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1. Introduction
The alcohol functional group is one of the more important groups for the synthesis of many drugs which are being used 
widely throughout the world [1–5]. As the alcohol functional group is not a good leaving group, it becomes the main 
obstacle for producing versatile novel drugs in organic synthesis. The nucleophilic substitution in the alcohol group is very 
difficult under mild conditions [6–12]. For the replacement of the OH group, one has to convert this alcohol group into 
a Cl group which is a better leaving group.  In the previous studies, it was revealed that the conversion of the OH group 
into a mesylate group took place [13]. Direct conversion of alcohols into ethers, diaryl alkanes, and sulphonamides was 
successful [14–16]. So, we have decided to optimize the convenient route for the conversion of alcohols into sulfones under 
mild conditions. Earlier works revealed that direct conversion of alcohols into sulfones using bronsted acids like formic 
acids, acetic acid, and HCl [17–20], could be generated from sodium sulfide, sodium sulfinates, sulfonic acids, potassium 
meta bisulfite, sulfonyl chloride, and arenesulfonyl cyanide [21–27]. Among these reagents, sodium sulfinate is the best 
reagent due to ease of handling, and from a stability point of view.

Reddy and co-workers [28–29] reported that the reaction between p-toluenesulfonyl cyanide, and allylic alcohols leads 
to the formation of p-toluenesulfonyl cyanide, in the presence of diisopropylethylamine, later the adduct gets converted 
into a sulfonyl rearrangement product. Direct substitution of the allylic amine with sodium sulfinates in the presence 
of boronic acid [30] and the use of FeCl3 as a catalyst and chlorotrimethylsilane as an additive [31], were also reported. 
Direct substitution of alcohols in the presence of boron trifluoride etherate with sodium sulfinates was prepared in 
which dichloromethane as a solvent was used under optimized parameters at 50 °C with 82% yield [32]. Oxidation of the 
methylthio derivative to the corresponding sulfones using m-CPBA was reported by Pujol et al [33]. Cu-catalyzed aerobic 
oxidation to synthesize from aryl halides and DMSO is described by Yuan et al. [34]. Fe(OH)3-catalyzed synthesis of aryl 
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sulfones using aryl sulfonyl chloride with arenes is also reported [35]. The L-Proline sodium salt/CuI-mediated coupling 
reaction of aryl halides with sulfinic acids is also documented by Ma and Zhu [36]. Yuan et al. have recently synthesized 
aryl ethyl sulfones from sodium sulfinate and di-tert-butyl peroxide in the H2O medium [37]. Very recently, an eco-
friendly approach to the construction of aryl methyl sulfone from SO2 and methyl reagents is exemplified by Jiang et al. 
[38]. An excellent review on sulfones was presented very recently by Trost et al. [39]. In view of this and as an extension to 
our search for novel antimicrobial agents [40–44], the authors herein made an attempt to synthesize the titled sulfones and 
screen their antimicrobial properties. 

2. Present work
We synthesized allyl alcohols, which were derived from respective aldehydes by reduction with sodium borohydride. 
A total of 9 aryl methyl sulfones were synthesized using BF3.OEt2 as a catalyst and AcOH as a solvent in the present 
methodology shown in Scheme 1.

Huang et al. [32] reported on the synthesis of sulfinates using BF3.OEt2 in CH2Cl2 solvent medium optimized at 45–50 
°C moderate temperatures via the more favourable SN1 mechanism through the conversion of sodium p-toluenesulfinate 
into corresponding nucleophile sulfinic acid, i.e. O-attack. Surprisingly, when acetic acid was used as a solvent, we could 
observe the formation of sulfones possibly via S-attack following the SN2 mechanism, thereby indicating the significant 
role of solvent in product formation. The aim was achieved with various benzyl alcohols and sodium methyl sulfinates. 
Shorter reaction times and direct isolation of products were the added advantages in using the previous method.

Baidya et al. [45] explained about the thermal stability of the sulfones over the sulfinates. According to their studies, 
PhSO2

− reacts with highly stabilized benzhydrylium ions to give sulfone derivatives exclusively, but in the case of highly 
reactive benzhydrylium ions it gives mixtures of sulfinates Ar2CH-OS(O)Ph and sulfones Ar2CH-SO2Ph; the latter 
rearranges to the thermodynamically more stable sulfones through an ionization recombination sequence. 

In the given Scheme 2, the reaction mechanism was explained schematically. Using acetic acid as a solvent instead 
of dichloromethane favors reaction at room temperature. Initially, BF3.OEt2 activates the hydroxyl group to become 
protonated and subsequent elimination of water molecule occurs. As a result carbonium ion formation took place at room 
temperature itself. The formed carbonium ion was attacked by nucleophile of the sodium methyl sulfinates leading to the 
formation of sulfinate derivatives. Later, the product rearranged into thermodynamically more stable sulfones.

We chose the benzyl alcohol, and sodium methyl sulfinates as substrates for optimization of the reaction initially in 
the presence of BF3.OEt2.The authors carried out a couple of reactions by changing the concentration of BF3.OEt2, varying 
from 0.2 equivalents to 2.0 equivalents. Finally, we could achieve the yields of the target molecule variables from 15 to 92% 
as shown in Table 1. 
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Scheme 1: Synthesis of aryl methylsulfones.
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Scheme 2:  Possible reaction mechanism for conversion of alcohol into sulfones.
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The highest yields of the compound were obtained with 1.8 equivalents of BF3.OEt2. A couple of reactions were 
conducted with 1.8 equivalents of BF3.OEt2 at various time periods ranging from 1 to 8 h. During the time period from 1 to 
3 h, the yields found increased, and when the time period was prolonged from 3 to 8 h, the yields decreased. This reaction 
conversion was tremendously effective on the solvent which was used.  For this reason, several trial reactions were carried 
out with both the polar solvents and nonpolar solvents. Lesser yields were reported with the nonpolar solvent cyclohexane 
(Table 1, entry 10). Next to cyclohexane, polar solvents like DMSO, and THF gave the yields of 25%, and 20% respectively. 
With the exception of acetic acid other solvents got the yields of the desired product below 50%. The best yields ranging 
from 80% to 92% (Table 1, entries 2–6) were obtained with the acetic acid. So, finally, we have concluded that the reaction 
is more favorable with the protic solvents. 

The above optimized reaction conditions were verified and or generalized with structurally different types of alcohols. 
The obtained yields of desired products were mentioned in Table 2, entries 1–9. 

The best yield (95%)  of the desired molecule was obtained with the nitro alcohol derivatives (3i), under the optimized 
reaction condition. The lowest yields were obtained with the electron donating groups, which existed in the substrates. 
Electron withdrawing groups, which were present in the substrate molecules favor the conversion with excellent yields. 
The alcohol 1a having three donation groups present in the ortho and para position gave less yield (Table 2, entry 1). Due 
to the presence of orthosteric effect, alcohol derivatives 3a and 3e gave less yields (Table 2, entries 1, 5).  The fewer number 
of donating groups present in the alcohol substrates increase the yields from 85% to 88%.  The phenyl ring has a lesser 
withdrawing effect than the nitro group results and yields almost the highest yields. 

3. Biological activity
All the synthesized compounds were screened for antimicrobial activity and results were depicted in Table 3. Among 
the screened compounds (3a–3i), compound 3f with dimethoxy, hydroxyl benzyl group showed the highest inhibition 
zone followed by compounds 3a, 3c, and 3h. Further, the compound 3i was found to be effective on fungal strains. The 
remaining compounds showed moderate activity. 

4. Conclusion
This method is a modified method for methyl sulfones and reaction yields of 85% to 95% were obtained.  In this method, 
the solvent acetic acid was used, which is inexpensive when compared with the solvent dichloromethane solvent, and this 
reaction is carried out at room temperature. We have applied this method for the synthesis of 9 compounds of which 7 are 
novel (3a–3i).

Table 1.  Reaction conditions for optimization.

Entry BF3.Et2O Solvent T °C Time (h) Yield (%)

1 0.2 CH2Cl2 50 3 40
2 1.0 CH3COOH 28 3 80
3 1.4 CH3COOH 28 3 82
4 1.6 CH3COOH 28 3 86
5 1.8 CH3COOH 28 3 92
6 2.0 CH3COOH 28 3 90
7 1.8 DMSO 30 3 25
8 1.8 THF 28 3 20
9 1.8 CHCl3 28 3 37
10 1.8 Cyclohexane 28 3 15
11 1.8 CH3NO2 28 3 39
12 1.8 C2H5NO2 28 3 40
13 1.8 1,4-Dioxane 28 3 42
14 1.8 CH3CN 28 3 25
15 1.8 DMF 28 3 38
16 1.8 Acetone 28 3 30
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The compounds bearing dimethoxy, hydroxyl benzyl group have shown prominent antibacterial activity when 
compared to compounds without these groups. It was also confirmed that the compounds bearing nitro group have shown 
prominent antifungal activity when compared to other compounds. Further investigation in this area may help to create 
more potent drugs for the treatment of bacterial and fungal infections. 

Table 2. Sulfonation of various alcohols with sodium methyl sulfinates.

Entry Compound structure Number Yield (%)a
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aYields refer to pure products after column chromatography
Reaction conditions: 1a–1i (1.96 μmol), 2 (1.96 μmol), BF3.OEt2 (3.5 mL), Acetic acid 
(3 mL), at rt for 3h.
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5. Experimental section
5.1. General preparation of compounds (1a–1i)
NaBH4 (4.76 μmol) was added to the ethyl alcohol (3 mL) and the reaction mixture was stirred at room temperature for 5 
min. Respectively, aldehyde compound (4.76 μmol) was added to the reaction mixture and stirred continuously for  1 h. 
Reaction mixture completion was confirmed by the TLC. After completion of the reaction, the mixture was quenched with 
10% HCl (3 mL) and ethanol was evaporated under reduced pressure. After the complete removal of ethanol, saturated 
sodium bisulfite (1 × 5 mL) was added. The organic compound was extracted with dichloromethane (20 mL) and water (10 
mL). The organic layer was dried over Na2SO4, filtered, and concentrated under reduced pressure; to give 1a–1i compounds.  
Yield, 1H NMR, ESI-MS (M+H) data of all compounds, and CHNS/O elemental analysis (Perkin-Elmer 2400, PerkinElmer 
Inc., Waltham, MA, USA) composition data of each product are given below. 
5.1.1. (2,4,6-trimethoxyphenyl)methanol (1a)
Brown solid, yield 91.2%; 1H NMR (CDCl3, 400 MHz): δ 6.12 (s, 2H), 4.69 (s, 2H), 3.81 (s, 6H), 3.80 (s, 3H), 2.16 (s, 1H,); 
ESI MS (M+H): m/z 199.01.
5.1.2. 4-(hydroxymethyl)-2-methoxyphenol (1b)
White solid,1H NMR (CD3OD, 400 MHz): δ 6.95 (s, 1H), 6.79 (s, 2H), 4.52 (s, 2H), 3.85 (s, 3H);13C NMR (CD3OD, 100 
MHz): δ 147.54, 145.47, 132.86, 119.75, 114.66, 110.79, 63.98, 55.04; ESI MS (M+H): m/z 155.26.
5.1.3. 1,8-dihydroxy-3-(hydroxymethyl)anthracene-9,10-dione (1c)
Pale white solid, 1H NMR (DMSO-d6, 100 MHz): δ 11.90 (s, 2H), 7.79–7.64 (m, 3H), 7.35–7.24 (m, 2H), 5.57 (t, J = 5.8 Hz, 
1H), 4.57 (d, J = 5.8 Hz, 2H); ESI MS (M+H): m/z 135.19.
5.1.4. 3-phenylprop-2-en-1-ol (1d)
Light yellow solid, 1H NMR (CDCl3, 500 MHz): δ 7.36-7.32 (m, 2H), 7.27–7.24 (m, 2H), 7.23–7.19 (m, 1H), 6.59 (s, 1H), 
6.55 (s, 1H), 4.44–4.42 (m, 2H); ESI MS (M+H): m/z 135.19.
5.1.5. 2-(1-hydroxyethyl)-3,5-dimethoxyphenol (1e)
Yellow solid, 1H NMR (CDCl3, 400 MHz): δ 5.85 (s, 1H), 5.82 (s, 1H), 4.61 (s, 1H), 4.0 (s, 1H), 3.82 (s, 1H), 3.65 (s, 6H), 
1.55 (s, 3H); ESI MS (M+H): m/z 199.06.
5.1.6. 1-(3,4-Dimethoxyphenyl)-1-propanol (1f)
Brown solid, 1H NMR (CDCl3, 400 MHz): δ 7.05 (d, 1H), 6.94–6.85 (dd, J = 8.1 Hz, 2H), 4.85 (m, 1H), 3.88 (ds, 6H), 2.45 
(bs, OH), 1.84–1.78 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ESI MS (M+H): m/z 197.29.

Table 3. Antimicrobial activity of the synthesized compounds (3a–3i).

Diameter of zone of inhibition in mm

Compound
Code

S.aureus
 (ATCC 25923) B. Cereus (ATCC P. Aeruginosa 

(ATCC 27853)
E.coli (ATCC 
35218)

C. Albicans
 (ATCC 90028)

A. Niger
 (NCCS 1196)

50 
(mg/
mL)

100
(mg/
mL)

150
(mg/
mL)

50
(mg/
mL)

100 
(mg/
mL)

150
(mg/
mL)

50
(mg/
mL)

100
(mg/
mL)

150
(mg/
mL)

50
(mg/
mL)

100
(mg/
mL)

150
(mg/
mL)

50
(mg/
mL)

100
(mg/
mL)

150
(mg/
mL)

50
(mg/
mL)

100
(mg/
mL)

150
(mg/
mL)

3a - 11 18 - - - 08 17 23 08 12 18 08 12 16 14 16 14
3b 08 12 17 - - - 07 15 21 09 13 17 08 13 14 13 15 13
3c 07 12 18 - - - 08 16 23 10 12 18 09 13 16 13 15 13
3d 06 13 17 - - - 07 13 16 08 12 15 09 14 17 14 15 14
3e 07 14 18 - - - 08 16 20 09 13 18 10 14 16 14 16 16
3f 08 16 19 - - - 10 17 24 09 14 18 09 16 17 15 17 16
3g 07 14 16 - - - 08 12 15 08 14 17 07 14 15 15 15 15
3h 07 13 18 - - - 07 18 23 08 15 18 08 16 16 14 15 15
3i 06 14 17 - - - 06 12 16 08 14 17 11 14 18 15 17 18
Ciproflaxacin
(30 mg/disc) 24 18 24 23 NA NA

Fluconazole
(25 µg/disc) NA NA NA NA 22 20

https://www.sciencedirect.com/topics/chemistry/elemental-analysis
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5.1.7. But-2-ene-1,4-diol (1g)
White solid, 1H NMR (CDCl3, 400 MHz): δ  5.80 – 5.78 (m, 2H), 4.25–4.24 (m, 4H); ESI MS (M+H): m/z 89.29.
5.1.8. Diphenylmethanol (1h)
White solid, 1H NMR (CDCl3, 500 MHz): δ 2.37 (bs, 1H), 5.79 (s, 1H), 7.25–7.36 (m, 10H); 13C NMR (CDCl3, 125 MHz): 
δ 143.7, 128.4, 127.5, 126.5, 76.2; ESI MS (M+H): m/z 185.01.
5.1.9. (4-nitrophenyl) methanol (1i)
Light yellow solid, 1H NMR (CDCl3, 300 MHz): δ 8.23 (d, 2H, J= 8.7), 7.54 (d, 2H, J= 8.7), 4.84 (s, 2H); 13C NMR (CDCl3, 
75.47 MHz): δ 148.08, 126.99, 123.73, 64.02; ESI MS (M+H): m/z 154.15.
5.2. General preparation of compounds (3a-i)
The respective benzyl alcohol (1.96 μmol) was dissolved in acetic acid (3 mL). BF3.OEt2 (3.5 mL, 3.528 μmol) was added 
to the reaction mixture at room temperature. Sodium methyl sulfinate (200 mg, 1.96 μmol) was added to the reaction 
mixture and stirred for 30 min. Reaction mixture completion was confirmed by the TLC. After completion of the 
reaction, the reaction mixture was quenched with NaHCO3 solution (10 mL). The organic compound was extracted with 
dichloromethane (20 mL) and water (10 mL). The organic layer was dried over Na2SO4, filtered, and concentrated under 
reduced pressure. The crude material was purified by the silica gel chromatography to give the compounds 3a–3i.  Yield, 
IR, NMR, ESI MS (M+H) data, and CHNS/O elemental analysis (Perkin-Elmer 2400) data of each product are given below.
5.2.1. 1,3,5-trimethoxy-2-((methylsulfonyl)methyl)benzene (3a)
Brown solid, yield 85%; IR (u, KBr): 3033 (Aromatic C=C), 2988, 2976 (CH3),1024(SO2-) cm–1; 1H NMR (400 MHz, 
CDCl3): δ 6.16 (s, 2H), 4.38 (s, 2H), 3.85 (s, 6H), 3.82 (s, 3H). 2.77 (s, 3H); 13C NMR (100 MHz, CDCl3): 162.23, 159.72, 
98.86, 91.03, 90.44, 56.04, 55.94, 55.45, 50.26, 40.31; ESI MS: m/z181 (M-SO2Me).CHNS: Anal. calcd. for C11H16O5S; C, 
50.75; H, 6.20; S, 12.32. Found: C, 50.61; H, 6.11; S, 12.49.
5.2.2. 2-methoxy-4-((methylsulfonyl)methyl)phenol (3b)
Brown solid, yield 88%; IR (u,KBr): 3329 (phenolic OH),2888, 2785 (CH3), 1020 (SO2-) cm–1; 1H NMR (400 MHz, CDCl3) 
δ 6.70–6.67 (m, 3H), 4.41 (s, 2H), 3.83 (s, 3H), 3.46 (s, 1H), 2.96 (s, 3H); 13C NMR 147.84, 147.64, 124.83, 118.45, 117.39, 
117.32, 58.97, 56.79, 41.75; ESI MS: m/z202 (M+-SO2).CHNS: Anal. calcd. for C9H12O4S; C, 49.99; H, 5.59; S, 14.83. Found: 
C, 49.88; H, 5.43; S, 14.96.
5.2.3. 1,8-dihydroxy-3-((methylsulfonyl)methyl)anthracene-9,10-dione (3c)
Brown solid, yield 90%; IR (u,KBr): 3321 (phenolic OH), 3040 (Aromatic C=C), 1020 (SO2-) cm–1; 1H NMR (400 MHz, 
CDCl3): δ 12.06 (s, 1H), 12.04 (s, 1H), 7.85- 7.83 (m, 1H), 7.78 (s, 1H), 7.71-7.67 (t , J = 16 Hz, 1H), 7.32-7.30 (d,  1H), 7.26 
(s, 1H), 5.19 (s, 2H), 2.19 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 192.69, 181.48, 170.38, 162.82, 146.52, 137.29, 133.93, 
133.60, 124.76, 122.39, 120.15, 118.49, 115.85, 115.32, 64.70, 20.77; ESI MS (M++2H): m/z 333.CHNS: Anal. calcd. for 
C16H12O6S; C, 57.83; H, 3.64; S, 9.65. Found: C, 57.91; H, 3.49; S, 9.81.
5.2.4. 1-((E)-3-(methylsulfonyl)prop-1-enyl)benzene (3d)
Brown solid, yield 91%; IR (u,KBr): 3033 (Aromatic C=C), 2970, 2965 (CH3), 1024 (SO2-) cm–1; 1H NMR (400 MHz, 
CDCl3): δ 7.31–7.29 (m, 2H), 7.25–7.22 (m, 2H), 7.19– 7.17 (m, 1H), 6.56–6.53 (m, 1H), 6.22–6.16 (m, 1H), 4.09–4.07 (d, J 
= 8, 2H), 3.00 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 137.67, 136.33, 129.19, 128.08, 127.08, 122.13, 58.35, 40.25; ESI MS: 
m/z118 (M+-SO2).CHNS: Anal. calcd. for C10H12O2S; C, 61.20; H, 6.16; S, 16.34. Found: C, 61.09; H, 6.03; S, 16.47.
5.2.5. 3,5-dimethoxy-2-(1-(methylsulfonyl)ethyl)phenol (3e)
Brown solid, yield 86%; IR (u,KBr): 3041 (Aromatic C=C), 2980, 2889 (CH3), 1024 (SO2-) cm–1; 1H NMR (400 MHz, 
CDCl3): δ 6.20–6.15 (m, 2H), 4.40–4.36 (m, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 2.97 (s, 3H), 1.79 (s, 3H); 13C NMR (100 MHz, 
CDCl3): δ 167.49, 164.44, 162.99, 113.34, 93.61, 91.47, 62.29, 56.79, 56.04, 37.80, 17.52; ESI MS (M+H): m/z258(M+).
CHNS: Anal. calcd. for C11H16O5S; C, 50.75; H, 6.20; S, 12.32. Found: C, 50.60; H, 6.11; S, 12.47.
5.2.6. 1,2-dimethoxy-4-(1-(methylsulfonyl)propyl)benzene (3f)
Brown solid, yield 88%; IR (u,KBr): 3033 (Aromatic C=C), 2988, 2972, 1024 (SO2-) cm–1;1H NMR (400 MHz, CDCl3) δ 
6.91 (s,1H),  6.84–6.82  (m, 2H),  4.13–4.11 (m, 1H), 3.82 (s, 6H), 3.03(s, 3H),  2.25–2.20 (m, 2H), 1.04-1.01(s, 3H); 13C 
NMR (100 MHz, CDCl3): δ149.53, 147.02, 135.91, 117.05, 116.41, 113.45, 69.90, 56.78,39.66, 23.95, 11.02; ESI MS (M+H): 
m/z215(M+).CHNS: Anal. calcd. forC12H18O4S; C, 55.79; H, 7.02; S, 12.42. Found: C, 55.65; H, 6.89; S, 12.54.
5.2.7. (Z)-1,4-bis(methylsulfonyl)but-2-ene, (Z)-4-(methylsulfonyl)but-2-en-1-ol (3g)
Brown solid, yield 88%; IR (u,KBr): 3323 (-OH), 1020 (SO2-) cm–1; 1H NMR (400 MHz, CDCl3): δ 5.83–5.82 (m, 1H), 
5.72–5.70 (m, 3H), 4.67–4.63 (m, 4H), 4.55–4.54 (m, 2H), 2.04 (s, 3H), 2.03 (s, 6H); ESI-MS (M+H): m/z 261 (M+).

https://www.sciencedirect.com/topics/chemistry/elemental-analysis
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5.2.8. (methylsulfonyl)diphenylmethane(3h) [31]
Brown solid, yield 92%; 1H NMR (400 MHz, CDCl3): δ 7.65–7.57 (m, 4H), 7.43–7.33 (m, 6H), 5.32 (s, 1H), 2.77 (s, 3H); 
13C NMR (100 MHz, CDCl3): δ132.80, 129.73, 129.66, 128.50, 74.84, 40.02; ESI MS (M+H): m/z247. CHNS: Anal. calcd. for 
C14H14O2S; C, 68.26; H, 5.73; S, 13.02. Found: C, 68.17; H, 5.61; S, 13.16.
5.2.9. 1-((methylsulfonyl)methyl)-4-nitrobenzene (3i) [46]
Brown solid, yield 95%;1H NMR (400 MHz, CDCl3) δ8.44 (d, J= 8.8 Hz, 2H), 8.16(d, J= 8.8 Hz, 2H), 3.12 
(s, 3H); 13C NMR (100 MHz, CDCl3): δ 150.9, 145.86, 129.25, 124.36, 44.29; ESI MS (M+H): m/z198.CHNS: 
Anal. calcd. for C8H9NO4S; C, 44.64; H, 4.21; N, 6.51; S, 14.90. Found: C, 44.51; H, 4.12; N, 6.51; S, 14.99. 
5.3. Antibacterial activity [47]
The antibacterial activity of the compounds was determined by means of the disc diffusion method. Cultures of each 
bacterium (E.coli, Bacillus cereus, Staphylococcus  aureus, and Pseudomonas aeruginosa) were inoculated to the nutrient 
broth and incubated at 37 °C for 16 h., respective bacterial culture was inoculated in the MHA plate by using the spread 
plate method. Discs (6 mm in diameter) were impregnated with 25, 50, and 75 µg/ mL concentrations in DMSO solution 
of the compounds (3a–3i) and placed on the surface of the MHA inoculated with bacteria, which were incubated at 37 °C 
for 24 h. The inhibition zones were measured with a caliper considering the total diameters. Similarly, each plate carried a 
blank disc, the disk with DMSO, and ciprofloxacin disc (30 µg/mL) as standard.
5.4 Antifungal activity
The antifungal activity of the compounds was determined by means of the disc diffusion method. Cultures of each fungal 
(C.Albicans, and A. niger) were inoculated to the nutrient broth and incubated at 37 °C for 16 h. Respective fungal culture 
was inoculated in the SDA plate by using the spread plate method. Discs (6 mm in diameter) were impregnated with 25, 
50, and 75 µg/ mL concentrations in DMSO solution of the compounds (3a–3i) and placed on the surface of the MHA 
inoculated with bacteria, which were incubated at 37 °C for 24 h. The inhibition zones were measured with a caliper 
considering the total diameters. Similarly, each plate carried a blank disc, disc with DMSO, and fluconazole disc (30 µg/
mL) as standard.
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