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1. Introduction
Since cancer is one of the leading causes of death worldwide, extensive resources have been invested in the development 
of increasingly potent anticancer agents for clinical use. Despite the advances, issues related to drug toxicity and resistance 
during treatment persist, thereby promoting researchers to develop more efficient, safer therapeutic agents [1–3]. 

Cancer, characterized by the abnormal proliferation of genetically altered cells, exhibits certain hallmarks, namely, 
sustained proliferative signaling, evasion of growth suppressors, replicant immortality, resistance to programmed cell 
death (apoptosis), induction of angiogenesis, and invasion of healthy tissue [4]. Since apoptosis is the programmed 
cell death process responsible for the controlled eradication of damaged cells, it plays a crucial role in regulating tissue 
homeostasis, balancing cell death and survival, and regulating cell proliferation [5]. Generally, receptor-mediated extrinsic 
and mitochondrial-dependent intrinsic pathways trigger the activation of caspase-3, thereby resulting in apoptosis. In 
the intrinsic pathway, proapoptotic (i.e., BAX and BAK) and antiapoptotic (i.e., Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and Bfl1/
A1) proteins stabilize the outer membrane of the mitochondria and activate caspase-9 and caspase-3 [6]. Studies indicate 
that cancer cells evade apoptosis by deregulating this process, thereby resulting in increased drug resistance. Given this 
challenging situation, apoptotic proteins have become the prime target for anticancer research [7,8].

Taurine (i.e. 2-aminoethanesulfonic acid) is the only endogenous amino acid that does not interfere with protein 
synthesis (Figure 1). It is renowned for its cytoprotective effects and is involved in diverse physiological processes, including 
membrane stabilization, osmoregulation, neuromodulation, regulation of calcium homeostasis, and antioxidation [9]. 
Additionally, multiple studies have reported radioprotective, antimutagenic, and chemo-preventive properties associated 
with this compound [10]. Taurine exhibits anticancer activity via the elevation of caspase-3 and caspase-9 expression 
levels and BAX/Bcl-2 ratios [11,12]. It also induces apoptosis in human colon or breast cancer cell lines and has been 
reportedly used as a biomarker for breast and bladder cancer [13,14]. Given its versatility, several studies have attempted 
to utilize taurine as a drug, and notably, the limited derivatization studies yielded effective anticonvulsant, antimicrobial, 
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and anticancer compounds [15,16]. The urea derivative tauromustine exhibits potent in vitro and in vivo antiproliferative 
activity against several cancer cell lines [17] while the sultam derivative taurolidine was shown to be a clinically useful 
anticancer agent that did not affect healthy cells (Figure 1) [18]. In addition to its usefulness as a versatile building block 
for anticancer agents, various taurine-based amide derivatives have been employed as effective anticonvulsant and 
antibacterial agents; however, there has been no study evaluating their anticancer activities so far (Figure 2) [19,20].  To 
date, no extensive structure–activity relationship studies have been conducted to identify specific biological pathways that 
can accommodate taurine-based derivatives [21]. This gap in the data prompted us to design and synthesize a group of 
novel 4-substituted benzoyltaurinamide derivatives and to determine their anticancer activity (Figure 2).

In the structure–activity relationship studies conducted using 4-substituted benzoyltaurinamide derivatives, taurine’s 
sulfonic acid group was functionalized as a primary, secondary, or tertiary sulfonamide that was capable of demonstrating 
different ionization properties. The resulting compounds were categorized as phenyl, methoxyphenyl, sulfonamide, and 
morpholine derivatives based on the functional group located at the original sulfonamide position. Here, the amine 
moiety was functionalized as an amide with hydrogen-, chloro-, methoxy-, and methyl-substituted benzoic acids, while 
the sulfonamide groups remained untouched (Figure 3). This derivatization strategy allowed us to systematically study the 
impact of the sulfonamide and amide functional groups as well as the electronic and steric characteristics of the substituents 
on the aromatic ring of the benzoyltaurinamide derivatives on the compound’s anticancer activity. The resulting derivatives 
were evaluated against three cancer cell lines and one normal cell line. The most active compounds were subsequently 
employed to deduce the molecular mechanisms governing the anticancer activity of this class of compounds. 

2. Results and discussion
2.1. Synthesis and characterization of the final compounds
Herein, sixteen 4-substituted benzoyltaurinamide derivatives (1-16) were produced via a 5-step reaction scheme (Scheme), 
and their structures were identified using spectroscopic (1H and 13C NMR, ESI-MS, ATR FT-IR) and elemental analytical 
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Figure 1. Taurine and its biologically active derivatives.

Figure 3. General structure of 4- and N-substituted benzoyltaurinamide derivatives.

Figure 2. Schematic representation of drug design strategy. 
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methods. Briefly, taurine, phthalic anhydride, and potassium acetate were refluxed in an acetic acid solution to generate 
the 2-phthalimido-ethanesulfonic acid potassium salt, A, which was subsequently chlorinated to yield B using thionyl 
chloride via a previously reported procedure [22–26]. The phenyl and methoxyphenyl derivatives were prepared by treating 
2-phtalimido-ethanesulfonyl chloride (B, 1 mmol) in pyridine (5 mL) with aniline and 4-methoxyaniline (1 mmol) at 0–5 
°C until the starting material was consumed, as evidenced by TLC analysis. N-phenyl-2-phtalimido-ethansulfonamide 
(C1) and 2-(1,3-dioxoisoindolin-2-yl)-N-(4-methoxyphenyl)ethane-1-sulfonamide (C2) derivatives were achieved in 
yields of 12–60% after crystallization from acetic acid:water mixture (1:1) [22,26]. The treatment of B with concentrated 
ammonium hydroxide solution produced 2-(1,3-dioxoisoindolin-2-yl)ethane-1-sulfonamide (C3) in 23% yield, whereas 
treatment with morpholine and triethylamine in dichloromethane solution yielded 2-(2-(morpholinosulfonyl)ethyl)
isoindoline-1,3-dione (C4) [25]. In the last step, various benzoic acids were treated with 1,1’-carbonyldiimidazole 
and diisopropylethylamine in dry acetonitrile, and aqueous solutions of the deprotected derivatives D1-D4 were 
subsequently added to the respective reaction mixtures. The final compounds (1-16) were achieved in yields of 22–83%, 
as described in the experimental section. All compounds were characterized via 1H and 13C NMR, ESI–MS, ATR FT-IR 
spectroscopy, and elemental  analysis. All spectral data obtained were consistent with the proposed structures (see the 
experimental section for details). 

The 1H NMR spectra of the derivatives exhibited phenyl protons between 6.92 and 7.89 ppm. The methylene protons 
of taurine and morpholine were observed between 3.20 and 3.72 ppm in the aliphatic field as expected. The secondary 
sulfonamide peaks for the phenyl and methoxyphenyl derivatives appeared between 9.50 and 10.43 ppm as broad singlets 
or singlets, whereas these peaks were not detected in the morpholine and sulfonamide derivatives. The sulfonamide 

 
Scheme. General synthesis of benzoyltaurinamides (1–16). Reagents and conditions: (a) taurine, anhydrous potassium acetate, 
acetic acid, phthalic anhydride refluxed. (b) A, Phosphorus pentachloride, benzene, reflux. (c) B, aniline, dry pyridine room 
temperature. (d) B, morpholine, TEA, DCM, 0 °C and then room temperature. (e) B, concentrated ammonium hydroxide 
solution 0°C and then room temperature. (f) B, p-methoxyaniline, dry pyridine, 0°C and then room temperature. (g) C1, C2, 
C3, C4, 80% hydrazine hydrate, ethanol, refluxed. (h) D1, D2, D3, D4, water, substituted benzoic acids, 1,1’-carbonyldiimidazole 
(CDI), diisopropylethylamine (DIPEA), dry acetonitrile (ACN), room temperature.
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derivatives exhibited specific signals for the protons of the primary sulfonamide group at 6.90–6.97 ppm. Finally, the 
proton signals at 8.46–8.88 ppm were verification of the formation of the amide bond. The carbonyl resonances of the 
final compounds were observed between 166.19 and 167.14 ppm in the 13C NMR spectra. All other aliphatic and aromatic 
carbons were observed in the expected regions at 34.65–51.76 ppm and 114.40–142.13 ppm, respectively. In the FT-
IR spectra, N–H stretching, as well as SO2 symmetric and asymmetric stretching bands, provided confirmation of the 
products’ structures. All derivatives exhibited characteristic amide I and amide II peaks at 1606–1645 cm–1 and 1504–1548 
cm–1, respectively. In the mass spectra (ESI-MS), the [M+1]+ ion peaks were observed for all titled compounds.
2.2. Biological activity
2.2.1. Cytotoxic assay
The cytotoxicity of all derivatives was tested against one nontumorigenic cell line (i.e. MCF-10a) and three cancerous (i.e. 
MDA-MB-231, PANC-1, and SH-SY5Y) cell lines using the colorimetric methyl tetrazolium test (MTT). The IC50 values 
of the tested compounds are summarized in Table. The MTT assay revealed that the cytotoxicity of the compounds varied 
depending on the moiety of the derivative and the type of cell lines tested (Table). 

The final compounds exhibited moderate to good cytotoxicity against PANC-1 cell lines, with IC50 values in the range 
of 1.2–120.3 µM. Compound 7, a morpholine derivative containing a 4-methoxyphenyl group on the amide functionality, 
was the most promising product obtained, with an IC50 of 1.2 µM. The other morpholine derivatives, namely, 6 (chloro-), 
5 (hydrogen-), and 8 (methyl-substituted) exhibited 8, 24, and 120 times lower activity than 7 (methoxy-substituted), 
respectively, thereby proving that methyl substitution diminished the compound’s anticancer activity. The IC50 values 
of the morpholine derivatives (i.e. 5 and 6) were significantly lower than their sulfonamide (9-12) and phenyl (1-4) 

Table. Cytotoxic activity (IC50, µM) of the final compounds (1–16) against various cancer cell lines and their selectivity index values. 

O

N
H

S
O

O A

R

Com R A SH-SY5Y PANC-1 MDA-MB-231 MCF-10a SI*

1 hydrogen phenyl 92.2 ± 1.5 86.7 ± 1.4 140.4 ± 1.1 78.2 ± 1.6 0
2 chloro phenyl 29.0 ± 1.5 86.6 ± 1.6 99.7 ± 1.1 232.9 ± 2.1 2.3
3 methoxy phenyl 57.4 ± 1.6 103.7 ± 1.6 110.6 ± 1.2 98.9 ± 1.2 0
4 methyl phenyl 75.9 ± 1.6 86.6 ± 1.4 89.7 ± 1.5 132.2 ± 1.7 1.5
5 hydrogen morpholine 118.4 ± 1.8 24.2 ± 2.1 102.9 ± 1.7 89.6 ± 1.5 0
6 chloro morpholine 80.6 ± 1.9 8.8 ± 2.1 136.5 ± 1.5 70.7 ± 1.8 0
7 methoxy morpholine 134.0 ± 1.7 1.2 ± 1.8 77.01 ± 1.7 118.5 ± 1.2 1.5
8 methyl morpholine 79.3 ± 1.6 120.3 ± 1.2 81.5 ± 1.2 81.4 ± 1.3 1
9 hydrogen hydrogen 81.1 ± 2.1 85.5 ± 1.7 99.8 ± 1.7 108.8 ± 1.1 1.1
10 chloro hydrogen 38.6 ± 1.6 89.1 ± 1.7 79.1 ± 1.3 172.1 ± 1.4 2.2
11 methoxy hydrogen 237.8 ± 1.7 83.8 ± 1.5 114.3 ± 1.3 81.1 ± 1.4 0
12 methyl hydrogen 79.5 ± 1.8 44.6 ± 1.9 81.0 ± 1.6 106.3 ± 1.4 1.3
13 hydrogen 4-methoxyphenyl 47.5 ± 1.5 17.9 ± 2.1 76.1 ± 1.6 217.8 ± 1.3 2.9
14 chloro 4-methoxyphenyl 26.0 ± 1.4 22.5 ± 1.7 19.9 ± 1.7 109.2 ± 1.2 5.5
15 methoxy 4-methoxyphenyl 39.9 ± 1.6 18.1 ± 1.6 33.9 ± 1.8 118.4 ± 1.4 3.5
16 methyl 4-methoxyphenyl 32.7 ± 1.7 21.4 ± 1.7 15.7 ± 1.9 132.9 ± 1.2 8.5
Cisp NT 0.017 0.017 0.017

*Selectivity index represents the ratio between the IC50 value calculated for the cancerous breast cell line (MDA-MB-231) and the IC50 
value calculated for the normal breast cell line (MCF-10a). SH-SY5Y–human neuroblastoma; MDA-MB-231–triple-negative breast 
cancer; PANC-1–human pancreatic cancer; and MCF-10a–human mammary cell lines.
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counterparts. Similarly, replacing the morpholine group in 7 with phenyl (3), methoxyphenyl (15), or hydrogen (11) 
moieties reduced the anticancer activity of the compound by 100-, 18-, and 80-fold, respectively. The methoxyphenyl 
derivatives (13-16) displayed good antiproliferative activity, with IC50 values in the range of 17.9–22.5 µM. From these 
results, it can be concluded that both morpholine and methoxyphenyl substitution at the sulfonamide group generally 
increased the compound’s antiproliferative activity against the PANC-1 cell line. In contrast, the ionization properties of 
the sulfonamide linker did not appear to have any impact on the compound’s activity.

The derivatives also demonstrated well to moderate cytotoxicity against the brain cancer cell line (SH-SY5Y), with IC50 
values in the range of 26.0–237.8 µM. The lowest IC50 value was obtained with the phenyl derivative (2). For the phenyl, 
methoxyphenyl, and sulfonamide derivatives, a chloro-substitution of the amide group produced more potent compounds 
when compared to the results obtained for their hydrogen-, methoxy-, and methyl-substituted counterparts, with the 
only exceptions to this being the morpholine derivatives. Interestingly, replacing the phenyl, morpholine, or sulfonamide 
hydrogen with a methoxyphenyl ring lowered the IC50 values. These results indicated that the ionization properties of the 
sulfonamide group and chloro-substitution on the benzamide functionality significantly affected the cytotoxicity of these 
derivatives against the SH-SY5Y cell line.

The final compounds also exhibited excellent cytotoxicity against the nontumorigenic breast epithelial (MCF-10a) cell 
line, with IC50 values in the range of 70.7–217.8 µM. Compounds 1-13 displayed moderate IC50 activity (i.e. 77.1–140.4 
µM), whereas 14, 15, and 16 (i.e. the methoxyphenyl derivatives) showed good activity against the breast cancer cell line 
(MDA-MB-231), with IC50 values of 19.9, 33.9, and 15.7 µM, respectively. We noted that all the tested cancerous cell lines 
were susceptible to the methoxyphenyl derivatives, indicating that the sulfonamide functionality significantly influenced 
cytotoxicity. 

Despite their effectiveness against cancerous cells and healthy cells that exhibit abnormally rapid proliferation, one 
persistent issue associated with conventional anticancer agents is the severe side effects. Given this, researchers have 
focused on developing therapeutic agents that exhibit selective cytotoxicity against cancerous cells. Thus, the safety profile 
of the titled compounds was determined by calculating their selectivity index (SI) values using the formula:

SI = IC50 value calculated for the cancerous breast cell lines (MDA-MB-231) / IC50 value calculated for the normal 
breast cell line MCF-10a. 

Interestingly, compounds 13, 14, 15, and 16 exhibited high selectivity, with SI values of 3, 6, 4, and 9, respectively, for 
the cancerous when compared to the noncancerous breast cell lines. 

The substitution of the phenyl ring in the benzamide portion of the molecule with an electron-withdrawing chloro-
substituent improved the compound’s activity against the SH-SY5Y cell line only, whereas the substitution of phenyl ring 
with electron-donating groups did not result in any significantly notable differences in activity against the PANC-1 and 
MDA-MB-231 cell lines. It was theorized that the derivatization of the sulfonamide part of the molecule was largely 
responsible for the compounds’ cytotoxicity. We noted that the phenyl and sulfonamide derivatives showed moderate 
activity against all tested cell lines. Replacing the primary sulfonamide with a secondary sulfonamide containing a phenyl 
ring did not significantly impact the compound’s cytotoxicity. The presence of heteroatoms increased the contact points 
in biologically active sites. Since morpholine and methoxyphenyl substitution were known to introduce heteroatoms 
into the taurine derivatives, their activity was expected to be higher than their counterparts. For our compounds, the 
morpholine-substituted derivatives exhibited excellent cytotoxicity against the PANC-1 cell line only, whereas the 
4-methoxyphenyl substituent enhanced cytotoxicity against all tested cell lines and was preferentially selective for the 
breast cancer cell line over the noncancerous breast cell line. This result indicated that the cytotoxicity and selectivity of 
taurine derivatives could be significantly improved by the incorporation of a substituted aromatic ring in the sulfonamide 
section of taurine. 
2.2.2. The expression levels of proteins related to apoptotic pathway and the rate of apoptosis
Cell death may occur via either necrosis or apoptosis. Necrosis causes inflammation of normal, healthy tissues, whereas 
apoptotic death is associated with minimal damage to the surrounding cells or tissue, a feature that is highly desired in 
new anticancer agents. In this study, the mechanism (i.e. via necrosis or apoptosis) triggered by the presence of the taurine 
derivatives was determined by subjecting compounds 7, 14, and 15 to Annexin V-FITC/PI via flow cytometry. Here, the 
rates of cell death for each experimental group were classified into three categories: “early apoptotic” in which a positive 
result was obtained for phosphatidylserine (PS), but a negative result was noted for PI, “late apoptotic” in which a positive 
result was obtained for both PS and PI, and “necrotic” in which a negative result was seen for PS, but a positive result was 
noted for PI [27]. We noted that the mitochondria-mediated intrinsic apoptotic pathway was controlled by proapoptotic 
(BAX) and antiapoptotic (Bcl-2 and Bcl-xL) Bcl-2 proteins. Stimulation of these proteins, therefore, resulted in changes in 
the mitochondrial membrane’s potential, which triggered the release of mitochondrial cytochrome c into the cytoplasm 
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and activated both caspase-9 and caspase-3 proteins. This, in turn, initiated apoptosis. Both the intrinsic and extrinsic 
pathways converged on caspase-3 activation, whereas the initiator caspase-9 protein was activated only via the intrinsic 
pathway. Therefore, the activation of caspase-3 and caspase-9 was indicative of apoptosis via the intrinsic pathway [28].

Emerging evidence suggested that alterations in the expression of antiapoptotic and proapoptotic Bcl-2 proteins were 
indicators for the presence of cancer cells. Moreover, these proteins were believed to be responsible for the development 
of resistance to apoptotic stimuli, chemotherapy, and radiation that have recently been noted in cancer cells. Interestingly, 
a group of Bcl-2 protein inhibitors were reported as potential anticancer agents and has been adopted for clinical use. 
Therefore, the inhibition of one or more of these proteins has become an attractive anticancer target for researchers 
tackling apoptosis resistance in tumor cells [29].

In light of these findings, the extent of protein expression, namely, BAX, Bcl-2, Bcl-xL, cleaved caspase-3, and caspase-9, 
in the apoptotic pathway was examined to determine the mechanism through which cellular apoptosis was induced. 
Compounds 2, 6, 7, 10, 14, and 15 were chosen for further evaluation, and the PANC-1, SH-SY5Y, and MDA-MB-231 cell 
lines were treated with the determined cytotoxic concentrations of the selected compounds for 24 h and 48 h (Figures 4–6).

Here, Western Blot analysis revealed that compound 14 (i.e. the chloro-substituted methoxyphenyl derivative) was 
the only molecule that increased BAX, caspase-3, and caspase-9 expression levels, whereas there was a decrease in the 
expression of Bcl-2 and Bcl-xL in the PANC-1 cell line after 24 and 48 h of exposure (Figure 4). Replacing the chloro 
group (i.e. the methoxy derivative 15) resulted in the opposite effect on the expression of Bcl-xL after 24 h, and caspase-3 
and caspase-9 after 48 h. Compound 7 (i.e. the methoxy-substituted morpholine derivative) was the most cytotoxic 
molecule tested, with an IC50 value of 1.2 µM against the PANC-1 cell line; we noted that 7 effectively upregulated the 
expression of BAX, caspase-3, and caspase-9. Conversely, compound 7 did not show any effect on the expression of Bcl-2 
and seemed to slightly decreased Bcl-xL levels after only 24 h. Thus, it would seem that substituting the methoxyphenyl 
moiety (i.e. 15) with a morpholine group retarded Bcl-2 expression while potentiating the impact on the caspase-3 and 
caspase-9 levels. Interestingly, 2 (i.e. the chloro-substituted phenyl derivative) possessed a high IC50 value of 86.64 µM, 
and significantly upregulated the expression of BAX after 24 h and Bcl-2 after 48 h when compared to chloro-substituted 
compounds such as 6, 10, and 14 (i.e. IC50 values of 8.8, 89.1, and 22.5 µM, respectively). Except for the methoxy-substituted 
methoxyphenyl 15, all compounds triggered a notable increase in the expression of caspase-9. In contrast, only 7 (i.e. 
the methoxy-substituted morpholine derivative), 10 (i.e. the chloro-substituted sulfonamide derivative), and 14 (i.e. the 
chloro-substituted methoxyphenyl derivative) effectively increased the expression of caspase-3 after 24 and 48 h. Except 
for 6, all compounds containing the chloro-substituted morpholine derivative increased caspase-3 expression better than 
the reference drug cisplatin after 24 h. The effects of 2 and 6 on the expression of caspase-9 levels, 7 on the BAX levels, 15 
on the Bcl-2 levels, and compounds 2, 10, and 15 on the expression of Bcl-xL were found to be better than the expression 
observed with the reference drug cisplatin after 48 h. Annexin V-FITC/PI  experiments have revealed that treatment of the 
cell lines with 7, 14, and 15 at their cytotoxic concentrations for 48 h resulted in no significant changes in the apoptotic cell 
ratios (Figure 7). Despite the impact exerted by these molecules on apoptotic proteins, Annexin V-FITC/PI results showed 
that there might be another mechanism at play that may control the cytotoxicity of these compounds. Further study on 
this topic is required.

Treating the MDA-MB-231 cell lines with compounds 2, 6, 7, 10, 14, and 15, which had IC50 values of 99.7, 79.1, 136.5, 
77, 19.9, and 33.9 µM, respectively, significantly increased BAX protein levels after only 24 h, whereas the expression of 
Bcl-xL decreased by 2.08- to 4.55-fold after 24 h and by 2- to 5-fold after 48 h when compared to the control samples 
(Figure 5). Interestingly, only 7 (i.e. the methoxy-substituted morpholine derivative) and 15 (i.e. the methoxy-substituted 
methoxyphenyl derivative) decreased the expression of Bcl-2 by 2- to 3-fold when compared to the control sample after 24 
and 48 h. Conversely, only 6 (i.e. the chloro-substituted morpholine derivative), 10 (i.e. the chloro-substituted sulfonamide 
derivative), and 14 (i.e. the chloro-substituted methoxyphenyl derivative) slightly increased caspase-9 activity by 1.06-, 
1.12-, and 1.18-fold relative to the control after only 48 h. Except for 7, all compounds were shown to improve caspase-3 
expression levels by 3.96- to 8.2-fold relative to the control group. Interestingly, while 7 and 10 exhibited almost the same 
cytotoxicity (i.e. IC50 values of 79 and 77 µM, respectively) against the MDA-MB-231 cell line, their influence on the 
caspase-3 levels differed by almost 12-fold. The effects exerted by 7, 10, and 15 on BAX expression and by compound 15 on 
Bcl-xL expression were statistically higher than the results associated with the reference drug. Annexin V-FITC/PI results 
have revealed that 14 and 15 slightly increased the percent of the positive apoptotic cells from 1.2% to 1.6% and 1.4%, 
respectively, even though compound 7 exhibited no changes (Figure 8). Given these results, it was theorized that 7 exerted 
its influence via a caspase-independent mechanism, as evidenced by the lack of change associated with the expression 
of caspase-3 in the presence of this compound. Interestingly, replacing the chloro group (i.e. 14) with a methoxy group 
(i.e. 15) resulted in a change in the anticancer mechanistic pathway of the methoxyphenyl derivatives, as 14 appeared to 
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follow the intrinsic apoptotic pathway; on the other hand, 15 did not exert any effect on the caspase-9 expression levels 
but increased the expression of caspase-3. Therefore, it was proposed that 15 induced apoptosis via a different caspase-
dependent pathway [30].
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treated with the previously determined IC50 values of each compound for 24 and 48 h, followed by extraction of the proteins and Western 
Blot analysis using antibodies against BAX, Bcl-2, Bcl-xL, caspase-3, and caspase-9. β-actin was used as an internal control. The data 
obtained were expressed as mean ± SD (n = 3). * represented P < 0.05 relative to the control group, whereas # represented P ≤ 0.05 
relative to the reference drug cisplatin.
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Figure 5. The effects of 2, 6, 7, 10, 14, and 15 on the expression of Bcl-2 and caspase proteins in the MDA-MB-231 (triple-negative; ER, 
PR, and HER2 negative) cell line. The cells were treated with the previously determined IC50 values of each compound for 24 and 48 h, 
followed by extraction of the proteins and Western Blot analysis using antibodies against BAX, Bcl-2, Bcl-xL, caspase-3, and caspase-9. 
β-actin was used as an internal control. The data obtained were expressed as mean ± SD (n = 3). * represents P < 0.05 relative to the 
control group, whereas # represents P ≤ 0.05 relative to the reference drug cisplatin.
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Figure 7. Apoptotic assay via flow cytometry. The PANC-1 cells were treated with 7, 14, and 15 at their calculated IC50 values for 48 h. 
The cells were stained with Annexin V-FITC/PI and then subjected to flow cytometry. The rate of apoptosis of diverse groups of PANC-1 
cells (a) the control group, (b) cisplatin, (c) 7, (d) 14, and (e) 15. 
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Figure 8. Apoptotic assay via flow cytometry. The MDA-MB-231 cells were treated with 7, 14, and 15 at their calculated IC50 values for 
48 h. The cells were stained with Annexin V-FITC/PI and subsequently subjected to flow cytometry. The rate of apoptosis of various 
groups of MDA-MB-231 cells in (a) the control group, (b) cisplatin, (c) 7, (d) 14, and (e) 15.
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As noted, compounds 2, 6, 7, 10, 14, and 15 exerted their influence by increasing BAX (1.740- to 7.5-fold), caspase-3 
(1.259- to 3.191-fold relative to the control), caspase-9 (1.214- to  2.068-fold relative to the control), while decreasing Bcl-2 
(1.68- to 4.9-fold for all except 14) and Bcl-xL (1.288- to 3.125-fold relative to the control) expression levels in the SH-
SY5Y cell line (Figure 6). Interestingly, while 6 and 7 were the least cytotoxic compounds in the SH-SY5Y cell line with IC50 
values of 80.62 and 134 µM, respectively, there were uncanny similarities in their activity values and protein expression 
levels when compared to the other compounds. Compounds 6 (i.e. the chloro-substituted morpholine derivative), 7 (i.e. 
the methoxy-substituted morpholine derivative), and 10 (i.e. the chloro-substituted sulfonamide derivative) influenced 
the expression of BAX. Compounds 2 (i.e. the chloro-substituted phenyl derivative), 7, 10, and 14 influenced the caspase-3 
expression levels, whereas the expression of caspase-9 was affected by the presence of 7 and 10. In these cases, the expression 
levels of the respective proteins were better when compared to the standard drug cisplatin. Compound 7 gave no positive 
results when subjected to Annexin V-FITC/PI experiments, whereas apoptotic cell ratios were slightly increased from 
3.2% to 3.8% and 3.9%, respectively, after the application of 14 and 15 (Figure 9). According to these results, 14 and 15 
acted through the intrinsic apoptotic pathway, whereas the cytotoxicity of 7 was supported by other cell death mechanisms. 

3. Conclusion
In this study, sixteen new 4-substituted benzoyltaurinamide derivatives were synthesized, and their anticancer activity was 
investigated using one normal (i.e. MCF-10a) and three cancerous cell lines (i.e. MDA-MB-231, PANC-1, and SH-SY5Y) 
via MTT assay. The mechanism through which this group of compounds exerted their cytotoxic activity was determined 
using the most active compounds. Here, the expression levels of BAX, Bcl-2, and Bcl-xL, as well as cleaved caspase-3 and 
caspase-9, were examined via Western Blot assay, and apoptosis was determined using the Annexin V-FITC/PI test in 
combination with flow cytometry.

Of the phenyl (1-4) and sulfonamide (9-12) derivatives prepared in this study, only the chloro-bearing compounds 2 
and 10 exhibited good cytotoxicity with IC50 values of 29.0 and 38.6 µM, respectively. These compounds were preferentially 
selective against SH-SYH cells when compared to the other cell lines. All morpholine derivatives (5-8), except 8, 
exhibited low IC50 values (i.e. 24.2, 8.8, and 1.2 µM) against the PANC-1 cell line only. In contrast, the methoxyphenyl 
derivatives (13-16) were effective against all tested cell lines, with low cytotoxic doses between 21.4 and 47.5 µM relative 
to their counterparts. Moreover, these compounds exhibited preferential selectivity toward cancerous breast cells than 
noncancerous cells, as evidenced by SI values between 3 and 9. Western Blot analysis revealed that all compounds, except 
for 7, induced the intrinsic apoptotic pathway by upregulating BAX, caspase-3, and caspase-9, while downregulating Bcl-2 
and Bcl-xL expression levels in PANC-1 cell line either after 24 or 48 h. The same trend was noted in the SH-SY5Y cell line 
for all compounds after 24 and 48 h. For the MDA-MB-231 cell line, only 14 seemed to alter the intrinsic pathway-related 
expression of protein at the 24 or 48 h time mark. Annexin V-FITC/PI test results revealed that 7, 14, and 15 followed 
different cell death pathways in the MDA-MB-231 cell line. These mechanisms can be categorized as: i) a caspase-dependent 
apoptotic pathway that includes the upregulation of BAX, caspase-3, and caspase-9 along with the downregulation of 
Bcl-2 and Bcl-xL expression, ii) a caspase-independent mechanism, and iii) a caspase-dependent apoptotic pathway that 
excludes caspase-9 activation. Even though the Annexin V-FITC/PI test results were negative for the PANC-1 cell lines for 
compounds 7, 14, and 15, the intrinsic pathway-related expression of the protein was altered as expected. Therefore, the 
anticancer effects of these compounds seem to support evidence of other cell death mechanisms. The same mechanism was 
detected for 7 in the SH-SYH cell lines, even though this cell line was subjected to the intrinsic pathway in the presence of  
compounds 14 and 15. Compounds 14 and 15 deserve further in vivo studies as they comprise an underexplored taurine 
structure compared to the classical anticancer drugs which already have resistance problems.  As a result, this study has 
shown that modifying both the sulfonic acid and amine groups of taurine influences the selectivity, cytotoxicity, and the 
mechanism of cell death, thereby offering valuable insight into the design of new taurine-based anticancer derivatives. 

 
4. Experimental
4.1. Chemistry
Phthalic anhydride, potassium acetate, aniline, 4-methylbenzoic acid, and 4-chloro benzoic acid were purchased from 
Merck (Germany). All the other reagents, reactants, and anhydrous solvents were purchased from Sigma-Aldrich 
(Germany), Carlo Erba (France), and Interlab (Germany). All reactions involving air- or moisture-sensitive compounds 
were performed under a nitrogen atmosphere using dried glassware and syringes to transfer solutions. 1H NMR spectra 
were recorded on a Varian AS 400 Mercury Plus NMR spectrometer using DMSO-d6 as a solvent. Chemical shifts were 
reported in parts per million (ppm), and the coupling constants (J) were expressed in hertz (Hz). Splitting patterns were 
designated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet. Infrared spectra were run on a Perkin 
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Figure 9. Apoptosis assay via flow cytometry. The SH-SY5Y cells were treated with 7, 14, and 15 at their calculated IC50 values for 48 h. 
The cells were stained with Annexin V-FITC/PI and subsequently subjected to flow cytometry. The rate of apoptosis of various groups 
of SH-SY5Y cells in (a) the control group, (b) cisplatin, (c) 7, (d) 14, and (e) 15.
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Elmer Spectrum 100 FT-IR equipped with a Universal ATR Sampling Accessory, and the frequencies were expressed in 
cm–1. Analytical thin-layer chromatography (TLC) was conducted on Merck silica gel F-254 plates. Flash chromatography 
purifications were performed on Merck silica gel 60 (230–400 mesh ASTM) as the stationary phase. Silica gel was packed 
in with 2 cm diameter glass column to a 6 cm height bed with a solvent mixture consisting of ethyl acetate and hexane. 
Sample was loaded onto the column and eluted with a mobile phase of the aforementioned mixture. Melting points were 
taken with a Stuart® (SMP30) melting point apparatus in open capillary tubes and were uncorrected. The solvents used 
in MS measurements were ethanol, acetonitrile, and water (LC-MS grade), purchased from Sigma-Aldrich (Germany). 
The ESI-MS (electrospray ionization-mass spectrophotometry) spectra were obtained using a Thermo Scientific DSQ II 
(Austin, TX USA) equipped with an electrospray source (ESI) operating in both positive and negative ions. Raw data were 
collected and processed by XcaliburTM 2.0 software. Elemental analyses (C, H, N, and S) were performed using a Leco 
TruSpec CHNS Microanalyzer (Leco Corporation, St. Joseph, MI, USA), and results were within ±0.4% of calculated 
values.
4.1.1. General procedure a: synthesis of D1, D2, D3, D4
2-Amino-N-phenylethane-1-sulfonamide.HCl (D1) and 2-(morpholinosulfonyl) ethan-1-amine.HCl (D2) were prepared 
according to the procedure that was described before [25].

The starting compounds 2-(1,3-dioxoisoindolin-2-yl)ethane-1-sulfonamide (C3) and 2-(1,3-dioxoisoindolin-2-yl)-
N-(4-methoxyphenyl)ethane-1-sulfonamide (C4) were synthesized as previously reported [26]. To a 2.8 mmol solution 
of compound C3 or C4 in 10 mL ethanol, hydrazine hydrate solution (7.0 mmol) was added and refluxed. After the 
consumption of the starting compounds, concentrated HCl (7.5 mL) was added and stirred for 1 h at room temperature. The 
mixture was filtered, and the solvent evaporated under vacuum. The crude product was triturated with dichloromethane/
diethyl ether to produce 2-aminoethane-1-sulfonamide.HCl (D3) and triturated with ethanol/petroleum ether to produce 
2-amino-N-(4-methoxyphenyl)ethane-1-sulfonamide.HCl (D4) as a white solid. 
4.1.2. General procedure B: synthesis of compounds 1-16  
Various benzoic acids (1.0 mmol), 1-1’-carbonyldiimidazole (CDI, 1.0 mmol), and diisopropylethylamine (DIPEA, 2.0 
mmol) were dissolved in dry acetonitrile (ACN, 8.0 ml) stirred for ½ h at room temperature. Hydrolyzed derivatives 
(1.0 mmol) D1, D2, D3, and D4 were dissolved in 10 ml of water added to the reaction mixture. After the consumption 
of the starting material, the solvent was evaporated. The crude product was purified by silica column chromatography, 
and the obtained solid was crystallized with an appropriate solvent to yield 4-substituted-N-(2-(N-phenylsulfamoyl)
ethyl)benzamide (1-4), 4-substituted-N-(2-(morpholinosulfonyl)ethyl)benzamide derivatives (5-8), 4-substituted-N-(2-
sulfamoylethyl)benzamide (9-12), and 4-substituted-N-(2-(N-(4-methoxyphenyl)sulfamoyl)ethyl)benzamide derivatives 
(13-16) as white solid [31,32]. Compound 9 was reported previously for its anticonvulsant activity [15,33–36]. For 
compounds 1-13 registered CAS numbers have been assigned previously. However, their synthesis procedures, chemical 
properties, and structural characterization are not available in the literature. 
4.1.2.1. N-(2-(N-phenylsulfamoyl)ethyl)benzamide (1): CAS: 1326627-91-1.
A solution of 2-amino-N-phenylethane-1-sulfonamide.HCl (D1, 1.0 mmol) in water (10 mL) was treated with a solution 
of benzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general 
procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane 
(1:1) and crystallized from isopropanol to afford the title compound 1 as a white solid (0.134 g, 44%); Rf = 0.36 (ethyl 
acetate:hexane 1:1); m.p. 123.7–124.7 °C; 1H NMR (400 MHz, DMSO-d6) δ: 3.38–3.45 (m, 2H, Aliph-H), 3.66–3.71 (m, 
2H, Aliph-H), 7.12–7.16 (m, 1H, Ar-H), 7.25–7.28 ( m, 2H, Ar-H), 7.33–7.37 (m, 2H, Ar-H), 7.47–7.50 (m, 2H, Ar-H), 
7.54–7.58 (m, 1H, Ar-H), 7.80–7.83 (m, 2H, Ar-H), 8.59–8.61 (m, 1H, -CONH-), 9.88 (brs, 1H, -SO2NH-). 13C NMR (100 
MHz, DMSO-d6) δ: 35.1 (Aliph-C), 50.7 (Aliph-C), 120.9 (2 × Ar-C), 124.9 (Ar-C), 128.0 (2 × Ar-C), 129.2 (2 × Ar-C), 
130.2 (2 × Ar-C), 132.2 (Ar-C), 134.8 (Ar-C), 138.9 (Ar-C), 167.3 (C=O). FT-IR υmaks (cm–1):  3411 (N-H stretching), 1645 
(amide I band), 1538 (amide II band), 1312 (SO2 asymmetric stretching), 1142 (SO2 symmetric stretching) cm–1. Exact 
mass: 304.09, MS (EI): m/z (%); 305 (23, M+1), 105 (100). Elemental analysis calculated (%) for C15H16N2O3S: C, 59.19; H, 
5.30; N, 9.20; S, 10.54. Found: C, 58.91; H, 5.14; N, 9.09; S, 10.75.
4.1.2.2. 4-Chloro-N-(2-(N-phenylsulfamoyl)ethyl)benzamide (2): CAS: 1326627-94-4
A solution of 2-amino-N-phenylethane-1-sulfonamide.HCl (D1, 1.0 mmol) in water (10 mL) was treated with a solution of 
4-chlorobenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general 
procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane (1:1) 
and crystallized from isopropanol:water to afford the title compound 2 as a white solid (0.098 g, 29%); Rf = 0.39 (ethyl 
acetate:hexane 1:1); m.p. 143.8–144.8 °C; 1H NMR (400 MHz, DMSO-d6) δ: 3.38–3.40 (m, 2H, Aliph-H), 3.64–3.69 (m, 



AKGÜL et al. / Turk J Chem

1688

2H, Aliph-H), 7.14 (t, J = 7.3 Hz, 1H, Ar-H), 7.26 (m, J = 7.6 Hz, 2H, Ar-H), 7.33–7.37 (m, 2H, Ar-H), 7.57 (d, J = 8.6 Hz, 
2H, Ar-H), 7.83 (d, J = 8.6 Hz, 2H, Ar-H), 8.67-8.70 (m, 1H, -CONH-), 9.86 (brs, 1H, -SO2NH-). 13C NMR (100 MHz, 
DMSO-d6) δ: 35.2 (Aliph-C), 50.5 (Aliph-C), 120.8 (2 × Ar-C), 124.9 (Ar-C), 129.3 (2 × Ar-C), 129.9 (2 × Ar-C), 130.2 (2 
× Ar-C), 133.6 (Ar-C), 137.1 (Ar-C), 138.9 (Ar-C), 166.2 (C=O). FT-IR υmaks (cm–1): 3391 (N-H stretching), 1645 (amide 
I band), 1541 (amide II band), 1311 (SO2 asymmetric stretching), 1142 (SO2 symmetric stretching) cm–1. Exact mass: 
338.05, MS (EI): m/z (%); 339 (1, M+1), 41 (100). Elemental analysis calculated (%) for; C15H15ClN2O3S: C, 53.18; H, 4.46; 
N, 8.27; S, 9.46. Found: C, 53.15; H, 4.66; N, 8.32; S, 9.23.
4.1.2.3. 4-Methoxy-N-(2-(N-phenylsulfamoyl)ethyl)benzamide (3): CAS: 1327651-78-4.
A solution of 2-amino-N-phenylethane-1-sulfonamide.HCl (D1, 1.0 mmol) in water (10 mL) was treated with a solution 
of 4-methoxybenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 ml) according to the 
general procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane 
(2:1) to afford the title compound 3 as a white solid (0.277 g, 83%); Rf = 0.33 (ethyl acetate:hexane 2:1); m.p. 121.3–122.3 
°C; 1H NMR (400 MHz, DMSO-d6) δ: 3.35–3.38 (m, 2H, Aliph-H), 3.63–3.68 (m, 2H, Aliph-H), 3.84 (s, 3H, -OCH3), 7.01 
(d, J = 7.6 Hz, 2H, Ar-H), 7.12–7.16 (m, 1H, Ar-H), 7.26–7.28 (m, 2H, Ar-H), 7.33–7.37 (m, 2H, Ar-H), 7.79 (d, J = 7.6 
Hz, 2H, Ar-H), 8.44–8.47 (m, 1H, -CONH-), 9.87 (brs, 1H, -SO2NH-); 13C NMR (100 MHz, DMSO-d6) δ: 35.1 (Aliph-C), 
50.8 (Aliph-C), 56.2 (-OCH3), 114.4 (2 × Ar-C), 120.9 (2 × Ar-C), 124.9 (Ar-C), 127.1 (Ar-C), 129.9 (2 × Ar-C), 130.2 (2 
× Ar-C), 138.9 (Ar-C), 162.6 (Ar-C), 166.8 (C=O). FT-IR υmaks (cm–1): 3339, 3258 (N-H stretching), 1632 (amide I band), 
1504 (amide II band), 1301 (SO2 asymmetric stretching), 1138 (SO2 symmetric stretching) cm–1. Exact mass: 334.10, MS 
(EI): m/z (%); 335 (10, M+1), 135 (100). Elemental analysis calculated (%) for C16H18N2O4S: C, 57.47; H, 5.43; N, 8.38; S, 
9.59. Found: C, 57.21; H, 5.29; N, 8.19; S, 9.60.
4.1.2.4. 4-Methyl-N-(2-(N-phenylsulfamoyl)ethyl)benzamide (4): CAS: 1328351-06-9. 
A solution of 2-amino-N-phenylethane-1-sulfonamide.HCl (D1, 1.0 mmol) in water (10 mL) was treated with a solution 
of 4-methylbenzoic acid (1.0 mmol), CDI (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the 
general procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane 
(1:1) and crystallized from isopropanol to afford the title compound 4 as a white solid (0.251 g, 79%); Rf = 0.43 (ethyl 
acetate:hexane 1:1); m.p. 149.7–150.7 °C; 1H NMR (400 MHz, DMSO-d6) δ: 2.38 (s, 3H, -CH3), 3.36–3.39 (m, 2H, Aliph-H), 
3.64–3.67 (m, 2H, Aliph-H), 7.12–7.16 (m, 1H, Ar-H), 7.25–7.30 (m, 4H, Ar-H), 7.33–7.37 (m, 2H, Ar-H), 7.72 (d, J = 8.2 
Hz, 2H, Ar-H), 8.50–8.53 (m, 1H, -CONH-), 9.88 (brs, 1H, -SO2NH-). 13C NMR (100 MHz, DMSO-d6) δ: 21.8 (-CH3), 
35.1 (Aliph-C), 50.7 (Aliph-C), 120.9 (2 × Ar-C), 124.9 (Ar-C), 128.0 (2 × Ar-C), 129.7 (2 × Ar-C), 130.2 (2 × Ar-C), 132.1 
(Ar-C), 138.9 (Ar-C), 142.1 (Ar-C), 167.1 (C=O). FT-IR υmaks (cm–1): 3399 (N-H stretching), 1640 (amide I band), 1542 
(amide II band), 1313 (SO2 asymmetric stretching), 1142 (SO2 symmetric stretching) cm–1. Exact mass: 318.10, MS (EI): 
m/z (%); 319 (23, M+1), 119 (100). Elemental analysis calculated (%) for C16H18N2O3S: C, 60.36; H, 5.70; N, 8.80; S, 10.07. 
Found: C, 60.37; H, 5.50; N, 8.68; S, 10.18.
4.1.2.5. N-(2-(morpholinosulfonyl)ethyl)benzamide (5): CAS: 1216894-89-1. 
A solution of 2-(morpholinosulfonyl)ethan-1-amine.HCl (D2, 1.0 mmol) in water (10 mL) was treated with a solution 
of benzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general 
procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane (1:3) 
to afford the title compound 5 as a white solid (0.119 g, 40%); Rf = 0.13 (ethyl acetate:hexane 2:1); m.p. 107–108 °C; 1H 
NMR (400 MHz, DMSO-d6) δ: 3.20–3.22 (m, 4H, Aliph-H), 3.36–3.38 (m, 2H, Aliph-H), 3.37–3.70 (m, 6H, Aliph-H), 
7.50–7.53 (m, 2H, Ar-H), 7.56–7.60 (m, 1H, Ar-H), 7.86–7.89 (m, 2H, Ar-H), 8.68–8.71 (m, 1H, -CONH-). 13C NMR (100 
MHz, DMSO-d6) δ: 34.8 (Aliph-C), 46.2 (2 × Aliph-C), 47.7 (Aliph-C), 66.7 (2 × Aliph-C), 128.0 (2 × Ar-C), 129.2 (2 × 
Ar-C), 132.3 (Ar-C), 134.9 (Ar-C), 167.2 (C=O). FT-IR υmaks (cm-1): 3328 (N-H stretching), 1639 (amide I band), 1536 
(amide II band), 1318 (SO2 asymmetric stretching), 1144 (SO2 symmetric stretching) cm–1. Exact mass: 298.10, MS (EI): 
m/z (%); 299 (7, M+1), 212 (100). Elemental analysis calculated (%) for C13H18N2O4S: C, 52.33; H, 6.08; N, 9.39; S, 10.75. 
Found: C, 52.24; H 6.24; N, 9.42; S,10.45
4.1.2.6. 4-Chloro-N-(2-(morpholinosulfonyl)ethyl)benzamide (6): CAS: 1216690-49-1. 
A solution of 2-(morpholinosulfonyl)ethan-1-amine.HCl (D2, 1.0 mmol) in water (10 mL) was treated with a solution of 
4-chlorobenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general 
procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane (1:5) 
and crystallized from isopropanol:ethanol to afford the title compound 6 as a white solid (0.142 g, 43%); Rf = 0.14 (ethyl 
acetate:hexane 2:1); m.p. 162–163 °C; 1H NMR (400 MHz, DMSO-d6): δ: 3.20–3.22 (m, 4H, Aliph-H), 3.36–3.38 (m, 2H, 
Aliph-H), 3.66–3.69 (m, 6H, Aliph-H), 7.59 (d, J = 8.5 Hz, 2H, Ar-H), 7.89 (d, J = 8.6 Hz, 2H, Ar-H), 8.81-8.88 (m, 1H, 
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-CONH-). 13C NMR (100 MHz, DMSO-d6) δ: 34.8 (Aliph-C), 46.2 (2 × Aliph-C), 47.6 (Aliph-C), 66.7 (2 × Aliph-C), 129.4 
(2 × Ar-C), 130.0 (2 × Ar-C), 133.7 (Ar-C), 137.1 (Ar-C), 166.2 (C=O). FT-IR υmaks (cm–1): 3341 (N-H stretching), 1635 
(amide I band), 1544 (amide II band), 1319 (SO2 asymmetric stretching), 1102 (SO2 symmetric stretching) cm–1. Exact 
mass: 332.06, MS (EI): m/z (%); 333 (2, M+1), 41 (100). Elemental analysis calculated (%) for; C13H17ClN2O4S: C, 46.92; H, 
5.15; N, 8.42; S, 9.63. Found: C, 46.80; H, 5.29; N, 8.12; S, 9.65.
4.1.2.7. 4-Methoxy-N-(2-(morpholinosulfonyl)ethyl)benzamide (7): CAS: 899739-38-9. 
A solution of 2-(morpholinosulfonyl)ethan-1-amine.HCl (D2, 1.0 mmol) in water (10 mL) was treated with a solution 
of 4-methoxybenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the 
general procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane 
(1:3) and crystallized from isopropanol:water to afford the title compound 7 as a white solid (0.082 g, 25%); Rf = 0.14 (ethyl 
acetate:hexane 2:1); m.p. 183.5–184.5 °C; 1H NMR (400 MHz, DMSO-d6): δ: 3.20–3.21 (m, 5H, Aliph-H), 3.66–3.67 (m, 
7H, Aliph-H), 3.84 (s, 3H, -OCH3), 7.03–7.05 (m, 2H, Ar-H), 7.84–7.86 (m, 2H, Ar-H), 8.53–8.56 (m, 1H, -CONH-). 13C 
NMR (100 MHz, DMSO-d6) δ: 34.7 (Aliph-C), 46.2 (2 × Aliph-C), 47.8 (Aliph-C), 56.2 (-OCH3), 66.7 (2 × Aliph-C), 114.4 
(2 ×  Ar-C), 127.2 (Ar-C), 129.9 (2 × Ar-C), 162.6 (Ar-C), 166.7 (C=O). FT-IR υmaks (cm-1):  3290 (N-H stretching), 1605 
(amide I band), 1543 (amide II band), 1332 (SO2 asymmetric stretching), 1111 (SO2 symmetric stretching) cm–1. Exact 
mass: 328.11, MS (EI): m/z (%); 329 (45, M+1), 115 (100). Elemental analysis calculated (%) for; C14H20N2O5S·0.1H2O: C, 
50.93; H, 6.17; N, 8.48; S, 9.71 Found: C, 50.77; H, 6.10; N, 8.439; S, 9.65.
4.1.2.8. 4-Methyl-N-(2-(morpholinosulfonyl)ethyl)benzamide (8): CAS: 1216731-82-6. 
A solution of 2-(morpholinosulfonyl)ethan-1-amine.HCl (D2, 1.0 mmol) in water (10 mL) was treated with a solution of 
4-methylbenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general 
procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane 
(1:3) and crystallized from isopropanol:ethanol to afford the title compound 8 as a white solid (0.078 g, 25%); Rf = 0.12 
(ethyl acetate:hexane 2:1); m.p. 174.2–175.2 °C; 1H NMR (400 MHz, DMSO-d6): δ: 2.39 (m, 3H, -CH3), 3.20–3.21 (m, 4H, 
Aliph-H), 3.33–3.35 (m, 2H, Aliph-H), 3.67–3.68 (m, 6H, Aliph-H), 7.31 (d, J = 7.9 Hz, 2H, Ar-H), 7.78 (d, J = 7.9 Hz, 2H, 
Ar-H), 8.60–8.62 (m, 1H, -CONH-). 13C NMR (100 MHz, DMSO-d6) δ: 21.8 (-CH3), 34.7 (Aliph-C), 46.1 (2 × Aliph-C), 
47.7 (Aliph-C), 66.7 (2 × Aliph-C), 128.1 (2 × Ar-C), 129.8 (2 × Ar-C), 132.1 (Ar-C), 142.2 (Ar-C), 167.1 (C=O). FT-IR 
υmaks (cm-1):  3338 (N-H stretching), 1663 (amide I band), 1548 (amide II band) 1322 (SO2 asymmetric stretching), 1109 
(SO2 symmetric stretching) cm–1. Exact mass: 312.11, MS (EI): m/z (%); 313 (10, M+1), 226 (100). Elemental analysis 
calculated (%) for C14H20N2O4S: C, 53.83; H, 6.45; N, 8.97; S, 10.26. Found: C, 53.75; H, 6.09; N, 8.83; S, 10.30.
4.1.2.9. N-(2-sulfamoylethyl)benzamide (9): CAS: 4392-11-4
A solution of 2-aminoethane-1-sulfonamide.HCl (D3, 1 mmol) in water (10 mL) was treated with a solution of benzoic 
acid (1.0 mmol), CDI (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general procedure B. The 
crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane (3:1) to afford the title 
compound 9 as a white solid (0.079 g, 35%); Rf = 0,19 (ethyl acetate:hexane 3:1); m.p. 162–163 °C (previously reported 
as 165–166 °C [35]); 1H NMR (400 MHz, DMSO-d6): δ: 3.27–3.30 (m, 2H, Aliph-H), 3.67–3.72 (m, 2H, Aliph-H), 6.97 
(s, 2H, -SO2NH2), 7.49–7.59 (m, 3H, Ar-H), 7.87 (d, 2H, J = 7.6 Hz, Ar-H), 8.62 (m, H,- -CONH-). 13C NMR (100 MHz, 
DMSO-d6) δ: 35.6 (Aliph-C), 54.5 (Aliph-C), 128.1 (2 × Ar-C), 129.2 (2 × Ar-C),132.2 (Ar-C), 135.1 (Ar-C), 167.3 (C=O). 
FT-IR υmaks (cm-1):  3382, 3331, 3266 (N-H stretching); 1635 (amide I band); 1529 (Amide II band); 1294 (SO2 asymmetric 
stretching); 1133 (SO2 symmetric stretching) cm–1. Exact mass: 228.06, MS (EI): m/z (%); 229 (10, M+1), 115 (100), 74 
(18), 55 (5). Elemental analysis calculated (%) for C9H12N2O3S: C, 47.36; H, 5.30; N, 12.27; S, 14.05. Found: C, 47.07; H, 
5.21; N, 12.34; S, 13.64.
4.1.2.10. 4-Chloro-N-(2-sulfamoylethyl)benzamide (10): CAS: 1249977-51-2. 
A solution of 2-aminoethane-1-sulfonamide.HCl (D3, 1 mmol) in water (10 mL) was treated with a solution of 
4-chlorobenzoic acid (1.0 mmol), CDI (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general 
procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane:methanol 
(3:1:0.5) and triturated from ethyl acetate:hexane to afford the title compound 10 as a white solid (0.057 g, 22%); Rf = 0.63 
(ethyl acetate:hexane:methanol 3:1:0.5); m.p. 158–159 °C;  1H NMR (400 MHz, DMSO-d6) δ: 3.20–3.24 (m, 2H, Aliph-H), 
3.59–3.65 (m, 2H, Aliph-H), 6.90 (s, 2H, -SO2NH2), 7.53 (d, J = 8.4 Hz, 2H, Ar-H), 7.82 (d, J = 8.4 Hz, 2H, Ar-H), 8.64 (t, J 
= 4.3 Hz, 1H, -CONH-). 13C NMR (100 MHz, DMSO-d6) δ: 35.7 (Aliph-C), 54.4 (Aliph-C), 129.3 (2 × Ar-C), 129.9 (2 × Ar-
C), 133.8 (Ar-C), 137.1 (Ar-C), 166.3 (C=O). FT-IR υmaks (cm–1):  3397, 3314, 3189 (N-H stretching); 1636 (amide I band); 
1532 (Amide II band); 1278 (SO2 asymmetric stretching), 1143 (SO2 symmetric stretching) cm–1. Exact mass: 262.02, MS 
(EI): m/z (%); 263 (15, M+1), 115 (100), 74 (15), 55 (7). Elemental analysis calculated (%) for C9H11ClN2O3S·0.15C4H8O2: 
C, 41.79; H, 4.46; N, 10.15; S, 11.62. Found: C, 42.06; H, 4.26; N, 10.49; S, 11.40.
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4.1.2.11. 4-Methoxy-N-(2-sulfamoylethyl)benzamide (11): CAS: 1281521-12-7. 
A solution of 2-aminoethane-1-sulfonamide.HCl (D3, 1 mmol) in water (10 mL) was treated with a solution of 
4-methoxybenzoic acid (1.0 mmol), CDI (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to 
the general procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl 
acetate:hexane:methanol (3:1:0.2) and crystallized from acetonitrile:water to afford the title compound 11 as a white solid 
(0.077 g, 30%); Rf = 0.5 (ethyl acetate:hexane 3:1:0.2); m.p. 176–177 °C; 1H NMR (400 MHz, DMSO-d6): δ: 3.25–3.29 (m, 
2H, Aliph-H), 3.65–3.70 (m, 2H, Aliph-H), 3.79 (s, 3H, -OCH3), 6.95 (s, 2H, -SO2NH2), 7.03 (d, J = 8.5 Hz, 2H, Ar-H), 
7.84 (d, J = 8.6 Hz, 2H, Ar-H), 8.47 (t, J = 5.4 Hz, 1H, -CONH-). 13C NMR (100 MHz, DMSO-d6) δ: 35.6 (Aliph-C), 54.7 
(Aliph-C), 56.3 (-OCH3), 114.5 (2 × Ar-C), 127.3 (Ar-C), 129.9 (2 × Ar-C), 162.6 (Aliph-C), 166.8 (C=O). FT-IR υmaks 
(cm-1):  3378, 3264 (N-H stretching); 1613 (amide I band); 1551, 1509 (Amide II band); 1322 (SO2 asymmetric stretching); 
1140 (SO2 symmetric stretching) cm–1. Exact mass: 258.07, MS (EI): m/z (%); 259 (100, M+1), 204 (9), 135 (47), 74 (12). 
Elemental analysis calculated (%) for C10H14N2O4S·0.2C2H3N: C, 46.87; H, 5.52; N, 11.56; S, 12.03. Found: C, 47.00; H, 5.13; 
N, 11.17; S, 11.65.
4.1.2.12. 4-Methyl-N-(2-sulfamoylethyl)benzamide (12): CAS: 1249082-36-7. 
A solution of 2-aminoethane-1-sulfonamide.HCl (D3, 1 mmol) in water (10 mL) was treated with a solution of 
4-methylbenzoic acid (1.0 mmol), CDI (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the general 
procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane:methanol 
(3:1:0.5) and crystallized from ethyl acetate:hexane to afford the title compound 12 as a white solid (0.073 g, 30%); Rf = 0.68 
(ethyl acetate:hexane:methanol 3:1:0.5); m.p. 181–182 °C; 1H NMR (400 MHz, DMSO-d6) δ: 2.39 (3H, s, -CH3) 3.25–3.29 
(m, 2H, Aliph-H), 3.66–3.70 (m, 2H, Aliph-H), 6.96 (s, 2H, -SO2NH2), 7.31 (d, J = 7.6 Hz, 2H, Ar-H), 7.77 (d, J = 7.0 Hz, 
2H, Ar-H), 8.55 (m, 1H, -CONH-). 13C NMR (100 MHz, DMSO-d6) δ: 21.9 (-CH3), 35.6 (Aliph-C), 54.6 (Aliph-C), 128.1 (2 
× Ar-C), 129.8 (2 × Ar-C), 132.3 (Ar-C), 142.1 (Ar-C), 167.2 (C=O). FT-IR υmaks (cm–1):  3373, 3323, 3266 (N-H stretching); 
1634 (amide I band); 1533 (Amide II band); 1297 (SO2 asymmetric stretching); 1133 (SO2 symmetric stretching) cm–1. 
Exact mass: 242.07, MS (EI): m/z (%); 243 (5, M+1), 225 (62), 115 (100), 74 (13), 55 (7). Elemental analysis calculated (%) 
for C10H14N2O3S·0.05C4H8O2: C, 49.66; H, 5.88; N, 11.36; S, 13.00. Found: C, 49.53; H, 5.66; N, 11.53; S, 12.68.
4.1.2.13. N-(2-(N-(4-methoxyphenyl)sulfamoyl)ethyl)benzamide (13): CAS: 1327651-78-4
A solution of 2-amino-N-(4-methoxyphenyl)ethane-1-sulfonamide.HCl (D4, 1 mmol) in water (10 mL) was treated with 
a solution of benzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according to the 
general procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl acetate:hexane 
(1:1) and crystallized from ethyl acetate:diethyl ether to afford the title compound 13 as a white solid (0.076 g, 23%); Rf = 
0.26 (ethyl acetate:hexane 1:1); m.p. 110–111 °C; 1H NMR (400 MHz, DMSO-d6) δ: 3.27–3.31 (m, 2H, Aliph-H), 3.65–3.70 
(m, 2H, Aliph-H), 3.76 (s, 3H,-OCH3), 6.93 (d, J = 9 Hz, 2H, Ar-H), 7.22 (d, J = 9 Hz, 2H, Ar-H), 7.48–7.51 (m, 1H, Ar-H), 
7.55–7.58 (m, 2H, Ar-H), 7.82–7.84 (m, 2H, Ar-H), 8.59–8.62 (m, 1H, -CONH-), 9.56 (brs, 1H, -SO2NH-). 13C NMR (100 
MHz, DMSO-d6) δ: 34.7 (Aliph-C), 49.5 (Aliph-C), 55.7 (-OCH3), 114.9 (3 × Ar-C), 123.9 (2 × Ar-C), 127.6 (2 × Ar-C), 
130.8 (2 × Ar-C), 131.8 (Ar-C), 134.4 (Ar-C), 157.1 (Ar-C), 166.8 (C=O). FT-IR υmaks (cm–1):  3325 (N-H stretching), 1625 
(amide I band), 1537 (amide II band), 1313 (SO2 asymmetric stretching), 1141 (SO2 symmetric stretching) cm–1. Exact 
mass: 334.10, MS (EI): m/z (%); 335 (100, M+1), 271 (33), 266 (22), 253 (12), 225 (16), 212 (23), 184 (6), 148 (12), 115 (30), 
100 (67). Elemental analysis calculated (%) for C16H18N2O4S: C, 57.47; H, 5.43; N, 8.38; S, 9.59. Found: C, 57.67; H, 5.20; 
N, 8.42; S, 9.52.
4.1.2.14. 4-Chloro-N-(2-(N-(4-methoxyphenyl)sulfamoyl)ethyl)benzamide (14):
A solution of 2-amino-N-(4-methoxyphenyl)ethane-1-sulfonamide.HCl (D4, 1 mmol) in water (10 mL) was treated 
with a solution of 4-chlorobenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) 
according to the general procedure B. The crude product was purified by silica gel column chromatography eluting with 
ethyl acetate:hexane (1:1) and crystallized from isopropanol:water to afford the title compound 14 as a white solid (0.103 g, 
28%); Rf = 0.29 (ethyl acetate:hexane 1:1); m.p. 160–161 °C; 1H NMR (400 MHz, DMSO-d6) δ: 3.27–3.30 (m, 2H, Aliph-H), 
3.64–3.69 (m, 2H, Aliph-H), 3.76 (s, 3H, -OCH3), 6.93 (d, J = 8.9 Hz, 2H, Ar-H), 7.21 (d, J = 8.9 Hz, 2H, Ar-H), 7.57 (d, J 
= 8.6 Hz, 2H, Ar-H), 7.84 (d, J = 8.6 Hz, 2H, Ar-H), 8.68–8.71 (m, 1H, -CONH-), 9.56 (brs, 1H, -SO2NH-). 13C NMR (100 
MHz, DMSO-d6) δ: 34.7 (Aliph-C), 49.6 (Aliph-C), 55.7 (-OCH3), 114.9 (2 × Ar-C), 123.9 (2 × Ar-C), 128.9 (2 × Ar-C), 
129.5 (2 × Ar-C), 130.8 (Ar-C), 133.2 (Ar-C), 136.7 (Ar-C), 157.1 (Ar-C), 165.7 (C=O). FT-IR υmaks (cm–1):  3310, 3272 
(N-H stretching), 1643 (amide I band), 1547 (amide II band), 1309 (SO2 asymmetric stretching), 1144 (SO2 symmetric 
stretching) cm–1. Exact mass: 368.06, MS (EI): m/z (%); 369 (63, M+1), 305 (10), 287 (6), 165 (5), 143 (29), 115 (100), 100 
(50), 74 (8), 55 (20). Elemental analysis calculated (%) for C16H17ClN2O4S·0.15H2O: C, 51.72; H, 4.69; N, 7.54; S, 8.63. 
Found: C, 51.63; H, 4.50; N, 7.62; S, 8.53.
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4.1.2.15. 4-Methoxy-N-(2-(N-(4-methoxyphenyl)sulfamoyl)ethyl)benzamide (15): 
A solution of 2-amino-N-(4-methoxyphenyl)ethane-1-sulfonamide.HCl (D4, 1 mmol) in water (10 mL) was treated with a 
solution of 4-methoxybenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) according 
to the general procedure B. The crude product was purified by silica gel column chromatography eluting with ethyl 
acetate:hexane (3:1) and crystallized from aceton:diethyl ether to afford the title compound 15 as a white solid (0.105 g, 
29%); Rf = 0.5 (ethyl acetate:hexane 3:1); m.p. 112–113°C; 1H NMR (400 MHz, DMSO-d6) δ: 3.25–3.28 (m, 2H, Aliph-H), 
3.62–3.67 (m, 2H, Aliph-H), 3.76 (s, 3H, -OCH3), 3.84 (s, 3H, -OCH3), 6.92–6.94 (m, 2H, Ar-H), 7.01–7.03 (m, 2H, Ar-H), 
7.20–7.22 (m, 2H, Ar-H), 7.80 (q, J = 2.0/5.0 Hz, 2H, Ar-H), 8.46 (t, J = 5.5 Hz, 1H, -CONH-), 9.54 (brs, 1H, -SO2NH-). 
13C NMR (100 MHz, DMSO-d6) δ: 35.0 (Aliph-C), 50.3 (Aliph-C), 56.1 (-OCH3), 56.2 (-OCH3), 114.4 (2 × Ar-C), 115.4 (2 
× Ar-C), 124.4 (2 × Ar-C), 127.1 (2 × Ar-C), 129.9 (Ar-C), 131.2 (Ar-C), 157.5 (Ar-C), 162.6 (Ar-C), 166.7 (C=O). FT-IR 
υmaks (cm–1):  3346, 3206 (N-H stretching), 1630 (amide I band), 1540 (amide II band), 1301 (SO2 asymmetric stretching), 
1128 (SO2 symmetric stretching) cm–1. Exact mass: 364.11, MS (EI): m/z (%); 365 (100, M+1), 301 (10), 242 (6), 178 (3.5), 
135 (11), 115 (90), 83 (77), 55 (13), 41 (5). Elemental analysis calculated (%) for C17H20N2O5S·0.15C3H6O: C, 56.17; H, 5.65; 
N, 7.51; S, 8.59. Found: C, 56.49; H, 5.59; N, 7.80; S, 8.37.
4.1.2.16. N-(2-(N-(4-methoxyphenyl)sulfamoyl)ethyl)-4-methylbenzamide (16): 
A solution of 2-amino-N-(4-methoxyphenyl)ethane-1-sulfonamide.HCl (D4, 1 mmol) in water (10 mL) was treated 
with a solution of 4-methylbenzoic acid (1.0 mmol), CDI  (1.0 mmol), and DIPEA (2.0 mmol) in dry ACN (8.0 mL) 
according to the general procedure B. The crude product was purified by silica gel column chromatography eluting with 
ethyl acetate:hexane (2:1) and crystallized from ethyl acetate:diethyl ether to afford the title compound 16 as a white solid 
(0.202 g, 58%); Rf = 0.26 (ethyl acetate:hexane 2:1); m.p. 127–128 °C; 1H NMR (400 MHz, DMSO-d6) δ: 2.38 (s, 3H, -CH3), 
3.25–3.29 (m, 2H, Aliph-H), 3.63–3.68 (m, 2H, Aliph-H), 3.76 (s, 3H, -OCH3), 6.93 (d, J = 8.5 Hz, 2H, Ar-H), 7.21 (d, J = 
8.5 Hz, 2H, Ar-H), 7.29 (d, J = 8.0 Hz, 2H, Ar-H), 7.73 (d, J = 7.9 Hz, 2H, Ar-H), 8.51–8.54 (m, 1H, -CONH-), 9.50 (s, 1H, 
-SO2NH-). 13C NMR (100 MHz, DMSO-d6) δ: 21.8 (Aliph-C), 35.1 (Aliph-C), 50.2 (Aliph-C), 56.1 (-OCH3), 115.4 (2 × 
Ar-C), 124.4 (2 × Ar-C), 128.1 (2 × Ar-C), 129.7 (2 × Ar-C), 131.3 (Ar-C), 132.1 (Ar-C), 142.2 (Ar-C), 157.6 ( Ar-C), 167.1 
(C=O). FT-IR υmaks (cm–1):  3377, 3325 (N-H stretching), 1625 (amide I band), 1540 (amide II band), 1314 (SO2 asymmetric 
stretching), 1143 (SO2 symmetric stretching) cm–1. Exact mass: 348.11, MS (EI): m/z (%); 349 (100, M+1), 285 (10), 226 
(16), 162 (10), 115 (90), 83 (86), 55 (15), 41 (5). Elemental analysis calculated (%) for C17H20N2O4S: C, 58.60; H, 5.79; N, 
8.04; S, 9.20. Found: C, 58.34; H, 5.49; N, 8.04; S, 8.92.
4.2. Biological methods
4.2.1. Cell culture and treatments
The human neuroblastoma cells (SH-SY5Y), triple-negative breast cancer cells (MDA-MB-231), and human pancreatic 
cancer cells (Panc1) used in this study were purchased from the American Type Culture Collection (ATCC). The cells 
were suspended in complete Dulbecco’s modified Eagle medium (DMEM) (Life Technologies, Gibco BRL, Grand Island, 
NY) supplemented with 10% fetal bovine serum (FBS, Hyclone), 1% penicillin and streptomycin (100 U/mL, Invitrogen) 
and plated in cell culture dishes. The cultures were maintained at 37 °C in a 5% CO2 95% humidified atmosphere. After 
reaching 85% confluence, the cells were transferred to 96-well plates or culture dishes. For MTT assays, the cells were 
seeded into 96-well cell culture plates at a density of 2 × 103 cells per well and allowed to adhere for 24 h. The cells were 
treated with fresh medium containing experimental compounds (100, 10, 1 µM) and incubated in a 5% CO2 incubator 
for 48 and 72 h. For protein analysis, the cells were seeded into 6-well cell culture plates at a density of 0.5 x 106 cells/
well and allowed to adhere to the surface for 24 h. The stock solutions of the test compounds (5 mM) were prepared in 
sterile DMSO, and these stocks were then appropriately diluted with the complete culture medium. DMSO levels were 
maintained below 1% in the test concentrations. 
4.2.2. MTT assay
Briefly, following exposures, MTT (at a final concentration of 0.5 mg/mL) was added to each well, and plates were incubated 
for 2 h at 37 °C in a 5% CO2 humidified incubator. The reaction mixture was removed, and DMSO was added to each well. 
The plates were shaken at room temperature, and the absorbance was measured at 570 nm and 630 nm using a microplate 
reader (VersaMax, Molecular Devices, USA). Percent survival was plotted relative to vehicle control cells, which were 
normalized to 100% survival.
4.2.3. Protein analysis
The cells (0.5 × 106 cell/well) were seeded into 6 well plates and incubated for 24 h, and then treated with selected 
experimental compounds for 24 h and 48 h. Following incubation, the cells were washed with ice-cold 1X PBS and lysed 
in 1X cell lysis buffer. These lysates were quantified using the BCA protein assay. Then, the cell lysates were analyzed by 
western blot.
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4.2.4. Western blotting
On a 12% (w/v) tris-glycine denaturing gel, 20 μg protein was separated by electrophoresis, and then transferred to a PVDF 
membrane. After blocking, the membrane was incubated with primary antibodies, anti-Bax rabbit monoclonal antibody, 
anti-Bcl-2 rabbit monoclonal antibody, anti-Bcl-xL rabbit monoclonal antibody, anti-caspase-3 rabbit monoclonal 
antibody, and anti-caspase-9 rabbit monoclonal antibody (1:1000, Cell Signaling Technology) at 4 °C overnight. Following 
the incubation, the membrane was incubated with an anti-β-actin mouse monoclonal antibody (1:1000, Cell Signaling 
Technology) at room temperature for 1 h. After washing, the membrane was incubated with peroxidase-conjugated 
secondary antibodies for 1 h to visualize labeled proteins by enhanced chemiluminescence. 
4.2.5. Annexin V FITC/PI test
Th e cells were treated with cisplatin or compound 7, 14, or 15 at their respective cytotoxic doses against three cancer 
cell lines. The cells were harvested after 48 h, washed with PBS, and analyzed using the Annexin V FITC/PI Apoptosis 
Detection kit (BioVision, Mountain View, CA, USA) with a benchtop flow cytometer (Accuri C6 flow cytometry, Becton 
Dickinson). While the lower right quadrant shows the early apoptotic cells (FITC positive and PI negative) indicating 
Annexin V binding and cytoplasmic membrane integrity, the upper right quadrant shows the late apoptotic cells (positive 
for FITC and PI). The upper left quadrant displays the necrotic cells, negative for FITC, and showing PI uptake.
4.2.6. Statistical analysis
Data were expressed as means ± standard deviation (SD) for five (MTT) or three (western blotting) independent 
experiments. Comparisons of means between groups were performed by one-way analysis of variance (ANOVA) followed 
by Tukey’s post hoc test. Statistical significance was assigned at P < 0.05. 
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