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1. Introduction
Cellulose, the most common polymer in nature, is built of β-D-glucopyranose units connected by β-1,4-glycosidic bonds 
[1,2]. This polysaccharide possesses desired properties, such as stiffness, low cost, strength, and high thermal stability [3]. 
Moreover, cellulose is obtained from sustainable and renewable sources, which in comparison to thermoplastics, has a 
positive impact on the environment. Thus, due to increasing problems connected with petroleum deficit and pollutions 
caused by synthetic polymers, cellulose stands out as a green alternative in obtaining sustainable materials. Indeed, the 
incorporation of cellulose as a nonabrasive and nontoxic matrix in its composites provides a low-density and low-weight 
final product [3,4]. Over recent years, special attention has been focused on the preparation of blends containing cellulose 
and thermoplastics, which can be beneficial, especially for the environment [5–10]. This has allowed the development of 
materials with improved properties, such as the introduction of cellulose fibers into synthetic polymers, which increased 
the strength and stiffness of the final product [6]. Moreover, incorporating thermoplastics into cellulose can change the 
surface properties; for example, hydrophobicity, which is crucial for applications in paper diagnostics [11–13]. Going 
one step further and developing cellulose/thermoplastic-metal nanocomposites provides hybrid materials exhibiting new 
advantageous properties coming from the metal nanoparticles [14,15]. Since nanoparticles have found wide applications 
in fields such as biology [16], medicine [16,17], and industry [18], cellulose-based metal nanocomposites also have begun 
to be used in paper diagnostics [13], catalysis [19], and as antimicrobial materials [20]. 

Preparation of cellulose/thermoplastic composites usually involves the use of twin screw extruder [5,6,8,9] or toxic 
solvents [7]. Thus, obtaining cellulose/thermoplastic-metal nanocomposites is usually an expensive and multistep process, 
consisting of the reduction of metal ions by reducing agents in a cellulose matrix, and then the incorporation of cellulose-
metal nanoparticles into the thermoplastics [14,15]. Simpler and greener methods for the preparation of nanoparticles [21–
23] and cellulose-metal, cellulose/thermoplastic-metal nanocomposites [12] have been proposedby mechanochemistry.
The mechanochemical approach is usually an environmentally-friendly process that excludes the usage of hazardous 
and toxic reagents and solvents, and stands for green chemistry principles [24]. Moreover, techniques such as solid-state 
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mechanical milling enable the preparation of highly mixed blends, often composed of immiscible polymers [25–29]. 
Enhancing the compatibilization and the degree of dispersion of the blends can be additionally achieved by increasing the 
milling time and conducting the milling process under cryogenic conditions [26–29]. Ball-milling can also be applied in 
the preparation of cellulose/thermoplastic composites, such as cellulose-maleated polypropylene and cellulose-maleated 
polyethylene, with improved mechanical properties in comparison to the same products formed by melt-mixing [30,31]. 
Thus, the cryomill arose as an alternative way of producing multifunctional polymeric materials, in which many problems 
faced in other blending strategies are avoided.

In the scope of this work, new cotton/polyethylene-, and cotton/polypropylene-Au nanocomposites were prepared by 
cryomilling (Figure 1). It has already been reported that, during the mechanochemical treatment of cellulose and other polymers, 
covalent bonds are broken, resulting in the formation of mechanoradicals [12,32–34]. Moreover, these radicals were found 
to be relevant in driving further reactions [12,34–36], or stabilizing chemical species on the polymer surface [37]. Similarly, 
herein, by the cryomilling of commercially available cotton and synthetic polymers, mechanoradicals were formed and used in 
the reduction of Au3+ to Au nanoparticles (Au NPs) (Figure 1). The resulting cotton/thermoplastic-Au nanocomposites were 
fully characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy 
(XPS). Recently, the preparation of robust and selective nanocatalysts has gained increasing attention [38,39]. Among them, 
cellulose-, and thermoplastic-based Au nanocomposites were reported as catalysts used in various organic transformations 
[19,40–42]. Nevertheless, the main concern in the preparation of these types of nanocatalysts is achieving the fine stabilization 
of Au NPs, and good deposition of small Au NPs, preventing them from aggregation. The main factors impacting the above 
issues are the structures and surface functional groups of the polymers supporting the nanoparticles [40–42]. Therefore, well-
designed polymer matrices, which enable good access to Au NPs, area key parameter in conducting successful catalysis. In 
this work, the catalytic activity was also evaluated, and cotton/thermoplastic-Au nanocomposites were successfully involved 
in the catalytic transformation of 4-nitrophenol to 4-aminophenol, showing the potential of cotton/PP and cotton/PE as 
nanoparticle matrices. Moreover, the surface properties of the prepared nanocomposites were studied via contact angle (CA) 
measurements. The incorporation of higher amounts of thermoplastics led to higher hydrophobicity of the blends.

2. Results and discussion
2.1. Synthesis and characterization of the cotton/thermoplastic-Au nanocomposites
Cotton/thermoplastic-Au nanocomposites were prepared by cryomilling cotton with corresponding polymer (cotton/
thermoplastic ratio equal to 1:1 w/w (cotton-PP-Au 1, cotton-PE-Au 1) and 3:1 w/w (cotton-PP-Au 2, cotton-PE-Au 2)). It 
was previously reported that the highest amount of cellulose mechanoradicals is formed after 30 min of milling under cryo 
conditions (2.65 × 1018 radicals per gram of cotton) [43]. Moreover, the structural and morphological changes of cellulose, 
polyethylene, and polypropylene, caused by milling at low temperatures (reduction of the particle size and molecular 
weight, changes in crystallinity, etc.), were also previously studied in detail [43,44]. In a typical experiment, samples were 
milled at 30 Hz for 30 min. After milling, HAuCl4 solution in H2O (3 mL, 5.1 mM) was added onto ground cotton/
thermoplastic samples and the mixtures were stored in the dark [at this point, it is important to mention that the control 
experiments were undertaken, nonmilled samples were left in the metal ion solutions, and no deposition of the metal 

Figure 1. Preparation of the cotton/thermoplastic-Au nanocomposites. In the first stage, thermoplastic 
(PE or PP) and cotton were cryomilled for 30 min at 30 Hz at 77 K. Next, HAuCl4 solution in H2O (3 
mL, 5.1 × 10–3 M) was added to the milled samples, resulting in the formation of Au NPs in the cotton/
thermoplastic matrices.
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NPs was observed, as verified by high-resolution XPS (HIRES XPS)]. In order to analyze the forming nanocomposites, 
small amounts of samples were taken after 1 and 2 weeks of waiting, and then the powders were washed to remove the 
remaining precursor solutions, and dried. It is worth mentioning that while storing the cotton/thermoplastic blends in the 
Au ion solutions, the color of the powders changed from white to purple, indicating the formation of Au NPs in the cotton/
thermoplastic matrices. However, SEM images of cotton/thermoplastic-Au nanocomposites after 1 week of storing them 
in the Au ion precursor solutions, indicated very low concentration of Au NPs formed in the matrices. Therefore, in order 
to obtain higher deposition of the Au NPs, longer storage time was necessary. After 2 weeks of waiting, SEM images of 
the cotton/thermoplastic blends clearly showed the formation of nanoparticles as bright spots in the cotton/thermoplastic 
matrices (Figure 2). Nanoparticles were finely distributed in the blends and more importantly, they did not grow larger 
with longer waiting times. The lack of aggregation (even after weeks of storage) indicated that the nanoparticles were well-
stabilized in the cotton/thermoplastic matrices. Indeed, it has been well-described that the porous structure of PE and PP 
has a stabilizing effect on nanoparticles [45], and as well, the porous cellulose matrix stabilizes nanoparticles as a result of 
strong secondary bonding between the NPs and the ether and hydroxyl groups present in cellulose [46]. 

In order to confirm the deposition material in reduced metallic form, energy-dispersive X-ray spectroscopy (EDX) 
spectra, HIRES XPS, and XRD analyses were performed. Thus, the EDX spectra of the nanocomposites showed the presence 
of Au atoms (signal at 2.12 eV), and no signals that could be attributed to the corresponding counter ions in the metal ion 
precursors (Figure 2). The HIRES XPS spectra of the Au4f region are presented in Figure 3. For the cotton/PP-Au and 
cotton/PE-Au nanocomposites, 2 peaks arising from the spin orbit splitting of the Au 4f7/2 and 4f5/2 levels were observed. 
The binding energies of the Au 4f5/2 electrons appeared at approximately 87.88 eV, and the binding energies of the Au 
4f7/2 electrons were at approximately 84.50 eV. These values matched the literature reports for Au in metallic state [47]. 
Additionally, no peaks coming from the Au3+ (86.9 eV and 90.6 eV) present in the Au ion precursors were detected [48,49].

XPS measurements were also used to estimate the atomic and weight percentages of the Au NPs present in the 
nanocomposites (Table 1). It turned out that the atomic percentages of Au in the cotton/PP-Au nanocomposites were 
slightly higher than those in the cotton/PE-Au nanocomposites, which may indicate that PP stabilized the Au NPs better 
than the PE matrix (Table 1).

XRD analysis of the nanocomposites also supported the presence of the metallic state of Au (Figure 4). The diffraction 
lines of Au present in the cotton/thermoplastic-Au nanocomposites appeared at approximately 2θ: 38.2°, 44.3°, 64.5°, and 
77.2°corresponding to the crystallographic planes of (1 1 1), (2 0 0), (2 2 0), and (3 1 1), respectively. These diffraction lines 
indicated the face-centered cubic structure of the metallic Au NPs [50].

The mechanism of metal ion reduction by cellulose radicals has already been reported [12]. Cellulose peroxy radicals 
undergo transformations leading to cellulose oxidation with the concurrent reduction of Au3+ to Au NPs (Figure 5) [12]. 
Milling of polyethylene causes the formation of primary radicals, which transform into more stable secondary radicals 
(Figure 5) [51]. These radicals may reduce Au3+ to Au NPs, but may also transform into peroxy radicals, which can also 
cause the reduction of Au ions, similar to cellulose radicals (Figure 5) [12,51].

For future applications of nanocomposites, it is very important that cellulose and thermoplastic chains are well-
mixed with each other and also, that Au NPs are equally distributed within the whole sample. Thus, to check whether fine 
distribution of the thermoplastics in the cellulose and Au NPs among the matrices takes place, elemental mapping by EDX-
SEM analysis was performed (Figure 6). All of the maps confirmed the presence of C, O, and Au, and showed that the cotton 
and PP or PE mixed well with each other. Fine mixing of the components of the blends can be additionally supported by the 
XPS survey, in which peaks arising from both C 1s and O 1s were present, even after weeks of storage (Figure 3).
2.2. Wettability of the cotton/thermoplastic-Au nanocomposites
It has already been shown that by the application of mechanochemistry, hydrophobicity of the blends containing cellulose and 
polystyrene can be regulated [12]. Tuning the surface properties of such nanocomposites can be crucial for their application 
in paper diagnostics [11,13]. Therefore, the same strategy was used herein, by blending the cotton with hydrophobic PP or 
PE with different weight ratios, it was possible to increase and tune the CAs. Thus, the CAs of cotton/PP-Au 2, and cotton/
PE-Au 2 were equal to 85.8° ± 5.3° and 80.3° ± 4.6°, respectively (Figure 7). When the concentration of PE or PP increased 
to 50%,the CAs increased to 92.8° ± 2.8° for cotton/PP-Au 1 and 90.0° ± 4.2° for cotton/PE-Au 1 (Figure 7).
2.3. Catalytic activity of the cotton/thermoplastic-Au nanocomposites
The reduction of 4-nitrophenolate (4-NP) to 4-aminophenolate (4-AP) with NaBH4 serves as a model reaction in order 
to investigate the catalytic performance of metal nanoparticles [19]. This transformation was monitored by UV-Vis 
spectroscopy, where the decrease of the peak absorbance at 400 nm (corresponding to 4-NP) and the emergence of a new 
peak at 300 nm (corresponding to 4-AP) was followed [52–54]. The change of these characteristic peaks within the time was 
crucial to understand the rate of the reaction.
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In this study, the cotton/PP-Au 2 and cotton/PE-Au 2 powders were used as catalysts. Thus, in a typical experiment, 
NaBH4 (0.375 mL, 0.47 M in H2O) was added to a solution of 4-NP (3 mL, 0.30 mM in H2O). The mixture turned bright 
yellow, and a strong peak at 400 nm appeared, corresponding to the formation of 4-nitrophenolate ions (Figures 8a and 
8b). After the introduction of the cotton/thermoplastic-Au nanocomposite powder (Au content in 1.0 mg of composite: 
8.6 µg (cotton/PP-Au 2) and 5.3 µg (cotton/PE-Au 2)), the intensity of the absorption peak of 400 nm decreased, together 

Figure 2. EDX spectra (shown in red) and SEM images of a) cotton/PE-Au 1, b) cotton/PE-Au 2, c) cotton/PP-Au 1, and 
d) cotton/PP-Au 2, prepared by grinding cotton and thermoplastic at 30 Hz and 77 K for 30 min, and then adding HAuCl4 
solution in H2O (3 mL, 5.1 mM) (see Experimental section for more details).
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with the appearance of a new peak at 300 nm caused by the conversion of 4-NP to 4-AP (Figure 8b). It is necessary to 
point out that the cotton/PP and cotton/PE powders did not have catalytic activity under the testing environment and the 
reduction of 4-NP in the presence of NaBH4 did not take place. Thus, the Au NPs supported on the cotton/thermoplastic 
matrix were needed to trigger the catalytic reaction [55]. 

Since the reduction was conducted under conditions where NaBH4 was used in great excess in comparison to the content 
of 4-NP, the reaction can be considered as independent of the NaBH4 concentration. Thus, it was postulated that the 4-NP 
transformation into 4-AP was following Langmuir-Hinshelwood mechanism, and it was a pseudo-first-order reaction [53,56].

Figure 3. HIRES Au 4f XPS spectra (left column) and XPS survey (right column) of a) cotton/PE-Au 1, b) cotton/PE-Au 2, 
c) cotton/PP-Au 1, and d) cotton/PP-Au 2 nanocomposites, prepared by grinding cotton and thermoplastic at 30 Hz and 77 
K for 30 min, and then adding HAuCl4 solution in H2O (3 mL, 5.1 mM) (see Experimental section for more details). These 
spectra confirmed the metallic nature of the Au NPs.
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Figure 8c provides the plots of ln(C/C0) against time (t) during the reduction of 4-NP, where C is the concentration of 
4-NP at the designated time and C0 is the initial concentration of 4-NP at t = 0. A good linear correlation of ln(C/C0) vs. 
time indicated that the catalysis proceeded with pseudo-first-order behavior and also allowed the determination of the rate 
constant (k). Thus, the k values were equal to 0.0017 ± 0.0004 s–1 and 0.0013 ± 0.0002 s–1 for cotton/PP-Au 2 and cotton/
PE-Au 2, respectively (Table 2, entries 3 and 4). Moreover, in these plots (Figure 8c), the induction period of the 4-NP 
reduction can be observed. The reason for that lies in the mechanism of the reaction, which was based on the adsorption 
of hydrides and 4-nitrophenol on the Au surface, followed by the reduction and desorption of the product [57]. The rate-
determining step of this process was a B-H bond cleavage to give [Au]-H species, which were responsible for the reduction 
of the 4-nitrophenol. Since it took some time for [Au]-H to form, the reaction started after a delay, which caused the 
induction period. Additionally, the catalytic activity of the cotton/thermoplastic-Au nanocomposites was compared with 
other cellulose-based composites, which were prepared by conventional methods (Table 2). However, the constant rate 
of the 4-nitrophenol reduction catalyzed by metal nanoparticles depends on many factors, such as the type of polymeric 
support, and size and shape of the nanoparticles or stabilizing agents, which is why the comparison was only approximate 

Table 1.Atomic and weight percentages of Au in the cotton/thermoplastic-Au, and 
cotton-Au nanocomposites, as determined by XPS (see Experimental for more 
details).

Nanocomposites at.% wt.% Au content in 1.0 mg of 
nanocomposite (µg)

Cotton/PE-Au 1 0.020 ± 0.001 0.31 3.1
Cotton/PE-Au 2 0.034 ± 0.004 0.53 5.3
Cotton/PP-Au 1 0.059 ± 0.005 0.91 9.1
Cotton/PP-Au 2 0.055 ± 0.007 0.86 8.6
Cotton-Au 0.120 ± 0.025 1.69 16.9

Figure 4. X-Ray diffractograms of a) cotton/PE-Au 1, b) cotton/PE-Au 2, c) cotton/PP-Au 1, and d) cotton/PP-Au 2 
nanocomposites, prepared by grinding cotton and thermoplastic at 30 Hz and 77 K for 30 min, and then adding HAuCl4 
solution in H2O (3 mL, 5.1 mM) (see Experimental section for more details). Diffractograms confirmed the metallic nature of 
the Au NPs, as shown by the presence of the signals at the star-labelled diffraction angles.
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Figure 5. Mechanism of Au3+ reduction by mechanoradicals: a) primary polyethylene radicals formed upon cryomilling 
recombined to secondary radicals, which reduced the Au ions to Au NPs. b) Cryomilling of polypropylene caused the 
formation of radical pairs, which may reduce Au ions to their metallic form. c) First, cellulose peroxy radicals abstract H˙ 
from the CH2 and CH groups present in the cellulose. Next, unstable peroxides decomposed to alkoxy (CO˙), and hydroxyl 
(HO˙) radicals. Finally, alkoxy radicals converted to C-centered radicals, which reduced the Au ions to Au NPs [12].

Figure 6. SEM-EDX elemental mapping of a) cotton/PE-Au 1, b) cotton/PE-Au 2, c) cotton/PP-Au 1, and d) cotton/PP-Au 2. 
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[19,58]. Thus, the cotton/thermoplastic-Au nanocomposites displayed similar catalytic activity to the Au NPs supported 
on the cellulose nanocrystals (Table 2, entries 1 and 2). However, lower catalytic activity was observed in comparison to the 
Au NPs decorated on the cotton and microcrystalline cellulose (MCC) matrix (Table 2, entries 5 and 6), which might have 
been caused by 2 factors: a higher concentration of Au deposited on the cotton and MCC in comparison to the cellulose/
thermoplastic nanocomposites, and lower wettability of the cellulose/thermoplastic blends than the hydrophilic MCC-, 
and cotton-supported Au NPs.

3. Experimental
3.1. Materials
Cotton was obtained from a local pharmacy. Hydrogen tetrachloroaurate trihydrate was purchased from abcr GmbH 
(Karlsruhe, Germany). Sodium borohydride, 4-nitrophenol, polypropylene (average MW = 280,000), and polyethylene 
(average MW = 550,000) were purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA). 
3.2. Instrumentation
3.2.1.Cryomill
Milling under cryo conditions of the cellulose and thermoplastic samples was performed using a Retsch Cryomill with an 
integrated cooling system (Retsch GmbH, Haan, Germany).
3.2.2. Scanning electron microscopy and energy dispersive X-ray analyses
The surface morphology of composites was imaged and analyzed with a Quanta 200F model SEM (Thermo Fisher Scientific 
Inc., Waltham, MA, USA) with an accelerating voltage of 15 kV.
3.2.3. X-ray photoelectron spectroscopy
XPS spectra were recorded on an ESCALAB 250 Thermo Fisher Scientific K-Alpha X-ray photoelectron spectrometer. 
Photoemission was stimulated by a monochromatic Al K alpha radiation (1486.6 eV). Survey scans and high-resolution 
scans were collected using pass energies of 200 eV and 30 eV, respectively. Binding energies in the spectra were referenced 
to the C1s binding energy set at 284.8 eV. 
3.2.4. X-ray diffraction
XRD spectra were recorded on a X’Pert PRO Malvern Panalytical model X-ray diffractometer (Malvern Panalytical B.V., 
Almelo, Netherlands) with Cu Kα radiation, 40 mA current, and 45 kV accelerating voltage.
3.2.5. UV-Vis spectroscopy
The absorption spectra were recorded using a Cary 100 Bio UV-Visible spectrophotometer (Varian, Inc., Palo Alto, CA, USA).

Figure 7. Water CA of a) cotton/PP-Au 2 (left), cotton/PP-Au 1 (right), and b) cotton/
PE-Au 2 (left), cotton/PE-Au 1 (right).
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Figure 8. a) Transformation of 4-nitrophenolate to 4-aminophenolate with cotton/thermoplastic-Au 2 (1 
mg of composite in powder form) used as a catalyst. b) UV-Vis absorption spectra during the catalytic 
cycle in the presence of cotton/PE-Au 2 (left) and cotton/PP-Au 2 (right). c) The reaction proceeds with 
pseudo-first order behavior, as indicated by the linear ln(Ct/C0) vs. time plots in the reaction catalyzed by 
cotton/PE-Au 2 (left) and cotton/PP-Au 2 (right).

Table 2. Comparison of the cellulose-based nanocatalysts in the reduction of 4-nitrophenol. 

Entry Catalyst Temperature (K)
Molar ratio

k (s–1) Reference
NaBH4 4-NP Au

1 CNC-PAMAM-Aua 298 5000 12.5 1 0.0020 Chen et al. [54]
2 AuNPs@CNsb 298 9720 30 1 0.0021 Wu et al. [59]
3 Cotton/PP-Au 2 298 6295 32 1 0.0017 Current study
4 Cotton/PE-Au 2 298 6518 33 1 0.0013 Current study
5 Cotton-Au 298 2039 10 1 0.0021 Current study
6 MCC-Auc 298 2200 11 1 0.0080 Kwiczak et al. [12]

aPolyamidoamine dendrimer grafted cellulose nanocrystals,bAu NPs on cellulose nanocrystals, cmicrocrystalline 
cellulose.
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3.2.6. Contact angle
CA measurements were recorded on the Contact Angle System OCA from Data Physics Corp. (San Jose, CA, USA). 
3.3. Methods 
3.3.1. Preparation of the cotton/thermoplastic-Au nanocomposites
First, 300 mg of cotton and thermoplastic (polypropylene or polyethylene) were cryomilled at 77 K for 30 min at 30 Hz 
in the presence of 6 zirconia balls (with 10.06 mm diameter) in a zirconia sample chamber. Next, 3 mL, 5.1 × 10–3 M of 
HAuCl4 solution in H2O was added to the chamber and the mixture was mixed at 5 Hz for 30 s. After that, the mixture was 
diluted to 6 mL with H2O, placed in a polypropylene tube, and stored in dark for 14 days. Finally, the solid was washed 
with H2O and dried.
3.3.2. Atomic and weight percentage calculation of Au NPs in the nanocomposites
Atomic percentages (at.%) of Au in the nanocomposites presented in Table 1 were calculated based on the area of the peak 
evaluated from the XPS survey for each nanocomposite. The following sensitivity factors were used for the calculations: 
2.881 (O1s), 1.000 (C1s), and 20.735 (Au4f). The atomic percentage was an average of at least 5 independent XPS 
measurements. The weight percentage (wt.%) was calculated by the following equation: 

wt.% x = 
(𝑎𝑎𝑎𝑎.%	𝐴𝐴𝐴𝐴) ∙ (𝑎𝑎𝑎𝑎. 𝑤𝑤𝑎𝑎. 𝐴𝐴𝐴𝐴)

(𝑎𝑎𝑎𝑎.%	𝐴𝐴𝐴𝐴) ∙ (𝑎𝑎𝑎𝑎. 𝑤𝑤𝑎𝑎. 𝐴𝐴𝐴𝐴𝐴𝐴) 	+	(𝑎𝑎𝑎𝑎.%	𝐶𝐶) ∙ (𝑎𝑎𝑎𝑎. 𝑤𝑤𝑎𝑎. 𝐶𝐶) +	(𝑎𝑎𝑎𝑎.%	𝑂𝑂) ∙ (𝑎𝑎𝑎𝑎. 𝑤𝑤𝑎𝑎. 𝑂𝑂) ∙ 100%, 

where at.% Au is the atomic percentage of Au in the nanocomposite, at.% C is the atomic percentage of C in the 
nanocomposite, at.% O is the atomic percentage of O in the nanocomposite, at.wt. Au is the atomic weight of Au, at.wt. C 
is the atomic weight of C, and at.% wt. O is the atomic weight of O.
3.3.3. Reduction of 4-nitrophenol
To a solution of 4-NP in H2O (0.30 mM, 3 mL), a solution of NaBH4 in H2O (0.47 M, 0.375 mL) was added. Next, 1.0 mg of 
cotton/thermoplastic-Au nanocomposite [total metal content: 8.6 µg (cotton/PP 2), 5.3 µg (cotton/PE 2)] was added. The 
reaction was conducted in a quartz UV cuvette at room temperature and monitored using a UV-Vis spectrophotometer. 
Standard deviation was calculated based on at least 3 independent measurements.
3.3.4. Contact angle measurements
First, 70 mg of cotton/thermoplastic-Au nanocomposite powders were pressed into pellets. Next, the CAs of 3 µL water 
drops on the pellet surfaces were measured 10 times for each pellet at room temperature.

4. Conclusion
In this work, the preparation of novel cotton/PP-Au and cotton/PE-Au nanocomposites was demonstrated. In the first 
stage, cellulose and thermoplastic mechanoradicals were formed by cryomilling, which were used afterwards in the 
reduction of the Au ions into Au NPs. This method excluded the usage of toxic solvents, and in the preparation of the 
nanocomposites, only water was used. The Au NPs were well-stabilized in the cotton/thermoplastic matrices, and did not 
aggregate, even after weeks of storage. Moreover, the incorporation of thermoplastics into the cotton matrix with 2 different 
weight ratios changed the wetting abilities of the samples, increasing the concentration of thermoplastics from 25% to 50%, 
and increased the CAs of the nanocomposites. In addition, the cotton/PP-Au and cotton-PE-Au nanocomposites were 
successfully used as catalysts in the reduction of 4-nitrophenol to 4-aminophenol. The transformations occurred with 
satisfactory reaction constant rates.
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