-mV alternating
potential. Impedance scans were performed 3 times at the adjusted SoC. A Faraday cage was used to provide an
effective protection from environmental electronic noise allowing for high quality electrochemical measurements,
particularly at very low currents. The EIS data files were analyzed by running data analysis in Echem Analyst.
The Simplex method was used to fit EIS data to the created equivalent circuit.

All electrochemical experiments were performed at room temperature and each experiment was repeated
3–4 times with the same type of battery to ensure that the results were both consistent and reproducible.

2.2. Equivalent circuit

An equivalent circuit was created by using the impedance model editor in Echem Analyst. A second-order
equivalent circuit model was fitted to EIS data to extract the equivalent circuit model parameters of the cells.
The created equivalent circuit is presented in Figure 1. The equivalent circuit model contains an electrolyte
resistance Re , a charge transfer resistance for anode R t,a , a double layer capacitance for anode Cdl,a , a constant
phase element for cathode CPEc (Qc , αc) , a charge transfer resistance R t,c , and a Warburg impedance Zw,c .
The intercalation/deintercalation of Li-ion is not uniform across the electrode surface due to the nonsmoothness
of the electrode surface. This inhomogeneous structure of the electrode causes distinct charge transfer resistance
and capacitive behavior because of the distribution of current on the electrodes. After all, the capacitive
behavior of the cell is different from that of the double-layer capacitance. Therefore, a constant-phase-element
(CPE) component was employed in the equivalent circuit for the cathode, as the CPE element describes the
inhomogeneity of an electrode surface more accurately [15]. αc in the equivalent circuit is the CPEc exponent.
The CPEc exponent is highly related to a degree of surface inhomogeneity of the electrode and consequently
to the distribution of current on the electrode surface. The diffusion of ions to the electrodes was represented
by Zw,c . A full description of the mathematical model is provided in Moralı and Erol [7] and will therefore not
be duplicated here.

2.3. Taguchi design of experiment

The Taguchi design was applied by using an orthogonal array to exhibit a robust optimization. The orthogonal
array obtained the requisite data from the minimal number of experimental runs, and furthermore, it provided
good separation of the optimum levels of each parameter for response variables. In this study, the input factors
and their levels were selected based on our previous study [7]. The Taguchi design method was used to identify
the factors having a significant influence on physically meaningful parameters. The orthogonal array was created
using the Minitab17 statistical software. The matrix of experiments at various SoCs and cell types is represented
in Table 1. The applied design method is outlined in our previous studies with more detailed information [16,17].
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Figure 1. Equivalent circuit model created to extract the physically meaningful parameters of LIBs from EIS data.

Table 1. Experimental design based on L16 orthogonal array.

Experiment SoC Type
1 0 cylindrical
2 0 coin
3 20 cylindrical
4 20 coin
5 30 cylindrical
6 30 coin
7 40 cylindrical
8 40 coin
9 60 cylindrical
10 60 coin
11 70 cylindrical
12 70 coin
13 80 cylindrical
14 80 coin
15 100 cylindrical
16 100 coin

3. Results
In this section, the impedance responses of 18650 and 2032 cells are presented for the selected SoC conditions
and then results from the equivalent circuit model fitted to the EIS data are addressed. Finally, the results
from the Taguchi design provide the optimum SoC and cell type for the equivalent circuit elements.

3.1. Analysis of impedance responses

The 18650 and 2032 cells were first charged following the CC-CP protocol to investigate how different SoC affects
cell parameters. The relaxation step was applied to provide Li-ions a limited diffusion rate into the electrode in
the CC-CP procedure. Thus, an applied current lower than the diffusion rate of Li-ions was expected to prevent
the lithium plating on the electrode. After the CC-CP protocol, impedance measurements were performed
under the desired cell potential conditions. The impedance response in Nyquist format of the 18650 cylindrical
and 2032 button cells is shown in Figure 2.
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Figure 2. Equivalent circuit model created to extract the physically meaningful parameters of LIBs from EIS data.

The impedance behavior as a function of SoC is similar for the 18650 cylindrical and 2032 coin cells. The
Nyquist plots in Figure 2 indicate that the second semicircle in the low-frequency region was more pronounced
for the impedance data obtained at a low SoC (smaller than 20% SoC). For other potentials, the depressed
semicircles were obtained at high and intermediate frequencies as SoC increased. The size of high-frequency
semicircle stayed almost constant among all potentials. Only one semicircle in the middle-frequency region
was observed in the spectra, especially around 40%–80% SoC. This semicircle could be associated with the
electrochemical processes occurring at very close time constants on both the anode and the cathode. However,
an elaborate analysis brought light to the presence of at least two semicircles overlapping. The parameters
captured by fitting the model were discussed carefully because of the overlapping of the semicircles.

The employed circuit elements provide information about ohmic resistance, transfer of Li-ions through
solid-electrolyte interphase layers, and the resistance to charge-transfer occurring at electrode/electrolyte in-
terface. The Simplex method was used to optimize the fit parameters. The parameter values of the elements
in the model were adjusted to find the best fit. Physically meaningful parameters were extracted by using the
Simplex method. The regressed model parameters are listed in Tables 2 and 3. The regression results for the
data presented in Figure 2 are presented in Figure 3.
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a

Figure 3. Impedance response in Bode format under normal potential range; a) |Z| vs. frequency for the 18650 cell; b)
phase angle vs. frequency for the 18650 cell; c) |Z| vs. frequency for the 2032 cell; d) phase angle vs. frequency for the
2032 cell. These results provide a different representation of the data presented in Figure 2. The lines represent fits of
Kramers-Kronig relations to the data.

Ohmic resistance is an important parameter for batteries. The increase in ohmic resistance is one of the
causes of temperature rise and thermal runaway that might occur in the cells [18]. The intersection of EIS data
with the axis indicating the real part of impedance, which corresponds to ohmic resistance, increased as SoC
of the 2032 cell increased from 0% to 20%. After 20% SoC, the slight increase in SoC of the 2032 cell slightly
increased the electrolyte resistance. A slight decrease in Re was observed when SoC was 100%. The trend for
Re vs. SoC was different for the 18650 cells. The electrolyte resistance of 18650 cell decreased as SoC increased
from 0% to 40%. After 60% SoC, the Re of 18650 cells did not change excessively in the next potentials. The
differences in ohmic resistances of the cells indicated separate features of the electrolyte solutions in these cells.
Compared with 2032, 18650 had a lower ohmic resistance, suggesting better performance of the 18650 cells.
The distinct electrolyte resistances indicated a difference in the relationship between electrolyte and Li-ions in
the 18650 cylindrical cells and those in 2032 coin cells.

The resistance in the electron transfer process occurring across different layers is the charge-transfer re-
sistance [11]. The charge transfer resistance is generally associated with the reaction at the electrode/electrolyte
interface where the charge is transferred. According to the above-mentioned information, the charge transfer
resistance could change with the variations in the electrochemical reactions occurring on the electrodes. The
cathodic charge transfer resistance, R t,c , of the 2032 cell was higher at lower SoC, indicating large potential
polarization at low potentials [19]. The decrease in R t,c of the 2032 cell from 30% SoC to 100% SoC could be
attributed to the higher number of available Li-ions in the cathode region. In the case of 18650 cell, the cathodic
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resistance was at the highest value at 0% SoC. However, there was no tendency of increasing or decreasing for
R t,c of the 18650 cell. A 0% SoC showed a drastic decrease for the R t,c as the SoC increased to 20% SoC
and then to 40% SoC. Between 60%–70% SoC, the alteration in the cathodic charge-transfer resistance was
not observed significantly. Even though R t,c values constantly stayed at low SoCs, they changed dramatically
at higher than 50% SoC. In contrast to the cathodic charge-transfer resistances, the anodic charge-transfer
resistances (R t,a) did not depend strongly on cell potential or SoC. Compared with 2032 cell, the 18650 cell ex-
hibited a lower charge transfer resistance than the 2032 cell. This result was indicative of the higher performance
characteristic of 18650 batteries.

Compared to the anodic capacitance Cdl,a , the cathode side exhibited a higher capacitance value for the
2032 cell. This behavior was also similar to the 18650 battery. However, both anodic and cathodic capacities
of 2032 cells were lower than 18650 cells. The results showed that the capacitance parameter is independent
of SoC. The cathodic capacitance (Qc) of 2032 cells decreased with an increase in SoC (up to 50% SoC),
while the Qc of 18650 cells showed this trend up to 60% SoC. Similar to cathodic capacitance, the anodic
capacitance of 2032 cells decreased (from 20% SoC up to 100% SoC) when SoC increased. For 18650 cells,
the relationship between Cdl,a and SoC was similar to the 2032 cell up to 70% SoC. Electrochemically active
materials in the cells could influence the capacitance of the electrodes [20]. The change in electrode capacitances
could be attributed to the oxidation-reduction reactions occurring in the cells. Under different SoC conditions,
the side reactions taking place in the electrolyte/electrode interface may have caused the changes in electrode
capacitances [19]. According to the above-mentioned possibilities, the decrease in the amount of active material
available for intercalation and the inactive species precipitation consuming Li-ions may have led to changes in
electrode capacitances.

CPE exponent is only deemed reasonable if its value is between 0.5–1.0. The cathodic CPE exponent (αc)

enables estimation of the roughness of the electrode surface. The cells under all SoC conditions showed high
values of αc , close to 1.0. The higher cathodic CPE exponent indicated the smooth surface of the electrodes,
and therefore, the uniform distribution of current on the cathode. Compared with the 18650 cells, the 2032
cell showed lower αc values, indicating a surface texture of less smooth surface. For both batteries, the results
showed that αc tended toward unity at larger SoC. The relationship between αc and SoC showed that the
diffusion of Li-ion was more difficult at lower SoC. Similar conclusions were recently made by Moralı and Erol
[7], who showed that cathodic CPE exponent increased at higher SoC.

3.2. Taguchi design

The approach in this study allows for the identification of optimum conditions for SoC and cell type without
an increased number of experiments and time. The equivalent circuit described the impedance response of
the batteries. Each element of the circuit had physically meaningful parameters for the 18650 and 2032 cells.
In the Taguchi method, equivalent circuit elements were investigated as the response variable. If the response
variable is desired to be the smallest value, the smaller-is-better signal-to-noise (S/N) ratio was used. For quality
assurance of the response variable, the larger-is-better S/N ratio was applied to maximize the response variable.
The smaller-is-better S/N ratio was applied to Re , R t,a , and R t,c , representing electrolyte resistance, charge
transfer resistance for the anode, and charge transfer resistance for the cathode, respectively. The larger-is-
better S/N ratio was applied to Cdl,a , Qc , and αc , representing double-layer capacitance for anode, capacitance
for cathode, and cathodic CPE exponent, respectively. The applied orthogonal array of L16 enabled analysis
of the entire parameter space. Thus, the optimum level of each factor was attained for the response variable to
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be maximized or minimized. The S/N ratios of each level of both SoC and cell type are presented in Table 4.
This type of table is identified as the response table in the Taguchi design [17]. The response table presented
in Table 4 consists of S/N ratio, delta, and rank. Delta was calculated by subtracting the smallest S/N ratio
from the largest S/N ratio. As an example, for the electrolyte resistance Re , the highest S/N ratio of SoC was
24.107 and the lowest one was 22.213. Thus, the delta of SoC was calculated to be 1.894. Rank was used to
provide convenience to determine which factor has the largest influence on the response characteristic. Rank
1 indicated the importance of the factor. The factor with rank 1 was more effective on the response variable
than the factor with rank 2. The optimum level of the factors was determined based on the S/N ratios. The
level with the highest S/N ratio indicated the optimum condition for the factor. Level 1 of both SoC and cell
type was the optimum conditions for lower electrolyte resistance. Similarly, the best conditions for Ra were the
first level of both SoC and cell type. Level 8 of SoC and level 1 of cell type were the best conditions to attain
the lowest R t,c . In the case of the highest Cdl,a , level 2 and level 1 were the optimum conditions for SoC and
cell type, respectively. These levels of SoC and cell type also optimized Qc . For the cathodic CPE exponent
αc , level 8 of SoC and level 1 of cell type maximized the αc parameter. Additionally, for all other response
variables except αc , the battery type was a more influential factor than SoC. In other words, the variation of
αc with SoC was more than in the case of cell type. The factor SoC only had more efficient on the αc than the
cell type. Thus, the influence of both SoC and cell type on the equivalent circuit elements was analyzed based
on Table 4 in greater detail.

Table 4. Response table for S/N ratio – smaller-is-better for Re , Ra , and R c ; larger-is-better for Cdl , Q c , and αc .

S/N ratio for Re S/N ratio for Ra S/N ratio for Rc S/N ratio for Cdl S/N ratio for Qc S/N ratio for αc

Level SoC Type SoC Type SoC Type SoC Type SoC Type SoC Type
1 24.107 38.102 26.089 45.419 3.685 40.849 –46.5 –

17.61
–
10.449

3.758 –
2.4141

–
1.1849

2 22.359 7.017 23.01 2.118 13.648 –
10.534

–
39.66

–65.17 –
9.594

–
30.632

–
1.0182

–
1.3134

3 22.307 23.176 16.612 –40.13 –
12.346

–
0.6693

4 22.594 24.227 17.019 –40.77 –
13.082

–
1.1818

5 22.332 23.574 15.865 –41.5 –
18.558

–
1.4196

6 22.213 24.275 16.55 –41.62 –
15.924

–
1.3762

7 22.289 22.332 18.184 –40 –
15.812

–
1.4533

8 22.277 23.464 19.696 –40.94 –
11.734

–
0.4605

Delta 1.894 31.085 3.758 43.301 16.011 51.382 6.83 47.55 8.965 34.39 1.9536 0.1285
Rank 2 1 2 1 2 1 2 1 2 1 1 2

The optimum levels are highlighted in bold.

The analysis of variance (ANOVA) results based on a significance level of 0.05 are presented in Table 5.
The P-value provided a statistical determination of the importance of the factors. A P-value smaller than 0.05
indicated significant factors for the desired value of the response variable. The results indicated that there was
a statistically significant association between the cell type and the entire response variable, except for αc . A P-
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value larger than 0.05 suggested that the effect of SoC was not statistically significant. The results showed that
equivalent circuit elements were not affected by all SoC conditions. The results also indicated that statistically
there was no relationship between the CPE exponent, and cell type was visible. A lower P-value for SoC than
for cell type denoted that SoC was more influential on αc . Statistically, SoC had almost no influence on the
other response variables.

Table 5. ANOVA table for equivalent circuit elements.

Re DF Seq SS Adj SS Adj MS F P Cdl DF Seq SS Adj SS Adj MS F P
SoC 7 0.013523 0.013523 0.001932 0.98 0.508 SoC 7 0.001324 0.001324 0.000189 0.99 0.505
Type 1 0.767604 0.767604 0.767604 390.86 0.000 Type 1 0.069934 0.069934 0.069934 366.37 0.000
Error 7 0.013747 0.013747 0.001964 Error 7 0.001336 0.001336 0.000191
Total 15 0.794874 Total 15 0.072593

Ra DF Seq SS Adj SS Adj MS F P Qc DF Seq SS Adj SS Adj MS F P
SoC 7 0.10827 0.10827 0.01547 0.99 0.506 SoC 7 14.617 14.617 2.088 0.99 0.506
Type 1 2.5824 2.5824 2.5824 165.05 0.000 Type 1 18.607 18.607 18.607 8.8 0.021
Error 7 0.10952 0.10952 0.01565 Error 7 14.802 14.802 2.115
Total 15 2.80019 Total 15 48.025

Rc DF Seq SS Adj SS Adj MS F P αc DF Seq SS Adj SS Adj MS F P
SoC 7 3.5107 3.5107 0.5015 1.04 0.480 SoC 7 0.047537 0.047537 0.006791 2.04 0.185
Type 1 48.4849 48.4849 48.4849 100.5 0.000 Type 1 0.000798 0.000798 0.000798 0.24 0.640
Error 7 3.3771 3.3771 0.4824 Error 7 0.023357 0.023357 0.003337
Total 15 55.3726 Total 15 0.071693

4. Discussion
In this study, electrochemical impedance spectroscopy combined with Taguchi design offered an unprecedented
insight into the equivalent circuit parameters of the commercially available Li-ion cells, allowing a much better
understanding of the influential levels of these factors. The Taguchi technique combined with EIS is believed
to be valuable to the reader and to researchers in developing experimental procedures for Li-ion batteries.
The results suggested that the cell type tested here had a profound impact on the equivalent circuit elements,
whereas SoC only had a higher effect on the cathodic CPE exponent. It can be concluded that if the goal
is to decrease the charge-transfer resistances without a decrease in capacitances, commercially available 18650
cells could be preferred for an efficient energy system. The Taguchi design method opened the door for the full
analysis requiring battery characterization. Therefore, an orthogonal array of different factors in further studies
would be beneficial for the modeling of lithium-ion batteries under different conditions in real applications.
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