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Abstract: In the present work TiO2 nanotubes (TNT) have been synthesized by alkaline hydrothermal transformation.
Then they have been doped with Gd element. Characterizations of doped and undoped TNT have been done with TEM
and SEM. The chemical composition was analyzed by EDX, Raman and FTIR spectroscopy. The crystal structure was
characterized by XRD. Carbon paste electrode has been fabricated and mixed with Gd doped and undoped TNT to form
a nanocomposite working electrode. Comparison of bare carbon paste electrode and Gd doped and undoped TNT carbon
paste electrode for 1.0 ×10−3 M K4 [Fe(CN)6 ] voltammetric analysis; it was observed that Gd doped TNT modified
electrode has advantage of high sensitivity. Gd doped TNT modified electrode has been used as working electrode for
itopride assay in a pharmaceutical formulation. Cyclic voltammetry analysis showed high correlation coefficient of 0.9973
for itopride (0.04–0.2 mg/mL) with a limit of detection (LOD) and limit of quantitation values (LOQ) of 2.9 and 23.0
µg.mL−1 respectively.

Key words: Gd-TiO2 nanotube, hydrothermal, cyclic voltammetry, itopride, nanocomposite electrode

1. Introduction
Itopride hydrochloride IUPAC name: (N-[4-[2-(dimethyl amino)-ethoxy] benzyl]-3, 4 dimethoxy benzamide
hydrochloride) as a benzamide derivative compound is shown in Figure 1. Itopride acts as inhibitor to
acetylcholine esterase enzyme, dopamine, and a gastrokinetic effect [1,2]. This pharmaceutical compound is
effective for the gastrointestinal symptoms in addition to functional dyspepsia and chronic gastritis [3].

Figure 1. Chemical structure of itopride hydrochloride.
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Most of the studies have used high performance liquid chromatography (HPLC) for itopride assay in
pharmaceutical formulation [3–11]. Spectrophotometric methods have also been used for itopride quantitation
[12–14]. Pure and combined dosage forms have been analyzed using Potentiometric method [15]. Ru(bpy)2+3
doped silica nanoparticles/chitosan composite films modified electrode has been used as Electrogenerated
Chemiluminescence sensor for itopride assay [16]. In recent work Voltammetry has been applied for itopride
assay using commercially available platinum electrode [17].

Electrochemical analysis methods have grown in recent years as alternative to other analytical methods
[18–20]. Electroanalytical methods have some advantages making them better alternative such as high sen-
sitivity, selectivity, low instrumentation and running cost, easy to handle and short analysis time. Several
parameters have played a role in the performance of the electroanalytical methods; one of them is working elec-
trode. Several studies have been done to enhance the performance of working electrodes. In this field carbon
paste working electrode achieved a special importance; this importance comes from its simple fabrication steps,
in addition to low cost and wide potential window. Various materials such as nanoparticles could be added to
carbon paste mixture during preparation to enhance the sensitivity and selectivity of the electrodes [21,22].

Titanium dioxide (TiO2) is belonging to metal oxide semiconductor that considered as the perfect ma-
terials in widespread environmental and medical applications [23–26]. TiO2 -based nanomaterials as nanotubes
have been intensively studied and widely used due to their excellent electrolytic and electrolysis performance,
high chemical stability and efficiency, nontoxicity and low cost [27–30]. The high cation exchange capacity on
titanium dioxide nanotubes (TNT) provides the possibility of achieving a high loading of active compound on
it, which makes it one on the best sensor. Otherwise, the high specific surface area and absence of micropores in
TNT which facilitate transport of reagent the active sites. The bandwidth between the valence and conduction
bands limits its activity [31]. By addressing this issue, doping with elements as rare-earth that have a large
atomic number have been devoted [32–35]. The electronic energy levels in rare-earth elements are rich and
improve its photocatalytic and electrocatalytic activity.

In this study, TiO2 nanotubes have been prepared then doped with Gd, after the characterization Gd
doped TiO2 nanotubes. Carbon paste electrode has been mixed with different doses of TiO2 nanotubes and Gd
doped TiO2 nanotubes, cyclic voltammetry has been established to study the performance of each fabricated
electrode, then the electrode exhibited the best performance that has been used in voltammetric analysis of
itopride in a pharmaceutical formulation.

2. Experimental
2.1. Materials and reagents

The standard pharmaceutical formulation of itopride hydrochloride was obtained from Trium pharma (Jordan),
sodium sulphate anhydrous Na2SO4 from Janssen Chemica. The supporting electrolyte 1.0 M Na2SO4 was
prepared using Milli-Q water. 1.0 M Na2SO4 supporting electrolyte was used for the preparation of stock
solutions and standard working solutions. K4Fe(CN)6 .3H2O was obtained from (Sigma Aldrich), Graphite
powder from (BDH), and Paraffin liquid light BP from (Pacegrove).

2.2. Synthesis of TNTs
The method of preparation of TNT and doped Gd-TNT was based on alkaline hydrothermal transformation.
A weighted amount of TiO2 powder [P25, (99.5%, 21 nm), Sigma-Aldrich, USA] was added to 30 mL of 10 mol
dm−3 potassium hydroxide [KOH,Sigma-Aldrich, USA] solution. After stirring for 30 min and the mixture was
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transferred into a Teflon-lined stainless-steel autoclave and was heated for 24 h at 150 °C. The white Powderly
precipitate was thoroughly washed with deionized water then with dilute HCl until the pH of washing solution
reached 6.5 then with deionized water again, followed by drying for 10 h at 90 °C, and calcinating at 400 °C
for 2 h. Gd-TNT was synthesized by adding Gd(NO3)3 to the TiO2 in the KOH solution followed by the
hydrothermal and postsynthetic treatments as described above for the undoped TNTs [35].

2.3. Characterizations
The morphology of undoped TNTs and doped Gd-TNTs was examined by Transmission Electron Microscope
(TEM, JEOL JEM 1400, Japan) and scanning electron microscopy equipped (SEM, Superscan SS-550, Shi-
madzu, Japan). The chemical composition was analyzed by energy dispersive X-ray analysis equipped (EDX,
Superscan SS-550, Shimadzu, Japan). The crystal structure of the as-prepared sensors were characterized by a
X-ray diffraction (XRD, Shimadzu, XRD-7000, Japan) at 40 kV and 30 mA, using CuKα incident beam (λ =

0.154nm). Raman spectroscopy was performed on a Raman microscope (Raman, Sentrarra, Bruker, USA) from
50 cm−1 to 1200 cm−1 . Infrared (FT-IR) absorption spectra of the KCl disks containing powder samples were
recorded on a Thermo IS-10 instrument FT-IR spectrometer (Thermo Fisher Scientific Inc., Madison, WI, USA)
at a resolution of 4 cm−1 in the range of 400–4000 cm−1 .

2.4. Modified carbon paste electrode fabrication

For fabrication of carbon paste modified electrodes, graphite powder, TNT, and Gd-TNT have been mixed as
in the Table 1.

Table 1. Quantities of fabricated electrodes contents.

Electrode code Graphite powder (mg) TNT(mg) Gd-TNT(mg)
C paste 200 0 0
F1 200 25 0
F2 200 50 0
G1 200 0 25
G2 200 0 50

After that mixture powder was dispersed in 1.0 mL dimethyl formamide (DMF) then homogenized for
20 min in ultrasonic bath. After that DMF was vaporized from the mixture using oven at 80 °C overnight. Dry
mixture was mixed with 100 µL paraffin oil using spatula. Micropipette tip of 2 mm end was filled with mixture
paste. For electrical connection copper wire connection was made passed through the edge of the tip.

2.5. Voltammetric analysis apparatus

Potentiostat (Metrohm Autolab) PGSTAT 204 was used for voltammetric measurements. All measurements
were carried out using a 3 electrodes system; where Ag/AgCl (3 M KCl) was used as reference electrode,
platinum (Pt) sheet as counter electrode, and fabricated carbon paste as working electrode.

3. Results and discussion
3.1. Morphology and structure analysis

Synthesized TNTs and Gd-TNTs have uniform and hollow multiwall structure, Figures 2a and 2b. The tubular
structures of TNT have an outer diameter around 6.5 to 10.6 nm, the length of about 51 nm and Gd-TNTs are
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in the range 6.1 nm–14.2 nm diameter of range. This is agreed with SEM images in Figures 2c and 2d. where
the samples are aggregate as thread network. EDX analysis, Figures 2e and 2f, shows uniform distributions of
about 2.92% of Gd in Gd-TNTs.

Figure 2. TEM images of (a) undoped TNTs; (b) Gd –TNTs , SEM images of (c) undoped TNTs(d); Gd –TNTs and
EDX of undoped TNTs (e); Gd-TNTs (f).

The crystal phase of TNTs and Gd-TNTs was identified by XRD. Diffraction peaks of TNT on Figure
3a observed at 24.90°, 48.10°, 55.91°, are diffractions of (1 0 1), (2 0 0) and (2 1 1) crystal planes of anatase
TiO2 , respectively (JCPDS, card no.: (00-021-1272). Meanwhile there are characteristic peaks of Gd observed
at 29.28°, 31.64°, 47.89°, and 58.72°assigned to (2 0 1), (0 4 0), (3 4 1), and (6 1 1), respectively [35], owes to
Gd ion as Gd2TiO5 (JCPDS, card no.: (00-021-0342).

1125



AMRO et al./Turk J Chem

Figure 3b shows the same strong peaks of Raman spectra obtain of synthesized sensors. The peaks
observed at around 143 cm−1 (E1g) , 198 cm−1 (E2g) , 394 cm−1 (B1g) , and 638 cm−1 (E3g) , respectively,
were attributed to anatase TiO2 which agree with previous studies [35, 36] and reveal the characteristics of the
anatase phase of the sensors. This result is also an evidence to verify that Gd introduced into the lattice or
interstitial site of TiO2 .

Figure 3. XRD patterns (a) and Raman spectrum (b) of TNT and Gd-TNTs.

The band at 278 cm−1 was assigned to the stretching vibration of Ti-O-K bonds and the bands at 198
cm−1 and 394 cm−1 corresponded to anatase Ti-O-Ti [35,37]. The band at 448 cm−1 was related to Ti-O-Ti
crystal phonons [38]. The bands at 704 cm−1 and 820 cm−1 corresponded to covalent Ti-O-H bonds [39], and
the band at 920 cm−1 was assigned to surface Ti-O-K vibrations [35]

3.2. FTIR analysis

IR spectra of TNT (a) and Gd-TNT (b) are depicted in Figure 4. Both spectra display the broad band at
around at 3432.53 cm−1 , corresponding to the surface adsorbed water and hydroxyl groups in tubular structure
sensors. The large amount of hydroxyl groups on sensors wall enhance their performance for the photo excited
electrons capture and profiled the holes to produce the reactive oxygen species in the photocatalytic [40]. The
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bands at 1627.87 cm−1 and 955.87 cm−1 can be attributed to the H-O-H bending vibration of the adsorbed
water. For synthesized sensor, another typical band at around 446±4 cm−1 is originated from the Ti-O-Ti
band of TNT and to the asymmetric of Gd-Ti-O in doped Gd-TNT [41].

Figure 4. Infrared spectrum of TNTs (a); Gd–TNTs (b).

3.3. Electrochemical performance of fabricated electrodes
Cyclic voltammetry was carried out to study the electrochemical performance of fabricated electrodes. Figure 5
shows voltammograms of 1.0 ×10−3 M K4 [Fe(CN)6 ] with fabricated working electrodes. It could be concluded
that doping TiO2 with Gd enhances both anodic and cathodic peak currents, where G2 electrode anodic peak
current reaches 56 µA compared to 31 µA for bare C paste electrode. Furthermore, G2 cathodic peak current
reaches 52 µA which is the highest compared to other studied electrodes. According to the voltammograms of
G1 and G2 of Figure 5, it can be concluded that increasing Gd-TNT portion in the fabricated electrodes has a
positive impact on electrode sensitivity.

A comparison has been established between fabricated working electrodes for itopride pharmaceutical
formulation assay. The voltammograms in Figure 6 show significant difference in performance between studied
working electrodes. Figure 6 shows drastic increase in the anodic peak current of G2 working electrode for
itopride compared to G1, bare C paste, and (F) electrodes.

When G2 was used as working electrode it showed ∆Ep of 1.1 V; where (∆Ep = Epa – Epc) , which
is greater than the value of 59/n mV expected for a reversible system [42] suggesting that itopride with G2
working electrode has irreversible behavior in aqueous medium.

3.4. Influence of scan rate (υ ):

Itopride oxidation mechanism was investigated by study the effect of scan rate on the electrode response.
Applied scan rate is ranging from 40 to 180 mV/s. Results are summarized in Figure 7, which indicated that
as scan rate increases, anodic peak current increases (Figures 7a and 7b), furthermore it shifts the anodic peak
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Figure 5. Cyclic voltammograms of 1.0 ×10−3 M K4 [Fe(CN)6 ], CPE scan rate .0.1V S−1 .

-200

-100

0

100

200

300

400

500

-2 0 2

C
u
rr

en
t 

(µ
A

)

Potential (V) vs. Ag/AgCl 

(C paste)

Blank

Ito

-300

-200

-100

0

100

200

300

400

500

-2 -1 0 1 2

C
u

rr
en

t 
(µ

A
)

Potential (V) vs. Ag/AgCl 

(F)

Blank

Ito

-300

-200

-100

0

100

200

300

400

-2 -1 0 1 2

C
u

rr
en

t 
(µ

A
)

Potential (V) vs. Ag/AgCl 

(G1)
Blank

Ito

-50

-30

-10

10

30

50

70

90

-2 0 2

C
u

rr
en

t 
(µ

A
)

Potential (V) vs. Ag/AgCl 

(G2)

Blank

Ito

Figure 6. CV Comparison between working electrodes (pure carbon paste, F, G1, and G2) for 0.20 mg/mL itopride
assay in 1 M Na2 SO4 supporting electrolyte and 1M Na2 SO4 (blank), scan rate 0.1V S−1 .

potential (Epa) positively (Figure 7a), which interprets the irreversibility of the electrode process. Figure 7c
shows log (ip) vs. log ( υ ) plot which verified linear relationship with slope 0.693, slope value is closer to 0.5,
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the theoretical value indicated redox process controlled typically by diffusion mass transport only, rather than
1.0 value which typically indicated redox processes controlled by adsorption [42,43].
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Figure 7. (a) Effect of scan rate on the CVs of 0.20 mg/mL itopride in 1M Na2 SO4 supporting electrolyte, G2 working
electrodes, in the range of 40–180 mV/s; (b) Plot of ip vs. ? (c) Plot of log I vs. log ?.

3.5. Analytical performance

To evaluate the performance of fabricated sensor (G2), a calibration curve was established in the acquired
optimum conditions for itopride assay in a pharmaceutical formulation. Figure 8 shows cyclic voltammograms
of itopride in a pharmaceutical formulation (0.04–0.2 mg/mL). Standard calibration curve illustrates high
correlation (R²= 0.9973) in addition to high sensitivity. Each concentration has been done triplicate with
relative standard deviation (RSD) of all concentrations less than 1%. Limit of detection (LOD) and limit of
quantitation values (LOQ) found to be 2.9 and 23.0 µg.mL−1 , respectively. Where LOD and LOQ of itopride
were determined based on signal-to-noise ratio of 3 and 10, respectively.

Table 2 shows a comparison between present work and other methods used for itopride determination.
This comparison includes precession and LOD. Data in Table 2 indicate that CV analysis of itopride using
Gd-TNT electrode has a comparable LOD and precession with chromatographic and spectroscopic methods.
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Figure 8. CV study of itopride (0.04–0.20 mg/mL), G2 working electrode, Na2 SO4 (1 M) supporting electrolyte, scan
rate 0.1V.s−1 , each concentration has been done triplicate.

Table 2. Comparison in LOD and precession between present study and other methods used for itopride determination.

Method LOD Precession Reference
RP-HPLC fluorescence detection 5 ng/mL 2.81% 9
RP-HPLC/UV detection 12 ng/mL 0.87% 4
Potentiometric 3.98 µM 0.658% 15
UV Spectroscopy 0.5–1.5 µg/mL 0.05% 12
UV–visible spectroscopy - 1.48% 13
CV-GC electrode 3.50 µg/mL 1.02% 17
CV-C paste Gd-TNT electrode 2.90 µg/mL 0.82% Present work

4. Conclusions
In the present work, TiO2 nanotubes have been synthesized and doped with Gd element, and then it has been
fully characterized. A composite of carbon paste modified with Gd doped TiO2 nanotubes electrode have shown
higher sensitivity compared to bare and undoped TiO2 nanotubes carbon paste electrode. When Gd doped
TiO2 nanotubes electrode has been applied for cyclic voltammetry of itopride in a pharmaceutical formulation,
it has shown high performance compared to commercially available electrode.
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