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Abstract: Since benzo [b ] thiophene scaffold is one of the privileged structures in drug discovery as this core exhibits-
activities for different biological problems, in this study bis (benzo[b ]thiophene-2-yl) alkyl methanimine derivatives (1-9)
were synthesized by reacting benzo[b ]thiophene-2-carbaldehyde with diamines. All newly compounds were characterized
by IR, 1 H NMR and 13 C NMR spectroscopic methods. Synthesized compounds were investigated using binary QSAR-
based models on therapeutic activity prediction of synthesized compounds and they showed high predicted activities in
following diseases: bacterial, angina, allergy, depression and obesity. Thus, they were then tested for their antimicrobial
and antileishmanial activities as a result of this theoretical study. Compound 1(N, N’- (propane-1,3-diyl) bis (1-(benzo
[b ] thiophene-2-yl)) methanimine) was found the most active compound in both diseases. Thus, its molecular docking
studies were also carried out.

Key words: Benzo [b ] thiophene, Schiff base, binary QSAR models, molecular docking, antimicrobial and antileishma-
nial activities

1. Introduction
Benzo [b ] thiophene derivatives display remarkable biological activities such as antiinflammatory, analgesic, anti-
fungal, antidepressant, antiangiogenic, estrogen receptor modulating, antimitotic, anticancer, kinase inhibitors,
antituberculosis, anticonvulsant, antimalarial, anthelmintic, antihyperglycemic and pesticide. Benzothiophene
derivatives have been used as potential diagnostic agents and amyloid binding in neurodegenerative diseases,
treatment of fatty acid amide hydrolase inhibitors (FAAH), BMP-2 upregulators, Alzheimer’s disease (AD),
human nicotinamide phosphoribosyltransferase inhibitors, BRAF kinase inhibitors, Rho kinase inhibitors, se-
lective linear tachykinin NK2 receptor antagonists, protein tyrosine phosphatase 1B inhibitors, histamine H3
antagonists, antiallergic agents and many other activities [1–7]. By replacing the substituents attached to the
benzothiophene ring, some of the FDA-approved anticancer drugs such as arzoxifene and raloxifene were also
developed [8,9]. Schiff bases, including azomethine functional group (N=CH), possess biological properties
such as analgesic, antifungal, antibacterial, antidepressant, anticancer, anticonvulsant and antiinflammatory
[10–15]. Schiff bases are also known to be highly effective in synergistic effects on insecticides and plant growth
regulators [16–18].
∗Correspondence: unver.yasemincan@hotmail.com
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Antibiotics are widely used in the treatment of bacterial infections for many years in the early 20th century.
Penicillin was the first antibiotic used to treat bacterial infections. Antibiotics, which are effective by killing
or stopping the growth of bacteria, cause the emergence of drug-resistant pathogens and the development of
resistance if used unconsciously and excessively. In addition, the long-term use of antibiotics damages our mi-
crobiota and losing the beneficial microorganisms has negative consequence. Approximately 16 million people
die annually due to bacterial infections, while developing new approaches to combating drug-resistant pathogens
and infectious diseases. New substances have been synthesized due to technological developments and have been
used in various bacterial infections for therapeutic purposes [19,20].

Leishmaniasis is a disease caused by a protozoon called Leishmania which is transmitted by the bite of
infected female sand flies. Poor nutrition lack of sanitation weakened immune system and poverty facilitate
spread of the disease in underdeveloped and developing countries. The disease occurs in 3 different forms:
cutaneous (most common), visceral (also known as kala-azar and the most serious form of the disease), and
mucocutaneous. An estimated 700,000 to 1 million new cases are reported annually, and 26,000 to 65,000
disease-related deaths are reported by the World Health Organization.While cutaneous form is endemic in
Southeastern Anatolia, visceral form is mostly seen in Mediterranean, Central Anatolian and Aegean Regions
andimportant constitutes an important health problem for Turkey [21,22].

Recent advances made in molecular biology and computational chemistry open new avenues in designing
novel therapeutic compounds. Molecular biology has provided the crystal structures and cryo-electron mi-
croscopy structures of crucial targets for different diseases, which can be used as accurate templates in modeling
studies. Computational chemistry offers a range of simulation, multiscale modeling and virtual screening tools
for definition and analysis of protein-ligand, protein-protein interactions. Development of new techniques on
statistical methods and free energy simulations help to predict novel optimal ligands. Thus, in this study, we
performed in silico-guided biological activity studies for a set of newly synthesized compounds. We aimed to
synthesize a new series of Schiff bases including benzo [b ] thiophene for more efficacious biologic activities. In
order to predict the biological activities of synthesized compounds before the experimental studies, therapeutic
activities of these novel compounds were predicted. The therapeutic activity value (TAV) of each compound
was calculated by binary QSAR models of 25 common disease QSAR models. In silico results represented that
synthesized compounds may show potential activity against in following diseases: bacterial, angina, allergy, de-
pression and obesity. Therefore, these compounds were then tested for their antimicrobial and antileishmanial
activities. Moreover, molecular docking study for one of the most active compounds as antibacterial agent was
performed and its molecular interactions were studied.

2. Experimental

2.1. General method for the synthesis of compounds (1-9)

Benzo [b ] thiophene-2-carbaldehyde (2 mmol) and diamines (1 mmol) were mixed and heated in oil bath without
solvent for 2–3 h at 150–160 0C. The reaction content was controlled with TLC examination and cooled to
room temperature. The precipitate formed was purified by recrystallization from ethanol-diethylether.

2.1.1. Synthesis of N, N’-(propane-1,3-diyl) bis(1-(benzo[b ] thiophene-2-yl) methanimine) (1):

Yield: 87.00%, m.p. 183–184 oC. IR (KBr, cm−1) : 3056 (=CH), 2936 (CH), 1633 (C=N), 1600 (C=N),
1527 (C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.64 (s, 2H, N=CH), 7.92–7.97 (m, 4H, Arom.H), 7.82 (
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bs, 2H,thiop.H), 7.42 (bs, 4H, Arom.H), 3.68 (s, 4H, N-CH2) , 1.98 (s, 2H, N-CH2 -CH2) ; 13C NMR (100 Hz,
DMSO-d6) δ : 156.23, 143.05, 139.99, 139.55, 128.78, 126.64, 125.28, 123.22, 58.28, 32.05.

2.1.2. Synthesis of 1-(benzo[b ]thiophene -2-yl)-N-(4-((benzo[b ]thiophene-2-ylmethylene) amino)
butyl) methanimine(2):

Yield: 88.20%, m.p. 166–167 oC. IR (KBr, cm−1) : 3056 (=CH), 2939 (CH), 1628 (C=N), 1526 (C=N), 1464
(C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.61 (s, 2H, N=CH), 7.87–7.97 (m, 4H, Arom.H), 7.79 (2H, bs,
thiop.H), 7.37–7.44 (m, 4H, Arom.H), 3.64 (s, 4H, N-CH2) , 1.68 (s, 4H, N-CH2 -CH2) ;13C NMR (100 Hz,
DMSO-d6) δ :155.87, 143.11, 139.96, 139.65, 128.66, 126.62, 125.22, 123.23, 60.33, 28.64.

2.1.3. Synthesis ofN,N’-(pentane-1,5-diyl)bis(1-(benzo[b ] thiophene-2-yl)methanimine) (3):

Yield: 82.65%, m.p. 110–111 oC. IR (KBr, cm−1) : 3053 (=CH), 2935 (CH), 1632 (C=N), 1560 (C=N), 1525
(C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.58 (s, 2H, N=CH), 7.84–7.93 (m, 4H, Arom.H), 7.75 (2H, bs,
thiop.H), 7.37–7.42 (m, 4H, Arom.H), 3.59 (s, 4H, N-CH2) , 1.65–1.70 (m, 4H, N-CH2 -CH2) , 1.35–1.39 (m, 2H,
N-CH2 -CH2 -CH2) ; 13C NMR (100 Hz, DMSO-d6) δ :155.73, 143.15, 139.64, 128.56, 126.58, 125.19, 123.20,
60.44, 31.44, 24.87.

2.1.4. Synthesis of 1-(benzo[b ]thiophene-2-yl)-N-(6-((benzo[b ]thiophene-2- ylmethylene) amino)
hexyl) methanimine (4):

Yield: 80.28%, m.p. 143–144 oC. IR (KBr, cm−1) : 3057 (=CH), 2934 (CH), 1628 (C=N), 1560 (C=N), 1526
(C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.58 (s, 2H, N=CH), 7.88–7.95 (m, 4H, Arom.H), 7.76 (2H, bs,
thiop.H), 7.41 (bs, 4H, Arom.H), 3.58 (s, 4H, N-CH2) , 1.63 (bs, 4H, N-CH2 -CH2) , 1.37 (bs, 4H, N-CH2 -CH2 -
CH2) ; 13C NMR (100 Hz, DMSO-d6) δ :155.73, 143.15, 139.64, 128.56, 126.58, 125.19, 123.20, 60.44, 31.44,
24.87.

2.1.5. Synthesis of N,N’-(heptane-1,7-diyl)bis(1-(benzo[b ] thiophene-2-yl)methanimine) (5):

Yield: 80.85%, m.p. 117–118 oC. IR (KBr, cm−1) : 3056 (=CH), 2934 (CH), 1673 (C=N), 1629 (C=N),
1517 (C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.57 (s, 2H, N=CH), 7.87–7.94 (m, 4H, Arom.H), 7.76
(2H, bs, thiop.H), 7.37–7.43 (m, 4H, Arom.H), 3.56 (s, 4H, N-CH2) , 1.62 (bs, 4H, N-CH2 -CH2) , 1.37 (bs, 6H,
N-CH2 -CH2 -CH2 -CH2) ; 13C NMR (100 Hz, DMSO-d6) δ :155.63, 143.16, 139.95, 139.64, 128.54, 126.59,
125.19, 123.22, 60.53, 30.70, 28.93, 27.14.

2.1.6. Synthesis of 1-(benzo[b ]thiophene-2-yl)-N-(8-((benzo[b ]thiophene -2- ylmethylene) amino)
octyl) methanimine (6):

Yield: 84.85%, m.p. 122–123 oC. IR (KBr, cm−1) : 3056 (=CH), 2924 (CH), 1628 (C=N), 1525 (C=N),
1465 (C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.59 (s, 2H, N=CH), 7.91 (bs, 4H, Arom.H), 7.78 (2H, bs,
thiop.H), 7.41 (bs, 4H, Arom.H), 3.39 (s, 4H, N-CH2) , 1.62 (bs, 4H, N-CH2 -CH2) , 1.32 (bs, 8H, N-CH2 -CH2 -
CH2 -CH2) ; 13C NMR (100 Hz, DMSO-d6) δ :155.65, 143.17, 140.91, 128.56, 126.01, 125.20, 123.23, 60.58,
30.78, 29.36, 27.18.
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2.1.7. Synthesis of N,N’-(nonane-1,9-diyl)bis(1-(benzo[b ] thiophene-2-yl)methanimine) (7):

Yield: 81.20%, m.p. 115–116 oC. IR (KBr, cm−1) : 3057 (=CH), 2923 (CH), 1672 (C=N), 1629 (C=N),
1525(C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.57 (s, 2H, N=CH), 7.89–7.96 (m, 4H, Arom.H), 7.78 (2H,
bs, thiop.H), 7.41 (bs, 4H, Arom.H), 3.56 (s, 4H, N-CH2) , 1.60 (bs, 4H, N-CH2 -CH2) , 1.30 (bs, 10H, N-CH2 -
CH2 -CH2−CH2 -CH2) ; 13C NMR (100 Hz, DMSO-d6) δ :155.64, 143.17, 139.95, 139.66, 128.56, 126.60,
125.21, 123.23, 60.57, 30.77, 29.41, 29.18, 27.18.

2.1.8. Synthesis of 1-(benzo[b ]thiophene-2-yl)-N-(10-((benzo[b ]thiophene-2- ylmethylene) amino)
decyl) methanimine (8):

Yield: 83.25%, m.p. 141–142 oC. IR (KBr, cm−1) : 3050 (=CH), 2924 (CH), 1625 (C=N), 1591 (C=N),
1525(C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.58 (s, 2H, N=CH), 7.88–7.94 (m, 4H, Arom.H), 7.77 (2H,
bs, thiop.H), 7.40 (bs, 4H, Arom.H), 3.56 (s, 4H, N-CH2) , 1.58 (bs, 4H, N-CH2 -CH2) , 1.28 (bs, 12H, N-CH2 -
CH2 -CH2−CH2 -CH2) ; 13C NMR (100 Hz, DMSO-d6) δ :155.64, 143.18, 139.70, 139.66, 128.55, 126.59,
125.21, 123.23, 60.57, 30.77, 29.83, 29.41, 27.33.

2.1.9. Synthesis of 1-(benzo[b ]thiophene-2-yl)-N-(12-((benzo[b ]thiophene-2- ylmethylene) amino)
dodecyl) methanimine (9):

Yield: 80.25%, m.p. 122–123 oC. IR (KBr, cm−1) : 3054 (=CH), 2918 (CH), 1632 (C=N), 1560 (C=N),
1526 (C=C); 1H NMR (400 MHz, DMSO-d6) δ : 8.58 (s, 2H, N=CH), 7.90–7.95 (m, 4H, Arom.H), 7.79 (2H,
bs, thiop.H), 7.41 (bs, 4H, Arom.H), 3.38 (s, 4H, N-CH2) , 1.59 (bs, 4H, N-CH2 -CH2) , 1.24 (bs, 10H, N-CH2 -
CH2 -CH2−CH2 -CH2) , 1.06 (bs, 4H, N-CH2 -CH2 -CH2−CH2 -CH2 -CH2) ; 13C NMR (100 Hz, DMSO-d6) δ

:155.65, 139.70, 128.57, 126.60, 125.21, 123.23, 60.57, 30.74, 29.40, 29.18.

2.2. MetaCore/MetaDrug applications

Studied compounds were examined for their therapeutic activity against 25 common diseases using Meta-
Core/MetaDrug platform of Clarivate Analytics ( Philadelphia, PA, USA). Training set of compounds were
collected from FDA approved compounds, candidate drugs in clinical phases and hit compounds from in vivo
activities. Results showed that synthesized compounds can be used as antibacterial agents. Following training
and test set compound numbers were used in bacterial QSAR model constructions: Training set N = 530, test
set N = 97, sensitivity = 0.87, specificity = 0.90, accuracy = 0.89, Matthews correlation coefficient (MCC)
= 0.77.

3. Ligand preparation

The synthesized molecules are prepared for further calculations via LigPrep module [23] of Schrodinger’s
molecular modeling suite with OPLS2005 force field [24]. Epik [25] was used to determine the protonation
states of these compounds at neutral pH.

4. Protein preparation

The X-ray diffraction (XRD) structure of the target was used from the Protein Data Bank (PDB) with PDB
IDs of 5TW8. Protein preparation module was utilized [26], [27]. Missing side chains are filled via prime module
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and PROPKA [28]. was subjected to determine the protonation of side chains at physiological pH. Finally, a
restrained minimization in OPLS2005 force field was applied to these optimized structures.

5. Molecular docking

The molecules which possessed desirable pharmacokinetic and toxicity properties were subjected to a grid-based
Glide/XP docking protocol from Schrodinger’s Maestro molecular modeling package [29]. Binding pocket was
determined from cocrystallized ligand and default protocol was employed. Shortly, we used flexible docking
approach. Hydroxyl and thiol groups of binding pocket residues were allowed for rotation throughout the
docking. Extra precision (XP) protocol of Glide was used. Ten poses were requested at the docking and
postdocking minimization was performed.

6. Results and discussion

6.1. Synthesis

Synthesis of bis (benzo[b ]thiophene-2-yl) alkyl methanimine derivatives (1-9) was performed according to the
reaction outlined in Scheme.

Scheme. Synthesis of Schiff base derivatives with benzo [b ] thiophene (1-9).

The peaks of NH2 and C=O belonging to the starting amines and aldehyde respectively disappeared in
the IR spectra of the compounds (1-9). Proton signal of imine group (N=CH) obtained by Schiff base reaction
was observed as singlet at 8.57–8.64 ppm in the 1H-NMR spectra of the compounds (1-9). Aromatic protons
belonging to benzo[b ]thiophen ring resonated at 7.37–7.97 ppm and CH2 alkyl protons were seen at 1.28–3.68
ppm in the 1H-NMR spectra of the compounds as expected from alkyl groups. When carbon spectrawere
examined, N=CH imine carbon was observed at 155.64–156.23 ppm in the 13C-NMR spectra of compounds
1-9. Aromatic carbon peaks of benzo [b ] thiophene were seen at 123.20–143.19 ppm and alkyl carbon peaks
resonated at 24.87–60.58 ppm in the 13C-NMR spectra of the compounds. As a result, spectral data supports
structures of the compounds (1-9).
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6.2. In silico predictions of therapeutic activities of synthesized compounds

Binary quantitative structure-activity relationships (QSAR) common disease models from Clarivate Analytics
MetaCore/MetaDrug platform were used for the therapeutic activity predictions of synthesized compounds. For
this aim, 25 different common diseases binary QSAR models were used. All the nine compounds were screened
on MetaCore/MetaDrug platform and therapeutic activity values were predicted. Therapeutic activity values
in MetaCore/MetaDrug are normalized between 0 and 1 (while 0 represents inactive compound, 1 represents
active compounds). Although predicted therapeutic activity value higher than 0.5 indicates compound that
may show activity, in the current study we used a higher cutoff value (0.75) for being in the safe zone. Table
S1 at the supplementary information show corresponding predicted therapeutic activity values of each studied
compound that has activity value equal or more than 0.75. When we check diseases in Table S1 it can be
seen that synthesized compounds can be considered mainly for bacterial, angina, allergy, depression and obesity
models. Since the investigated compounds are analogs of each other they showed similar TAV values in certain
disease models such as antibacterial profile. Thus, from these diseases we considered to perform antibacterial in
vitro assays using these compounds. Furthermore, since known antifungal and antileishmanial effect of benzo
[b ] thiophene derivatives, we also performed antifungal and antileishmanial in vitro assays for these compounds.

6.3. In vitro antileishmanial activity studies

Antileishmanial activity results of nine compounds as a result of evaluation Figures 1–2 and minimum inhibitory
concentration (MIC) values are given in Table 1. The tests in the positive and negative control wells were found
to work as expected.

Figure 1. Antileishmanial activity results of the compounds against standard Leishmania infantum promastigotes.
Control drug: Amphotericin B. Dilution concentrations 10,000 µg/mL to 312 µg/mL. N.C.: Negative control; P.C.:
Positive control.
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Figure 2. Antileishmanial activity results of compounds against standard Leishmania tropica promastigotes. Control
drug: Amphotericin B. Dilution concentrations 10,000 µg/mL to 312 µg/mL. N.C.: Negative control; P.C.: Positive
control.

Table 1. Minimum inhibitory concentration (MIC) values of the compounds against Leishmania infantum and Leish-
mania tropica promastigotes.

Compounds L.infantum
MIC values
(µg/mL)

L.tropica
MIC values
(µg/mL)

1 1250 1250
2 >10,000 >10,000
3 5000 >10,000
4 >10,000 >10,000
5 >10,000 >10,000
6 >10,000 >10,000
7 10,000 >10,000
8 >10,000 >10,000
9 10,000 >10,000
Amphotericin B <312 <312

Compound 1 was found to be the most effective compound (MIC: 1250 µg / mL) among the compounds
whose antileishmanial activities were evaluated against Leishmania infantum promastigotes. In addition,
compounds 3, 7 and 9 were found to have antileishmanial activity at different concentrations (MIC: 5000–
10,000 µg/mL).

It was found that other compounds did not have antileishmanial activities against Leishmania infantum
promastigotes at the studied concentrations. Compound 1 was also found to be the most effective compound
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against the Leishmania tropica promastigotes from compounds whose antileishmanial activities were evaluated
(MIC: 1250 µg/mL). It was determined that other compounds did not have antileishmanial activities against
Leishmania tropica promastigotes at studied concentrations.

The study of Maina et al. revealed the antileishmanial activity of Clerodendrum myricoides and Salvadora
persica. They reported, Clerodendrum myricoides water extract demonstrated the best potential antileishma-
nial activity against Leishmania major promastigotes (MIC = 625 µg/mL). Also, the dichloromethane and
petroleum ether extract were reported moderate to weak activity against Leishmania major promastigotes (MIC
= 1250 µg/mL; 2500 µg/mL) and amastigotes respectively [30].

In the study of Ogeto et al., Aloe secundiflora water extract was found active against L. major at the lowest
concentration of 2000 µg/mL. Methanollic plant extract reported less antileishmanial activity as compared to
Pentostam and amphotericn B with MIC of 1000 µg/mL, 250 µg/mL and 125 µg/mL, respectively. They
marked higher antileishmanial activities though not of comparative concentrations than most of the reference
drugs. The results also showed that plant extracts had lower toxicity against Vero cells as compared to the
standard drug amphotericin B [31].

Amphotericin B, which is used as a standard drug, was found to be effective at all concentrations (MIC:
<312 µg / mL) for both leishmania species.

6.4. In vitro antibacterial and antifungal activity studies
Different concentrations of some compounds against standard bacterial isolates and yeast isolates were found to
have antimicrobial activity, while some compounds were found to be ineffective at the concentrations studied.
The test images of compound 1 which have the most effective antibacterial and antifungal effect are given in
the Figure 3. The MIC values of the compounds are given in Table 2. It was determined that the compounds
showed antibacterial and antifungal activity against 6 of the studied standard bacteria and yeast isolates.

Figure 3. Antibacterial and antifungal activity results of compound 1. Dilution concentrations: 10,000 µg/mL–312
µg/mL. N.C.: Negative control; P.C.: Positive control.
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The compound 1 showed the strongest antibacterial effect against Shigella flexneri and Yersinia entero-
colitica (MIC:1250 µg/mL) (Figure 3). Compound 1 was found to be effective against all bacteria and yeast
(Table 2). Antibacterial and antifungal activity were determined in 6 compounds (1, 2, 4, 6, 8 and 9).

When the results of synthesized compounds were evaluated, it was found that compound 1 was the
most effective compound for all bacteria and yeast isolates studied. Compound 1 was found to have different
levels of antimicrobial activity against Shigella flexneri, Yersinia enterocolitica, Staphylococcus aureus (MRSA),
Escherichia coli, Salmonella enteritidis, Candida tropicalis, Pseudomonas aeruginosa, and Klebsiella pneumonia
(respectively MIC values: 1250 µg/mL, 1250 µg/mL, 2500 µg/mL, 2500 µg/mL, 2500 µg/mL, 2500 µg/mL,
5000 µg/mL, and 5000 µg/mL).

It is found that Klebsiella pneumoniae is the least affected one by the compounds. All concentrations
of the compounds 3, 5 and 7 were found to have no effect on any bacterial and yeast isolates (MIC: >10,000
µg/mL).

Thus, because of its promising results at both disease models, compound 1 can be considered as lead
compound. However, further animal in vivo studies must be carried out.

Since the most active compound was found as compound 1 as antibacterial agent, we used crystal
structure of wild-type S. aureus penicillin binding protein 4 (PBP4), PDB ID: 5TW8, and performed docking
simulations. Figure 4 shows 2D and 3D ligand interactions diagram of compound 1 at the binding pocket
of the target structure. It can be seen that main nonbonded interactions are constructed with Tyr291 and
Tyr268 (π -π stacking interactions) and with Glu297 (ionic interactions). These strong interactions (docking
score, -8.33 kcal/mol) show that compound 1 can be considered as promising anti-bacterial agent. Both in
silico predictions (ligand-based and target-driven based) as well as performed in vitro assays validate each other
for the antibacterial effect of the novel compound (compound 1). Our hybrid molecular modeling approaches
(combined ligand-based and structure-based) predicted the biological activity of a set of new compounds and
these predictions were investigated by in vitro studies.

7. Conclusion

Nine bis (benzo[b ]thiophen-2-yl) alkyl methanimine derivatives were synthesized. All newly compounds were
characterized by IR, 1H NMR and 13C NMR spectroscopic methods.Synthesized compounds were investigated
using 25 different binary QSAR disease models. Results showed that synthesized compounds may be considered
mainly for bacterial, angina, allergy, depression and obesity models. Our in silico-guided design study lead to a
hit compound (Compound 1) for its antibacterial effects. In vitro antileishmanial, antifungal and antibacterial
activity studies were performed on all synthesized compounds. According to the test results; Compound 1
showed antileishmanial activity (MIC = 1250 µg/mL) and it was concluded that further studies could be
continued for this compound 1. The purpose of the control drug study was made to test whether the experimental
study was working properly. The substances studied showed antileishmanial activity even if they had a higher
value than the MIC of the standard drug Amphotericin B. In this antileishmanial activity study, while aiming
to determine the concentration of the compound that is effective against leishmania, the reliability, toxic effect
and side effects of the substances should also be evaluated for new drug candidates. Due to the toxic effects
of currently used drugs and the increasing resistance to these drugs, the discovery and development of new
therapeutic agents is important.Compound 1 also showed better antibacterial and antifungal activity.
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Figure 4. 2D and 3D ligand interactions diagrams of compound 1 at the binding pocket of 5TW8 PDB coded structure.

Acknowledgment

This work was supported by the Scientific Research Project of Karadeniz Technical University (KTU-BAP)
[Grant number 8086].

Chemistry and determination of in vitro antileishmanial, antifungal and antibacterial activities were
submitted at supplementary information.

References
1. Rangappa SK, Karam C, Srinivasa B, Sasidhar BS, Siddappa AP et al. An overview of benzo[b]thiophene-based

medicinal chemistry. European Journal of Medicinal Chemistry 2017; 138: 1002-1033.
doi: 10.1016/j.ejmech.2017.07.038

2. Jagtap VA, Agasimundin YS. Synthesis and preliminary evaluation of some 2-amino-n’-[substituted]-4,5,6,7-
tetrahydro-1-benzothiophene-3- carbohydrazide as antimicrobial agents. Journal of Pharmacy Research 2015; 9
(1): 10-14.

3. Berrade L, Aisa B, Ramirez MJ, Galiano S, Guccione S et al. Novel benzo[b]thiophene derivatives as new potential
antidepressants with rapid onset of action. European Journal of Medicinal Chemistry 2011; 54: 3086-3090. doi:
10.1021/jm001059j

4. Lianqi JL, Kai G, Na LV. Benzothiophene Alkanol Piperazine Derivatives and Their Use as Antidepressant, WO
Patent 2010/000198 A1.

5. Bryant HU, Dere WH. Selective estrogen receptor modulators: an alternative to hormone replacement ther-
apy.Society for Experimental Biology and Medicine 1998; 217 (1): 45-52. doi: 0.3181/00379727-217-44204

1174



ÜNVER et al./Turk J Chem

6. Rao GK, Subramaniam, R. Synthesis, antitubercular and antibacterial activities of some quinazolinone analogs
substituted with benzothiophene. Journal of Chemical Sciences 2015; 6: 92-96. doi: 10.4172/2150-3494.100092

7. Yang Y, Cui M. Radiolabeled bioactive benzoheterocycles for imaging bamyloid plaques in Alzheimer’s diseas.
European Journal of Medicinal Chemistry 2014; 87: 703-721. doi: 10.1016/j.ejmech.2014.10.012

8. Pettit GR, Minardi MD, Boyd MR, Pettit RK. Synthesis of combretastatin A-3 diphosphate prodrug. Anticancer
Drugs Design 2000; 15 (6): 397-403.

9. Pettit GR, Lippert JW. Antineoplastic agents 429. Syntheses of the combretastatin A-1 and combretastatin B-1
prodrug. Anticancer Drug Design 2000; 15 (3): 203-216.

10. Ünver Y, Deniz S, Çelik F, Akar Z, Küçük M et al. Synthesis of new 1,2,4-triazole compounds containing Schiff
and Mannich bases (morpholine) with antioxidant and antimicrobial activities. Journal of Enzym Inhibition and
Medicinal Chemistry 2016; 31(Sup 3): 89-95. doi: 10.1080/14756366.2016.1206088

11. Ünver Y, Sancak K, Çelik F, Birinci E, Küçük, M. New thiophene-1,2,4-triazole-5(3)-ones: highly bioactive
thiosemicarbazides, structures of Schiff bases and triazole-thiols. European Journal of Medicinal Chemistry 2014;
84: 639-650. doi: 10.1016/j.ejmech.2014.01.014

12. Ünver Y, Bektaş E. Synthesis and biological activity of new Schiff bases of benzylideneamine bearing thiophene,
1,2,4-triazolone, 1,3,4-oxadiazole, morpholine moieties. Letters in Drug Design & Discovery 2018; 15 (7): 706-712.
doi: 10.2174/1570180814666171012163651

13. Da Silva CM, Da Silva DL, Modolo LV, Alves RB, De Resende MA et al. Schiff base: a short review of their
antimicrobial activities. Journal of Advanced Research 2011; 2 (1): 1-8. doi: 10.1016/j.jare.2010.05.004

14. Khurshid IM, Mustakim M, Vasudevan S, Madhubhai MP, Syed MA et al. Synthesis, anti-inflammatuar, analgesic
and antioxidant activities of some tetrasubstituted thiophenes. Journal of Enzyme Inhibition and Medicinal
Chemistry 2008; 23 (6): 829-838. doi: 10.1080/14756360701626082.

15. Ravi K, Airody V, James PS. A new class of antionulsants possessing 6Hz activity: 3,4-dialkyloxy thiophene bishy-
drazones. European Journal of Medicinal Chemistry 2009; 44 (11): 4376-4384. doi: 10.1016/j.ejmech.2009.05.026.

16. Daver M, Boghaei MS. Non-symmetrical tetradentate vanadyl Schiff base complexes derived from 1,2-phKM,
nylene diamine and 1,3-naphtalene diamine as catalysts for the oxidation of cyclohexene. Tetrahedron 2002; 58
(26): 5357-5366. doi: 10.1016/S0040-4020(02)00481-7.

17. Vyas KM, Jadeja N, Gupta VK, Surati KR. Synthesis, characterization and crystal structure of some bidentate
heterocyclic Schiff base ligands of 4-toluoyl-pyrazolones and its mononuclear Cu(II) complex. Journal of Molecular
Structure 2011;
990 (1-3): 110-120. doi: 10.1016/j.molstruc.2011.01.024

18. Jiang JJ, Chang TC, Hsu WL, Hwang JM, Hsu LY. Synthesis and biological activity of sulfur containing arylalde-
hyde Schiff bases. Chemical Pharmaceutical Bulletin 2003; 51 (11): 1307-1310. doi: 10.1248/cpb.51.1307

19. Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum sensing: a prospective therapeutic target for bacterial diseases.
BioMed Research International 2019; 2019: 1-15. doi: 10.1155/2019/2015978

20. Yadav PS, Senthilkumar GP. Synthesis and evaluation of some benzothiazole derivatives as antidiabetic agents.
International Journal of PharmTech Research 2011; 3 (1): 1-7.

21. Şener S, Karaman Ü, Hakverdi G, Saraç G, Kayhan Tetik B. Evaluation of patients with cutaneous leishmaniasis
who admitted to dermatology clinic in Kahramanmaraş Sütçü İmam University Medical Faculty. Konuralp Tıp
Dergisi 2017; 9 (3): 274-277.

22. Özbilgin A, Harman M, Karakuş A, Bart M, S. Töz S et al. Leishmaniasis in Turkey: visceral and cutaneous
leishmaniasis caused by Leishmania donovani in Turkey. Acta Tropica 2017; 173: 90-96.

1175



ÜNVER et al./Turk J Chem

23. Schrödinger Release LigPrep LLC. New York, NY, USA, 2015.
24. Banks JL, Beard HS, Cao Y, Cho AE, W. Damm W et al. Integrated modeling program, applied chemical theory

(IMPACT). Journal of Computational Chemistry 2005; 26 (16): 1752-1780. doi: 10.1002/jcc.20292

25. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR et al. Epik: a software program for pKa prediction
and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design 2007; 21:
681-691.

26. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters,
protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design 2013; 27:
221-234.

27. Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein–ligand
complexes. Proteins: Structure, Function, and Bioinformatics 2008; 73: 765-783.

28. Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins:
Structure, Function, and Bioinformatics 2005; 61: 704-721.

29. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR et al. Extra precision glide: docking and scoring
incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry
2006; 49 (21): 6177-6196. doi: 10.1021/jm051256o

30. Maina ENM, Njau VN, Gavamukulya Y. Phytochemical analysis and antileishmanial activity of Clerodendrum
myricoides and Salvadora persica plant extracts against Leishmania major. Journal of Complementary and Alter-
native Medical Research 2020; 9 (1): 29-44. doi: 10.9734/jocamr/2020/v9i130134

31. Ogeto TK, Odhiambo RA, Shivairo RS, Muleke CI, Osero BO et al. Antileishmanial activity of Aloe secundiflora
plant extracts against Leishmania major. Advances in Life Science and Technology 2013; 13: 9-19.

1176



ÜNVER et al./Turk J Chem

Supplementary information:
S1. Experimental
Chemistry

The 1H-, and 13C-nuclear magnetic resonance spectra were recorded on a Bruker 400 MHz spectrometer,
where TMS as an internal standard and DMSO-d6 as solvent was used. IR spectra were recorded on a Perkin-
Elmer Spectrum One FT-IR spectrometer in KBr pellets. Melting points were measured by an electrothermal
apparatus. All chemicals were purchased from commercial suppliers.

S2. Determination of in vitro antileishmanial, antifungal, and antibacterial activities
Antileishmanial activity

In vitro antileishmanial activities of the compounds against Leishmania infantum and Leishmania tropica
promastigotes were determined using liquid microdilution method added alamar blue.

Preparation of Leishmania infantum and Leishmania tropica promastigotes
In the antileishmanial activity study, axenic standard Leishmania infantum and Leishmania tropica

promastigotes were used. Standard leishmania isolates were produced in RPMI-1640 (R8758 Sigma-Aldrich
Corp., St. Louis, MO, USA) medium which containing 10% Fetal Bovine Serum (FBS F4135 Sigma-Aldrich
Corp.), 1% Penicillin (P3032 Sigma-Aldrich Corp.) and Streptomycin (S9137 Sigma-Aldrich Corp.) (100,000
units penicillin and 10 mg streptomycin). Promastigotes grown on RPMI-1640 medium were placed in sterile
falcon tubes and centrifuged at 1000 g for 10 min. The supernatant was decanted and centrifuged by addition
of sterile PBS (phosphate buffered saline). This procedure was repeated 3 times to wash the promastigotes.
RPMI-1640 medium was added to the promastigotes and adjusted to approximately 2.5 ×107 promastigote/mL
by the hemocytometer.

In vitro antileishmanial activity test
Synthesized compounds were dissolved by dimethylsulfoxide (DMSO)/H2O (10%). The stock solutions

of the compounds were prepared by adding RPMI-1640 medium to a concentration of 20 mg/mL and sterilized
by passing through a 0.45-µm pore diameter sterile membrane filter (EMD Millipore Corp., Bedford, MA,
USA). The sterile microplates with 96-well were used for the antileishmanial activity test. Dilution rates in the
wells were prepared between 10,000 µg/mL and 312 µg/mL.

The microdilution method with alamar blue was performed as previously described [1–2]. Microplates
were incubated for 20 h in a adjusted incubator set at 27 °C and after, 20 µL of alamar blue (Resazurin sodium
salt R7017 Sigma-Aldrich Corp.) was added to the

wells and incubated again at 27 ºC for another 4 h. Results were obtained after 24, 48 and 72 h by visual
evaluation of the microplates. In addition, 30 µL of fresh samples were prepared from all wells and the viability
movements of the promastigotes were observed and confirmed visually. The test was repeated twice for each
compound. Amphotericin B was used as control drug. The change of the indicator dye alamar blue to pink
color in the wells was interpreted as continuing parasite growth, while the color remaining as blue was evaluated
the parasite growth stopped and the compound was interpreted as effective.

Antibacterial activity
In this study, in vitro antimicrobial activities of the compounds against 7 selected standard bacteria and

1 yeast isolate were determined by liquid microdilution method with alamar blue.
Preparation of standard bacterial and fungal isolates
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It was aimed to determine the minimal inhibitory concentrations (MIC) of the antimcrobial activities of
the compounds against the standard bacterial and yeast isolates by liquid microdilution method with alamar
blue (Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility
Testing). The standard isolates (Escherichia coli ATCC 25922, Yersinia enterocolitica ATCC 9610, Salmonella
enteridis ATCC 13076, Klebsiella pneumoniae ATCC 700603, Shigella flexneri ATCC 12022, Pseudomonas
aeruginosa ATCC 27853, Staphylococcus aureus (MRSA) ATCC 43300 and Candida tropicalis ATCC 750) used
in the study were obtained from the American Type Culture Collection (ATCC). Standard bacterial isolates
were produced by incubating overnight at 37 °C using blood agar (Merck KGaA, Darmstadt, Germany) and
eosin methylene blue agar (EMB, Merck KGaA) media and purity checks were performed. Similarly, standard
yeast isolate was produced by incubating overnight at 37 °C using Sabouraud dextrose agar (SDA, Merck KGaA)
medium and purity checks were performed.Standard bacterial isolates were prepared by diluting them in sterile
saline to approximately 1.5 ×108 cfu / mL according to McFarland 0.5 turbidity chart. For fungi, it was set to
be McFarland 1.

In vitro antimicrobial activity test
Antimicrobial activity testing of the compounds was performed using 96-well sterile microplates. The

stock solutions of the compounds were prepared by adding sterile distilled water to a concentration of 20 mg/mL
and sterilized by filtration through a 0.45-µm pore diameter sterile membrane filter (EMD Millipore Corp.).
Firstly, 100 µL MHB medium was added to all wells for antibacterial activity test and Sabouraud dextrose broth
medium was used for antifungal activity test. The dilution rates of compounds as previously described [2–3]
were performed between 10,000 µg/mL and 312 µg/mL. Standard bacterial or yeast suspension was added
to 100 µL wells. Negative and positive control wells were added and incubated in an incubator set at 37 °C.
After 20 h of incubation, 20 µL of alamar blue was added onto the microplates and incubated for another
4 h. Microplates were evaluated visually for color change after 24 and 48 h. After the incubation the color
unchanging of alamar blue in the wells was interpreted as the absence of proliferation, and the changing to pink
from blue was interpreted as proliferation. As a reproductive control, samples were taken from each well with
the loop and the presence of reproduction was investigated on the blood agar medium. While the antimicrobial
activity test for each compound was repeated twice, amikacin and amphotericin B were used as control drugs.
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and Biomolecular Spectroscopy 2015; 139: 356-366. doi: 10.1016/j.saa.2014.12.071
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Table S1. Therapeutic activity value (TAV) predictions using binary QSAR models. 

 

Compound 1 

Disease TAV 
Bacterial 0.78 
Angina 0.77 

Depression 0.75 
Allergy 0.75 

 
Compound 2 

Disease TAV 
Bacterial 0.81 
Angina 0.79 
Allergy 0.77 

 
Compound 3 

Disease TAV 
Bacterial 0.81 
Angina 0.79 
Allergy 0.77 

 
Compound 4 

Disease TAV 
Bacterial 0.82 
Angina 0.79 
Allergy 0.77 
Obesity 0.75 

 
Compound 5 

Disease TAV 
Allergy 0.77 
Angina 0.77 
Obesity 0.75 
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Compound 6 

Disease TAV 
Allergy 0.77 
Angina 0.77 

Depression 0.75 
Obesity 0.75 

 
Compound 7 

Disease TAV 
Allergy 0.77 
Angina 0.77 
Obesity 0.75 

 
Compound 8 

Disease TAV 
Bacterial 0.82 
Allergy 0.77 

Alzheimer 0.76 
Obesity 0.75 

 
Compound 9 

Disease TAC 
Bacterial 0.82 
Allergy 0.77 
Angina 0.76 
Obesity 0.75 
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1H-NMR spectrum of compound 1. 
 
 

 
 

13C-NMR spectrum of compound 1. 
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1H-NMR spectrum of compound 2. 
 

                       
13C-NMR spectrum of compound 2. 
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1H-NMR spectrum of compound 3 
 
 
 
 
 

 
13C-NMR spectrum of compound 3. 
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1H-NMR spectrum of compound 4. 

 
 
 
 
 

 
13C-NMR spectrum of compound 4. 
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1H-NMR spectrum of compound 5. 
 

                          
 

13C-NMR spectrum of compound 5. 
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1H-NMR spectrum of compound 6. 
 
 

 
13C-NMR spectrum of compound 6. 
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                    1H-NMR spectrum of compound 7. 
 

                      
  

13C-NMR spectrum of compound 7. 
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                    1H-NMR spectrum of compound 8. 

 
 

13C-NMR spectrum of compound 8. 
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                    1H-NMR spectrum of compound 9. 
 
 
 

  
 13C-NMR spectrum of compound 9. 
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