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1. Introduction
In recent years, drug delivery systems (DDSs) have been widely investigated by researchers owing to their numerous 
advantages, such as minimizing the side effects of drugs, better targeting, and cost-effectiveness [1]. Various sustained-
release systems have been developed to adopt an effectively controlled drug release, including but not limited to particulate 
carriers, lipids, polymeric films, and gels [2–4].

Researchers have strived to develop pharmaceutical formulations based on polymeric films due to their drug-related 
properties, biocompatibility, and nontoxicity. Assorted natural and synthetic polymers have been used in film formation 
processes and classified into two major categories: hydrophilic and hydrophobic films [5,6].

Ethyl cellulose (EC), as a hydrophobic polysaccharide polymer, is a biodegradable and biocompatible polymer 
with unique properties such as high stability as well as heat, oxygen, and moisture resistance. Further, EC has desirable 
solubility in different organic solvents and is miscible with various water-soluble materials. It has excellent film-forming, 
filling, and adhesive capabilities, promoting its application in food, cosmetics, and pharmaceutical industries, especially 
as packaging material, coating, and encapsulating agents [7–9].Contrary to EC, polyvinyl alcohol (PVA) is a hydrophilic 
synthetic polymer with a linear and flexible structure. Being approved by Food and Drug Administration (FDA), PVA has 
widespread applications in cosmetics and pharmaceutical industries. It is known as a versatile carrier in sustained drug 
release systems in terms of various fibers, gels, and films due to its distinctive characteristics [10]. However, high moisture 
absorption and low mechanical strength hindered its application as a protective barrier [11–14]. 

The efficacy of polymeric films as DDSs is mainly determined by their stability, controlled, and selective drug release. 
Thus, the improvement of their properties is still a necessity to attain better results. Crosslinking is a promising method 
to enhance the structural and mechanical properties of polymers [15,16]. Boric acid (BA) is widely utilized in polymeric 
composites, owing to its ease of functionalizing and safety. It has been established as an eco-friendly material and can aid 
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plant growth by acting as a nutrition source. Additionally, its therapeutic effects against a wide range of bacteria, yeast, and 
fungi are well proven [17–19]. It was also proven that boronic acid derivatives are selective inhibitors of the serine protease 
(β-lactamase family), while being cheaper than other alternatives. The incorporation of BA with antibiotics can offer a new 
platform to overcome antibiotic resistance, which is a major public health challenge [20,21].

This study aimed to develop erythromycin-loaded PVA and EC films as topical controlled-release drug delivery 
systems. Erythromycin (EM) is a hydrophobic macrolide antibiotic with a therapeutic effect against gram-positive and 
gram-negative bacteria via blocking protein synthesis in the ribosome of bacteria. However, EM contains a high quantity 
of alcohol for topical treatments, provoking skin irritations in patients [22,23]. Nevertheless, to the best of our knowledge, 
the effect of BA on the physicochemical properties of polymeric matrices has sparsely been investigated. The main purpose 
of this work was to examine the effect of BA on the in vitro drug release and the physicochemical properties of PVA- and 
EC-based films. Also, the possibility of synergistic antibacterial activity of BA in conjunction with EM in the developed 
films was explored.

2. Materials and methods
2.1. Materials
Erythromycin was purchased from Sepidaj Pharmaceutical, Iran. PVA (MW: 89000-91000 g/mol) and EC (Ethoxy groups, 
viscosity: 10 mPa.s) was obtained from Sigma-Aldrich, USA. Two standard strains of S. aureus, including S. aureus (ATCC® 
25923™) and S. aureus (ATCC® 29213™), were purchased from KWICK-STICK Microbiologics, France. Mueller-Hinton 
Agar (MHA) and Mueller-Hinton Broth (MHB) were obtained from Becton Dickinson, France. The RPMI (Roswell Park 
Memorial Institute) 1640 W/L-Glutamine was obtained from Bio West, Germany. All other chemicals and reagents are 
analytical grade and used without purification.
2.2. Film preparation
EC films were prepared by dissolving 5% w/v of EC in an ethanol-water solution (80% w/w of ethanol). PVA films were 
fabricated by the addition of PVA (5% w/v) to deionized water. The developed solutions were heated up to 90 °C under mild 
stirring. To prepare the blended PVA-BA and EC-BA mixtures, the solutions were cooled down to reach a temperature 
of 45 °C, and 1% w/v BA was added to the resulted solutions under mild stirring. After the dissolution of BA, the pH was 
adjusted to 7 using a 1M NaOH. Afterward, EM (0.75% w/v) was added to the prepared gels and poured into Petri dishes. 
Finally, the developed films were dried in a vacuum chamber. Table 1 reports the composition of the developed films and 
their respective abbreviations, which will be utilized throughout this paper.
2.3. Characterization
The morphological structures of the films were assessed using a scanning electron microscope (SEM; Zeiss Co., Germany) 
with an acceleration voltage of 20 kV. Fourier transform infrared spectrometer (FTIR; Perkin Elmer) was utilized to 
characterize the chemical structures of PVA, EC, and crosslinked films. The spectra were recorded in the range of 500 to 
4000 cm–1 with a resolution of 4 cm–1.
2.4. Swelling index and thickness
The effect of BA on the swelling behavior of the developed films was examined in water. Samples were prepared with a 
surface area of 100 × 100 mm, weighed, and then immersed in the aqueous medium.  The weight of the dried sample 

Table 1. Composition of the polymeric films.

Abbreviation PVA
 (% w/v)

EC 
(% w/v)

BA 
(% w/v)

EM
 (% w/v)

Drug
Loading (%)

P.f 5 – – – –
E.f – 5 – – –
PB.f 5 – 1 – –
EB.f – 5 1 – –
P-EM.f 5 – – 0.075 1.45
E-EM.f – 5 – 0.075 1.5
PB-EM.f 5 – 1 0.075 1.22
EB-EM.f – 5 1 0.075 1.26
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was determined before and after the swelling process, while the surface wetness was removed using dry filter paper. The 
swelling index of each film was calculated using the following equation:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖(𝑆𝑆𝑆𝑆) =
𝑊𝑊1 −𝑊𝑊3
𝑊𝑊3

× 100 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠	𝑖𝑖𝐿𝐿𝑠𝑠𝑠𝑠% =
𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠	𝑐𝑐𝐿𝐿𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐	(𝑚𝑚𝑠𝑠)

𝑁𝑁𝐿𝐿𝑠𝑠𝐿𝐿𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝐷𝐷	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑐𝑐	(𝑚𝑚𝑠𝑠) × 100 

 (1)

Here Wt is the weight of swollen film at time t , and W0 corresponds to the dry film sample, respectively [24,25]. The 
film’s thickness (mm) was measured using a Palmer digital micrometer. The measurements were conducted at different 
points of each sample and the average value was reported [26].
2.5. In vitro drug release
The actual EM content was determined using the total immersion method [27]. In brief, a predetermined amount of each 
sample was dissolved in phosphate buffer solution (PBS, pH: 7.4) and placed in a shaker incubator (rotation speed of 100 
rpm) at the temperatures of 25 and 32 °C. Eventually, a desired amount of samples was collected and replaced with the 
same volume of fresh PBS. The cumulative drug release was determined by UV-vis spectrophotometer (Cecil CE 7200, 
UK) at the wavelength of 202 nm. The following equation was applied to measure the EM Loading dose (%):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖(𝑆𝑆𝑆𝑆) =
𝑊𝑊1 −𝑊𝑊3
𝑊𝑊3

× 100 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠	𝑖𝑖𝐿𝐿𝑠𝑠𝑠𝑠% =
𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠	𝑐𝑐𝐿𝐿𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐	(𝑚𝑚𝑠𝑠)

𝑁𝑁𝐿𝐿𝑠𝑠𝐿𝐿𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝐷𝐷	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑐𝑐	(𝑚𝑚𝑠𝑠) × 100  (2)

2.6. Stability studies
The stability tests of EM-loaded films were carried out at 25 ºC (room temperature) and 4 ºC (fridge temperature) for 75 
days. For this purpose, samples were collected to measure the drug content spectrophotometrically at the wavelength of 
202 nm [28].
2.7. Zone of inhibition for antibacterial activities
Antibacterial activities of the prepared polymer-based formulations were evaluated against gram-positive bacteria S. 
aureus (ATCC® 25923™ and ATCC® 29213™) by measuring the inhibition zone around each film disc using disc diffusion 
methodology. MHA plates were seeded with 0.1 mL of bacteria suspensions with a bacterium count of 108 CFU/mL. Circular 
discs with a diameter of 6 mm were obtained from the films and placed on the MHA medium previously inoculated with 
the test bacteria. The agar plates were incubated at 35 °C for 24 h and the inhibition zones of the developed formulations 
were determined [29].

3. Results and discussions
3.1. Characterization
The SEM images of the EM-loaded blank (E-EM.f and P-EM.f) and crosslinked (EB-EM.f and PB-EM.f) films are shown 
in Figure 1. The P-EM.f sample displayed a smooth and even surface. Likewise, the E-EM.f micrographs revealed a slightly 
homogenous surface with some nanopores corresponding to the application of the mixture of water-ethanol as the solvent. 
Hjartstam et al. fabricated EC film by dissolving EC powder in various mixtures of water/ethanol compositions and 
reported that the film porosity increases with the elevation of water content [30]. The PB-EM.f film had a comparatively 
smooth surface texture, which showed that BA was scattered homogenously, improving the surface integrity. On the other 
hand, the presence of BA in the EB-EM.f film formed some circular bubbles instead of pores on the film’s surface. Also, the 
SEM micrographs indicated the presence of some insolubilized EM particles on the surface of the films.

Figure 2 presents the FTIR spectra of the fabricated films. For the P.f sample, an absorption peak was observed around 
the wavenumber of 3525 cm–1, which is ascribed to the vibrations of hydroxyl groups, while the peak at 1720 cm–1 is 
attributed to the stretching of the C=O group. Also, the C–H bond vibrations resulted in a sharp band at 2954 cm–1 [31]. 
The FTIR spectra curve of pure E.f sample demonstrated peaks at 3470, 2923, 1466, and 1384 cm–1 corresponding to 
OH, CH, CH2, and CH3 bond stretching vibrations, respectively. The formulations containing boric acid exhibited a peak 
within the region of 1050–1150 cm–1, suggesting the formation of B-O-C bonds [32,33]. The FTIR spectra of EM indicated 
absorbances at 3480, 2974, and 1715 cm−1, corresponding to OH, CH, and C=O stretching vibrations, respectively. 
However, there was no discrete band in the blank and EM-loaded films (E-EM.F, P-EM.F, EB-EM.F, and PB-EM.F), which 
may be related to lack of chemical reaction between EM and the polymers [34].
3.2. Swelling index and thickness
The swelling index (SI) of the developed films was measured at room temperature. The results depicted by Figure 3 
revealed that the EB.f and PB.f samples have had a lower SI compared to E.f and P.f films, which can be related to the 
crosslinking and filling effect of BA [25]. Accordingly, BA increases the viscosity of the polymeric film and fills the pores 
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Figure 1. SEM images of the fabricated films; (a) P-EM.f, (b) PB-EM.f, (c) E-EM.f, and (d) EB-EM.f.
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of the polymeric films. As shown in Figure 3, the introduction of BA to the PVA film (PB.f)  caused a more significant 
reduction in SI compared to BA-crosslinked EC samples (EB.f), which may be associated with the stronger crosslinking 
effect of BA with PVA. 

As a drug delivery platform, the developed films should exhibit an even surface, which guarantees consistent mechanical 
properties and drug distribution. For this purpose, an equal amount of homogenous gels was poured into the Petri dishes 
located on an even surface to form the films. Figure 3 depicts the mean thickness values of the manufactured films varying 
from 80.33 to 107.33 mm. Also, insignificant standard deviation values verify the homogenous formulation of the films, 
except for the EB.f sample, which has a relatively diverse thickness distribution [7].
3.3. In vitro drug release
The EM loading quantities for the developed formulations are tabulated in Table 1. According to this table, drug loading 
decreased upon the addition of BA. Figure 4 demonstrates the in vitro EM release profile of all samples carried out in 
phosphate buffer at 25 °C (room temperature) and 32 °C (simulated skin temperature). The cumulative EM release was 
found to be 0.36, 0.20, 0.30, and 0.25 mg/mL in the first hour for P-EM.F, PB-EM.F, E-EM.F, and EB-EM.F formulations, 
respectively, at 25 °C. As observed, all formulations exhibited a rapid drug release in the first hours, followed by a sustained 
drug release path, which is desirable for the treatment of skin infections, considering the initial pathological load. P-EM.F 
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and PB-EM.F samples released more than 0.35 mg/mL of the drug during the first and eighth hours, respectively, which 
was sustained with a slower rate after 15 h. However, E-EM.F and EB-EM.F samples reached this milestone at 2 and 22 h 
at the temperature 25 °C, respectively, promising a finely controlled drug release.

The initial burst EM release may result from the presence of drug particles on the surface of the films, which was 
confirmed by the SEM micrographs. Various parameters affect the drug diffusion from a polymeric matrix, including 
temperature, degradation of the polymeric matrix, and the solubility behavior of drug and polymer. In this research, 
the model drug (EM) was hydrophobic, retarding its release from the polymeric matrix with a slow-release path when 
compared to hydrophilic drugs. It was shown that EC-based drug formulations have a prolonged drug release profile due 
to the hydrophobic nature of the polymeric carrier, leading to a lower erosion rate of EC films in aqueous environments. As 
a result, the entrapped EM molecules in the EC polymeric matrix diffused slowly to the phosphate buffer medium. On the 
other hand, EM had a shorter release path using PVA carrier due to the fast dissolution of the polymer in aqueous solutions 
[35]. For all of the formulations, the EM release rate was higher at 32 °C compared to 25 °C [36]. This phenomena can be 
attributed to the lower stability of EM at higher temperatures [23,37]. 

The introduction of BA as the crosslinking agent formed hydrogen bonds, which were weakened at higher temperatures 
and led to a reduction of the crosslinking effect [38]. Further, PB-EM.f and EB-EM.f films freed EM at a slow rate in 
comparison to P-EM.f and E-EM.f formulations, respectively. BA could enhance the viscosity and surface tension of the 
system, delaying drug diffusion in the polymeric matrix. Also, BA lowered the dissolution rate and increased the water 
resistance of PVA [25]. Subrahmanyam et al. prepared theophylline tablets using guar gum and borax modified guar 
gum as a colon DDS. It has been reported that borax-crosslinked guar gum had a slower release path, explained by the 
enhancement of the viscosity [39]. In another study, Martinez et al. studied the effect of the glutaraldehyde, genipin, and 
disulfide as crosslinking agents on the in vitro drug release of protein polymers. The results revealed that crosslinked films 
exhibited a reduced initial burst release of rapamycin [40]. Various polymers can be used in film formulations as DDSs, 
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depending on the release pattern required for the treatment of infections. The obtained drug release results indicate that 
the introduction of BA as the crosslinking agent successfully improved the sustained release of EM using both polymeric 
carriers.

Kown et al. employed EM-loaded PVA films as a controlled transdermal drug release system for acne treatment. In 
their study, they added polyethylene glycol600 and glycerol to the fabricated films to extend the EM release profile. The 
release of EM from blended polyethylene glycol/PVA showed an initial burst release with a sustained release for the next 
hours, which was similar to the drug release behavior of PB-EM.f sample [41].
3.4. Stability
The stability of EM in the developed EM-loaded films at room (RT, 25 °C) and fridge (FT, 4 °C) temperatures was assessed 
for 75 days. The aqueous drug solution was used as the control group and sealed to prevent light irradiation and drug 
degradation. After 75 days, the stability of the control sample was found to be 97.2 ± 2.12% and 97.67 ± 1.49% at RT and 
FT, respectively. As observed in Figure 5, the drug was stable over 75 days of storage in all formulations. Further, there was 
no difference in the EM stability of the drug-loaded films at both investigated temperatures, eliminating a low-temperature 
storage requirement.

However, it was found that borate ion accelerates the degradation of some drugs such as benzylpenicillin, carbenicillin, 
cefotaxime, atropine, hydrocortisone, indomethacin, methotrexate, oxytetracycline, minocycline, and 5-fluorouracil [42]. 
In the present study, it was shown that BA, as a borate compound, did not have any negative effect on the EM stability.
3.5. In vitro antibacterial assay
The antimicrobial activity of the prepared films was investigated against methicillin-susceptible S. aureus (ATCC® 25923™), 
and oxacillin sensitive S. aureus (ATCC® 29213™) by Kirby Bauer disc diffusion tests (Figure 6). As it was shown in Table 
2, EB.f and PB.f formulations did not exhibit any antibacterial activity against (ATCC® 25923™) and (ATCC® 29213™). 
Boric acid as a crosslinking agent forms bonds with the polymers via hydroxyl groups. Also, it was demonstrated that an 
increase in the number of free B-OH groups directly improves the antibacterial effect [19,43,44]. However, in the present 
study, BA may be surrounded by PVA and EC molecules, which reduces the number of free B-OH groups, leading to the 
inhibition of the bacterial growth [45].
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Accordingly, E-EM.f and P-EM.f samples had similar antibacterial effects against (ATCC® 25,923™) and (ATCC® 
29,213™), with inhibition zones of 30 and 38 mm, respectively. However, BA demonstrated synergistic antibacterial activity 
[46], noncrosslinked films expressing a larger inhibition zone compared to crosslinked formulations. Further, the EB-EM.f 
sample showed a greater inhibition zone against both bacteria in comparison with PB-EM.f. These may be related to the 
crosslinking effect of BA on the polymers, retarding EM diffusion. As shown in Figure 4, BA delayed EM diffusion from 
the polymeric matrix.

4. Conclusions
In the current study, BA-crosslinked EC and PVA films were developed for topical drug delivery. The effect of BA was 
examined on the morphological structure, physicochemical properties, drug release, stability, and antibacterial activity 
of EM-loaded EC and PVA films. The results showed good compatibility between EM particles and polymeric films. The 
drug was stable in all formulations after 75 days, offering exceptional drug stability, regardless of storage conditions. The 
introduction of BA to the PVA and EC films not only managed to improve their swelling behaviors but also extend the 
drug release path, reducing the frequency of dressing change. The results obtained from the present study suggest that 
BA-modified EC and PVA films can be considered as efficient choices for various real-world topical DDSs without the 
side effects of conventional drug formulations. Ultimately, BA, as a cost-effective β-lactamases inhibitor, can be applied in 
conjunction with other antibiotics for combating bacterial resistance, which requires further investigations.
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Table 2. Antibacterial activity of the developed formulations and standard antibiotic.

Strains Sensitivity diameter (mm)

Samples Standard antibiotic

PB.f P-EM.f PB-EM.f EB.f E-EM.f EB-EM.f EM 15

S. aureus ATCC25923 0 30 27 0 30 32 30
S. aureus ATCC29213 0 38 22 0 38 30 33
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