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1. Introduction
Oxytetracycline (OTC), 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,5,6,10,12,12a-hexahydro-6-methyl-1,11-
dioxo-2-naphthacenecarboxamide, belongs to tetracycline-class antibiotics derived from Streptomyces spp. [1,2]. This 
antibiotic has a broad spectrum with a bacteriostatic effect against most gram-negative and gram-positive bacteria. OTC 
is widely used in humans, animals, vegetables, and fruits to prevent and treat bacterial diseases. However, incorrect and 
uncontrolled use of OTC can cause allergies, drug resistance, and toxic effects in humans [3]. In addition, poor absorption 
of OTC from the gastrointestinal system causes a high concentration of drug in the intestine, which leads to change in 
metabolic activity and microflora properties1. One of the areas of the common use of OTC is the treatment or prevention 
of mastitis and metritis in cows [4]. Most of the tetracyclines applied in cows are excreted with milk. Therefore, OTC 
residues may be present in milk [5]. World Health Organization (WHO) and Food and Drug Administration (FDA) 
established a maximum residue limit of 0.1 mg L–1 and 0.3 mg L–1, respectively, for OTC in milk to protect human health2.

In the literature, there are many different analytical methods for the detection of OTC such as electrochemical [3], 
high performance liquid chromatography (HPLC) with MS, UV, and chemiluminescence detector [6–8], capillary 
electrophoresis [9,10], spectroscopy [11–13], immunoassays [14], enzyme-link immunosorbent assay (ELISA) [15]. 
Although the methods mentioned above have high sensitivity and selectivity, they have complicated operation procedures 
and are not simple and fast enough for rapid detection. Also, they need sample preparation steps such as solid phase 
extraction, solid liquid extraction, evaporation, and heating [14,16]. In addition, spectrophotometric methods for the 
determination of OTC in pharmaceuticals or biological samples are based on derivatization of drug with oxidizing or 
chelating agent. All these tedious clean-up procedures and derivatization steps can bring about errors, waste of time, and 
1 Fernandez H, Miller M (1998). Tetracyclines: Oxytetracycline, chlortetracycline, and tetracycline (addendum). World Health Organization, Geneva 
1998 [online]. Website http://www.inchem.org/documents/jecfa/jecmono/v041je07.htm [accessed 19 November 2019].
2 Anonymous (2000). FAO/WHO Codex Alimentarius Commission. Risk analysis principles and methodologies of the codex committee on residues of 
veterinary drugs in foods. 28-31 Mar 2000, Sess. 12 Washington, DC (USA) [online]. Website http://www.fao.org/tempref/codex/Meetings/CCRVDF/
ccrvdf12/rv00_06e.pdf [accessed 19 November 2019].
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extra cost. For this reason, it is needed to develop accurate, simple, and time- and cost-effective analytical methods to 
detect OTC residues below the maximum permissible residue limits.

In recent years, fluorescence and room temperature phosphorescence (RTP) methods based on the measurement of 
quantum dots (QDs) signal have gained a great interest. Quantum dots are semiconductor nanoparticles and possess 
remarkable luminescence emission properties due to their quantum confinement effect. The excitation spectrum of QDs is 
typically wide and continuous, while the emission band is narrow, symmetrical, and size-tunable. They have also negligible 
photobleaching and high photochemical stability. Due to these advantages, QDs are widely used as sensors for the detection 
of ions or neutral molecules in the environment, food, and biological samples [17,18].

In recent years, silicon quantum dots (SiQDs), as new types of photoluminescent nanoparticles, have attracted interest 
in the field of research due to their properties such as good solubility in water, low toxicity, stable photoluminescence, good 
biocompatibility, and wide absorption spectrum. Because of these advantages, this type quantum dots have been widely 
used in fluorescence imaging and detection [19,20]. Literature research has shown that Si quantum dots are generally 
prepared with electrochemical [21], hydrothermal [22], ultraviolet irradiation [23], and microwave [24] methods. The 
quantum dots synthesized with these methods are used either as is or modified.

In this research, we developed a simple and rapid SiQDs probe based on the inner filter effect (IFE) to detect OTC 
residues in milk samples. One of the quenching mechanisms, IFE was discovered by Stokes [25]. Overlapping of the 
absorption spectrum of the quencher and the excitation or emission spectra of the donor causes the IFE phenomenon. 
This type of nonirradiation energy conversion can be classified in two ways; i) primary and ii) secondary. In the primary 
inner filter effect (pIFE), absorbers absorb the light at the excitation wavelength of the fluorophore whereas the secondary 
inner filter effect (sIFE) refers to the absorption of emission light of fluorophore [26].

Here, eco-friendly SiQDs were prepared using 3-Aminopropyltriethoxysilane (APTES) as the silicon source and 
sodium citrate as a reducing agent through the hydrothermal process. The synthesized SiQDs have high luminescent and 
water-solubility character. Moreover, unlabeled QDs allow the determination of OTC from samples with high sensitivity 
and selectivity. When compared with similar previous studies, the proposed method has a wider linear range and does 
not need to take a ratio of different emission wavelengths [27,28]. The overlap between the absorption spectrum of OTC 
and the excitation spectrum of SiQDs allowed IFE-based quantification of OTC. The proposed fluorescent method was 
successfully applied to detect OTC in milk samples with satisfactory results.

2. Materials and methods
2.1. Reagents and solutions
3-Aminopropyltriethoxysilane (APTES, 99%), sodium citrate tribasic dihydrate (≥99.0%) and sodium hydroxide were 
purchased from Sigma–Aldrich (USA), and phosphoric acid and trichloroacetic acid were bought from Merck (Darmstadt, 
Germany). Oxytetracycline was kindly supplied by I.E. Ulagay Pharm. Ind. (İstanbul, Turkey). 

Deionized water was used for the preparation of phosphate buffer (0.02 M). The pH of the buffer solution (pH 7.4) was 
adjusted using sodium hydroxide (5 M). Aqueous solutions were prepared by deionized water (18.2 MΩ. cm, Simplicity, 
Milli–Q Millipore water purification system). All the reagents were of the analytical grade and used without further 
purification.

In this study, commercial cow milk samples were collected from local markets in Ankara, Turkey and were stored in a 
refrigerator until analysis.
2.2. Characterization
The fluorescence excitation and emission spectra were recorded using a Varian Cary Eclipse spectrofluorimeter with a 10 × 
10 mm quartz cuvette. Excitation wavelength and excitation/emission bandwidths were 350 nm and 5/10 nm, respectively. 
PMT voltage was 600 V. Xenon flash lamp was chosen as the light source. UV–Vis absorption spectra were obtained with 
a Specord 50 Plus (Analytik Jena, Germany) with a 10 × 10 mm path length quartz cell. Absorbance spectra were recorded 
at 200–900 nm at a speed of 50 nm/s. Particle size was measured using a Malvern Nano Zetasizer ZS90 (Malvern, United 
Kingdom). The pH values were measured using a combined pH electrode with an Orion model 720 A pH meter. The 
relative PLQYs of the prepared SiQDs were measured with quinine sulfate in 0.1 M H2SO4 as a reference standard. All 
experiments were performed at room temperature.
2.3. Synthesis of SiQDs
The water-soluble fluorescent SiQDs were synthesized by a hydrothermal process with using 3-Aminopropyltriethoxysilane 
(APTES) and sodium citrate as precursors as per a published method with minor modification [27]. In a typical experiment, 
1.2 g of sodium citrate was dissolved in 25 mL nitrogen-saturated deionized water. Afterward, 6 mL of APTES was added 
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and stirred homogeneously for 10 min. The resultant precursor solution was transferred into a stainless steel autoclave 
and heated at 180 °C for 20 h. After cooling to room temperature, the resultant transparent mixture solution was dialyzed 
against ultrapure water for 24 h to exclude impurities such as APTES molecules and sodium citrate in the solution. Finally, 
the synthesized and purified SiQDs solution was stored at 4 °C for further use. 
2.4. Detection of OTC in aqueous solution with fluorometric titration
The stock solution of OTC was prepared as follows: 0.0125 g of OTC was dissolved in 50.0 mL of deionized water. The 
stock solution was diluted to prepare various concentrations of OTC in buffer solution. The fluorescence intensities of 
QDs at 440 nm were measured at excitation/emission slits of 5/10 nm, and excitation wavelength of 350 nm in the absence 
and presence of OTC. For the detection of OTC, an aqueous solution of SiQDs with a volume of 20 µL was mixed with 
phosphate buffer solution (0.02 M, pH 7.4) in the 1.0 cm quartz cuvette. The mixture was titrated manually by successive 
additions of the OTC working solution to detect the fluorescence-quenching effect. The aliquot of each addition of OTC 
solution was 10 mL to avoid a change in the volume. After each addition, the mixture was shaken well and the fluorescence 
spectra were obtained after an equilibrium time. Fluorometric measurements were done 1 min after the reactions. All 
experimental measurements were done at room temperature.
2.5. Detection of OTC in milk samples
The milk samples were obtained from the local market and pretreated based on the following procedure. Firstly, in order 
to remove the proteins, 7.5 mL of 20% trichloroacetic acid (TCA) was added to 5.0 mL milk samples and vortexed for 30 
s. (Firlabo, SA, Lyon, France). Afterward, the supernatant was collected to remove lipids and filtered through a 0.20 µm 
membrane filter (Graphic Controls, Germany). The concentration of OTC in milk samples was analyzed by the standard 
addition method. The milk samples containing different concentrations of OTC were prepared by adding of stock solution 
with different volumes. OTC determination was applied five times for each sample and the RSD values were calculated. 

3. Results and discussion
3.1. Characterization of the SiQDs
In the present study, we describe a one-pot, green, and cost-effective SiQDs using 3-Aminopropyltriethoxysilane (APTES) 
as the silicon source and a sodium citrate as precursor. In this process, siloxane molecules were reduced by trisodium 
citrate to form silicon crystal nuclei during the heating at high temperatures. In previous studies, different silicon sources 
such as bulk silicon and SiO2 were used for the synthesis of QDs [29]. These hydrophobic QDs need functionalization with 
hydrophilic species such as hydrophilic molecules and polymers. The surface coating of SiQDs increases not only solubility 
in aqueous solution but also photostability. Here we chose APTES as a water-soluble silicon source which easily reacted 
with trisodium citrate for the oxidoreduction process.

The SiQDs were characterized by ultraviolet absorption spectrum, fluorescence spectra, and zeta potential analyzer. A 
previous study showed that prepared QDs were characterized by having a spherical shape and almost uniform in size [27]. 
As can be seen in Figure 1A, the SiQDs showed a broad UV absorption band with two absorption peaks at 280 and 350 
corresponding to the π – π* and n – π* transitions of the SiQDs [20]. Excitation and emission spectra of the synthesized 
SiQDs indicated that the QDs possess high photoluminescence properties. The emission maximum of the prepared SiQDs 
was at 440 nm upon excitation at 350 nm (Figure 1B). There was no shift in the emission peak with a change in excitation 
wavelength. This may be due to the homogeneous surface condition occurring at high temperature in the hydrothermal 
process and the single transition probability of electron making the emission independent of the excitation wavelength 
[30]. In addition, both the excitation and emission curves appeared as symmetrical and well-resolved peaks suggesting 
that the SiQDs were uniform in size. The data obtained are compatible with previous studies [27,31]. The hydrodynamic 
diameter of the SiQDs obtained using a zeta potential analyzer study confirmed the formation of small-sized QDs with a 
diameter of 3.6 nm. In addition, the diameter of QDs was calculated using the Brus equation (1).
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where ΔE is the emission energy, Eg is band gap energy, r is the radius, h is Planck constant, me* is the effective mass of the 
excited electron, and mh* is the effective mass of excited hole [32,33]. The diameter of the prepared SiQDs was calculated 
at around 2.7 nm. The difference between the diameters obtained from the zeta potential measurement and the equation 
is due to different surface states of the QD under the study conditions. Briefly, the hydrated SiQDs samples are directly 
measured by zeta potential analyzer while the theoretical values are used for equation, which causes larger hydrodynamic 
diameter than that obtained by the equation. Previous studies show that quantum dots with similar particle sizes with 
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similar synthesis pathways were obtained [22,27,31]. The photoluminescence quantum yield of the SiQDs was calculated 
to be 23.0% using quinine sulphate as a reference [34]. The prepared QDs are very stable in water for at least 6 months 
without remarkable precipitation in dark at 4 °C.
3.2. Optimization of determination conditions
To achieve the highest sensitivity of SiQDs for OTC, determination conditions such as the buffer solution pH and the 
response time were analyzed. The fluorescence intensity of the prepared QD was investigated at pH 4.0–12.0. It is seen that 
the emission intensity reached a maximum value at pH 7.4 and was stable in the range of pH 7.4–9.0 (Figure 2A). Further 
increase in pH caused the quenching of emission. This pH-dependent luminescence character can be attributed to the 
surface-covered amino groups. Thus, the pH value was chosen as 7.4 in the latter experiment. In addition, the reaction 
time was optimized. The fluorescence intensity of SiQDs solution was quenched quickly upon the addition of OTC. The 
response was too rapid and the reaction reached equilibrium within 1 min (Figure 2B). Therefore, 1 min was chosen as the 
reaction time to the rapid and sensitive determination of OTC throughout the study.
3.3. Detection of OTC in solution
The effect of OTC concentration on the fluorescence emission intensity of SiQDs was investigated to determine OTC in 
milk samples. As demonstrated in Figure 3, the presence of OTC causes luminescence intensity to decrease because of the 
quenching effect of the drug on QDs fluorescence signal. The inset graphic in Figure 3 presents the linear response between 
the ratios of fluorescence intensities and the concentration of OTC. A good linear correlation (r2 = 0.999) was observed 
from 0.92 to 9.2 µg mL–1 drug concentration. F0 and F are the luminescence intensity of SiQDs at 440 nm in the absence 
and presence of OTC. Parallel experiments were carried out 5 times. The analytical data for the calibration graph are listed 
in Table 1. In ICH guidelines, different calculation approaches are described to determine the limit of detection (LOD) and 
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limit of quantification (LOQ)3. The LOD and LOQ values for OTC were calculated as 0.19 and 0.57 µg mL–1, respectively, 
which were obtained based on LOD = 3 s/m and LOQ = 10s/m where s is the standard deviation for five replicates and m 
is the slope of the calibration curve. Food and Drug Administration (FDA)4 allows a maximum OTC concentration of 0.3 
μg mL–1 for milk. The LOD value found shows that the proposed method has enough Sensitivity for the detection of OTC 
in milk samples for the FDA limit.
3 ICH (2005). Harmonized tripartite guideline: Validation of analytical procedure text and methodology Q2 (R1). International council on harmoniza-
tion of technical requirements for registration of pharmaceuticals for human use [online]. Website http://academy.gmp-compliance.org/guidemgr/files/
Q2(R1).PDF [accessed 19 November 2019].	
4 FDA (2019). Code of Federal Regulations. 21(6). Revised as of April 1, 2019 [online]. Website https://www.accessdata.fda.gov/ scripts/cdrh/cfdocs/cfcfr/
CFRSearch.cfm [accessed 19 November 2019].
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In order to evaluate the repeatability of the proposed method, fluorescence intensities of five replicates were measured 
in the same (intraday precision) and following three days (interday precision). The values of inter- and intraday precision 
were found 0.57 and 0.45, respectively.

Robustness of the developed method was tested by analyzing the emission intensity of SiQDs and SiQDs–OTC solutions 
under the deliberate changes in the analytical methodology. The deliberate changes in the pH (±0.1) and reaction time 
(±10 s) were evaluated with recovery values. For the pH experiment, the buffer solution pH was adjusted to 7.30, 7.40, and 
7.50. In these solutions, recovery values were 98.9%, 99.8%, and 100.1%. Reaction time was also tested for 50 s, 60 s, and 
70 s and recovery values were 99.7%, 99.9%, and 100.1%, respectively. As a result of the robustness study, small changes in 
the methodology did not affect the optimized luminescence system significantly.

Table 1. Statistical evaluation of calibration data and recoveries of OTC from spiked milk samples 
detected by the SiQD as a fluorescent probe.

Linearity range (μg mL-1) 0.92–9.2

Slope 0.08
Intercept 0.92
Correlation coefficient 0.999
SE of slope 2.1 × 10-4

SE of intercept 0.01
LOD (μg mL–1) 0.19 
LOQ (μg mL–1) 0.57
Inter-day precision* (RSD%) 0.57
Intra-day precision* (RSD%) 0.45
Spiked amount (μg mL–1) Found amount (μg mL–1) Recovery (%)* RSD (%)
1.98 1.99 100.5 0.93
3.97 3.98 100.2 1.23
5.95 5.97 100.3 2.31
7.94 7.84 98.8 1.98

*Mean of the five experiments
SE is the standard error, RSD is the relative standard deviation
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Selectivity, an important performance parameter, is the essence of sensors. The aim of this study was to apply the 
developed probe to determine OTC in milk samples containing some ingredients which may influence the fluorescence 
signal. For this purpose, the influence of the kind of antibiotics, ions, amino acids, and proteins was investigated. Here, 
the fluorescence intensity of SiQDs was quenched in the presence of 2.76 µg mL–1 OTC. As shown in Figure 4, no obvious 
changes could be observed after the addition of antiviral and antibiotics such as acyclovir, ampicillin, and trimethoprim, 
amino acids, and proteins such as L-cysteine, dopamine, L-cystine, and creatinine, common ions such as Na+, K+, Ca2+, Cl–, 
and CO3

2-, which were 50 times higher than OTC. Therefore, the detection of OTC by the prepared SiQDs as fluorescent 
probe has shown an excellent selectivity and sensitivity.
3.4. Response mechanism
In this study, the quenching effect of OTC on the emission signal of SiQDs was used for the determination of drugs 
in milk samples. Generally, well-known quenching mechanisms are static and dynamic (collisional) quenching, 
fluorescence resonance energy transfer, and inner filter effect. In static quenching, fluorophore and quencher molecules 
form a nonfluorescent molecule at the ground state, while in the dynamic quenching the quencher interacts with the 
fluorophore at the excited state. Fluorescence resonance energy transfer is describing energy transfer between two light-
sensitive molecules, namely donor and acceptor. For the IFE mechanism, the absorption spectrum of the quencher and the 
excitation or emission spectra of the donor must be overlapped.

According to Beer–Lambert Law, the molar absorption coefficient of OTC was calculated as 4.6 × 104 at 350 nm 
wavelength, which demonstrated that it was applicable to sensitive determination by IFE.

As shown in Figure 1B, the great overlapping was observed between the excitation spectra of SiQDs and the absorption 
spectra of OTC. UV–Vis absorption spectra of OTC in the absence and presence of SiQDs and absorption spectra of SiQDs 
(Figure 1A) were also recorded. No observable variation in the absorption band of OTC and SiQDs was noticed, which 
further indicated that no complex has been formed between OTC and SiQDs. In addition, it was noticed that there was 
an overlap between the emission band of SiQDs and the absorption peak of OTC, which means that the emission of QDs 
could be partially reabsorbed by OTC. However, the shared area was only a small part of the emission region. Besides, 
when a different excitation wavelength as 425 nm was chosen, where absorption of OTC was negligible, there was no 
quenching observed. This observation indicated that possible quenching mechanism may be IFE instead of resonance 
energy transfer.

The fluorescence emission signal of QDs was quenched by adding OTC (Figure 3). As a result, the fluorescence 
quenching of OTC on SiQDs was caused by the inner filter effect. Therefore, the fluorescence emission intensity decreased 
with the increasing of the concentration of OTC (Figure 3), providing the detection of OTC was realized.

Quenching mechanisms also can take place by static or dynamic quenching effects. These mechanisms can be 
investigated using the Stern–Volmer equation (2):
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where F0 and F are the fluorescence intensities of fluorophore in the absence and the presence of quencher, respectively. 
KSV is the Stern–Volmer quenching constant and [Q] is the concentration of the quencher. As can be seen in the inset of 
Figure 3, a good linear relationship between the concentration of OTC and fluorescence ratios was obtained, and KSV value 
was calculated as 3.9 × 104 M–1 which indicated moderate interaction between SiQDs and OTC. This result explained that 
the quenching mechanism might be partially due to static quenching. All the obtained results confirmed that the possible 
quenching mechanism is based on mainly IFE and partially static quenching effect.
3.5. Detection of OTC in milk samples
The applicability of the proposed SiQDs fluorescent probe based on IFE was further investigated by measuring spiked milk 
samples. For this purpose, OTC was spiked to the milk samples at increasing concentrations and treated for measurement. 
As shown in Table 1, the recoveries of OTC from spiked milk samples ranged from 98.8% to 100.5% and the RSD% values 
were between 0.93% and 2.31%. Therefore, the obtained results indicated that this Si quantum dots fluorescent probe could 
be an effective way for rapid and accurate detection of OTC in milk.

There have been a few reports on OTC detection in different samples with using different methods based on 
chromatography, electrochemistry, capillary electrophoresis, and spectroscopy (Table 2) [10,13,35–40]. Almost all of them 
need high quantity and quality chemicals, time, cost, and qualified operators. On the contrary, the proposed method is 
suitable for green chemistry, and compared with other methods, has a wide linear range, enough sensitivity, and high 
recovery values.
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4. Conclusion
In this research, the water-soluble fluorescent SiQDs were synthesized based on the reaction of 3-Aminopropyltriethoxysilane 
and sodium citrate as precursors by one-pot hydrothermal process. The obtained results showed that fluorescence of 
SiQDs could be quenched due to the IFE mechanism between OTC and QDs. Synthesized and characterized quantum 
dots were successfully applied as a fluorescence IFE probe for the determination of OTC in milk samples. Satisfactory 
recoveries (98.8–100.5%) with low RSD% values (0.93–2.31%) were achieved.

The proposed method can be used as a promising tool for OTC analysis in food safety with its simple, selective, 
sensitive, rapid, and cheap features.

Table 2. OTC levels using different methods in different samples.

Samples Method Linearity range LOD Recovery (%) References

Capsules Capillary electrophoresis 80-120% 0.024 mg mL-1 99.3 [10]

Cow’s milk Midinfrared spectroscopy 10-400 μg L-1 > 10 μg L-1 99 [13]

Urine Differential pulse polarography 6.5 x 10-6-9.8 x 10-5 mol L-1 5.5 x 10-6 mol L-1 80 [35]

Human serum Differential pulse polarography 9.5 x 10-6-1.2 x 10-4 mol L-1 5.5 x 10-6 mol L-1 85 [35]

Pharmaceuticals Spectrophotometry 2.48-34.78 μg mL-1 2.5 μg mL-1 - [36]

Blood-serum HPLC 0.1-20 μg mL-1 0.05 μg mL-1 88-103 [37

Animal drinking water HPLC 10-1000 μg L-1 3.5 μg L-1 86.7-112.6 [38]

Food samples Modified microelectrode 0.5-50 μM 87 nM 97.8-105.1 [39]

Swine wastewater Fluorescence Spectrophotometry  0-1.478 μg mL-1 0.149 μg mL-1 102.32-120.92 [40]

Milk Spectrofluorimetry with SiQD 0.92-9.2 μg mL-1 (2-20 μM) 0.19 μg mL-1 (0.43 μM) 98.8-100.5 This study
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