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1. Introduction
Phthalate acid esters (PAEs) are widely used organic substances. Their chemical structure consists of a planar aromatic 
hydrocarbon and two fatty side chains (4-15 carbon alkyl groups, CnH2n+1) [1]. In recent years, microplastic pollution 
has caused widespread concern, and additives in plastics, such as phthalates, bisphenol A, and poly brominated diphenyl 
ethers, also enter the water environment withplastics’ physical and chemical degradation which has toxic effects on aquatic 
life [2]. As a plasticizer, PAE molecules are used widely in hundreds of daily necessities, such as commodity packaging 
bags, cleaning solutions, adhesives, and soaps [3,4]. The total amount of PAEs consumed annually worldwide is as much as 
1.5 × 1011 kg [5]. PAEs and the plastic matrix are not bonded in the form of covalent bonds but are connected by hydrogen 
bonds or van der Waals forces [6] which are easily released from products and migrate to both food and the environment, 
so they can be detected in the atmosphere [7], water [8], soil [9], and organisms [10]. PAEs are easily soluble in organic 
media but are difficult to dissolve in water, with a strong resistance to environmental degradation. In addition to acute 
and chronic toxicity to organisms, PAEs also cause “three effects” (carcinogenic, teratogenic, and mutagenic) [11,12]. The 
United States Environmental Protection Agency (EPA) listed DEHP, BBP, DBP, DEP, DOP, and DMP (Table 1) as priority 
toxic pollutants in 1977 [13]. China also suggested that DMP, DOP, and DBP should be included in the priority pollution 
control list [14].

During production and use, many PAE compounds enter the water environment through wastewater discharge, 
rainwater erosion, and atmospheric wet and dry settlement [15]; as a result, PAE concentrations in most rivers and lakes 
exceed 8.0 μg/L, over the limit of surface water environmental quality standards [16]. Due to PAE compounds’ low vapor 
pressure, their volatilization loss in the water environment is small. PAEs have strong adsorption and an affinity for 
aquatic organisms, which endangers aquatic organisms’ health [17]. With algae as the primary producer, toxic substances 
in the water environment use it as a medium to pass through the food chain to higher organisms [18]. Copepods play 
an important intermediary role in transmitting pollutants along the food chain [19]. Fish and crustaceans are the most 
dominant groups in swimming animal communities [20]. Studies have shown that PAEs can cause damage to algae’s 
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organelles and antioxidant systems, resulting in cell deformities and inhibiting algae growth [21]. Long-term exposure to 
DEHP has a certain inhibitory effect on total reproductive mass, average reproductive mass, and population growth of the 
large salamander F3 generation [22]. PAEs also have harmful effects on the reproductive and endocrine systems of fish 
and crustaceans [23], and Patyna found that continuous exposure to low DBP concentrations seriously affect the fertility 
of Japanese sturgeon offspring [24]. The above literature mainly focuses on PAEs’ acute toxicity in a certain organism, and 
only focuses on some PAE molecules in terms of their exposure pathway, toxicity, and performance of a single biological 
receptor. The research on the toxicity’s molecular mechanism is insufficient.In view of PAEs’ increasingly widespread 
application from an environmental pollution control perspective, it is important to carry out multireceptor low-toxicity 
activity PAE molecule joint regulation. Therefore, algae, invertebrates, and fish must be included in toxicological data, this 
article selects four common aquatic organisms (green algae, daphnia, mysid, and fish) that represent different nutritional 
levels in the water environment to study PAEs’ comprehensive toxicity effects on four aquatic organisms and modify 
multireceptor low-toxicity PAE molecule.

QSAR, as a technology to quantitatively reveal compounds’ toxicity and biological activity, can use the validated 
pharmacophore model  [25]. Song et al. [26] proved a pharmacophore model to study the acute toxicity of six 
naphthoquinone compounds to daphnia magna. The results showed that the compounds’ hydrophobicity had a great 
effect on receptor toxicity. Wang et al. [27] used hydrophobic groups to establish a pharmacophore model of the toxicity 
of perfluoro carboxylic acids to photobacterium, and the model regression coefficient was high. Qiu et al. [28] used a 
pharmacophore model to perform hydrophobic group substitution reactions on nine common PAE molecules and 
selected derivatives, with significantly enhanced Raman characteristic vibration spectra of PAEs. Jiang [29] proved the 
pharmacophore model could construct a POPs characteristic regulation scheme for PBDEs, and carried out modification 
designs of representative homologs, which confirmed the pharmacophore model’s feasibility in molecular modification. 
Therefore, in this paper, studying the regulation scheme of the MTE of PAEs to multireceptors can be based on above 
pharmacophore model design method. In view of the limitation of the pharmacophore model’s dependent variable as the 
pollutant’s single pollution effect, this paper uses a grey interconnect degree [30] to deal with the aquatic receptors’ toxicity 
values and calculate the toxicity comprehensive characterization values of PAEs to multireceptors. It is applied to the 
construction of the pharmacophore model of the MTE of PAEs and the modification design of multireceptor low-toxicity 
PAEs’ derivative molecules, which provide a theoretical basis for constructing a multireceptor comprehensive toxicity 
effect model of PAEs.

2. Materials and methods
2.1. Sources of data
The ECOSAR toxicity prediction module in EPI Suite software was used to predict the toxicity of 14 PAEs molecules to 
four organisms (green algae, daphnia, mysid, and fish),expressed as the concentration for a 50% maximal effect (EC50) or 
50% lethal concentration (LC50), as shown in Table 2.

Table 1. Full names and abbreviations of 23 PAEs molecules.

Abbreviations Full name Abbreviations Full name

DEHP Bis (2-ethylhexyl) phthalate DEP Diethyl phthalate
BBP Benzyl butyl phthalate DOP Dinoctyl phthalate
DBP Dibutyl phthalate DMP Dimethyl phthalate
DIBP Diisobutyl phthalate DIDP Diisodecyl phthalate
BMPP Bis (4-methyl-2-pentyl) phthalate DHXP Dihexyl phthalate
DAP Diallyl phthalate DIHXP Diisohexyl phthalate
DMEP Bis (2-methoxyethyl) phthalate DPP Dipentyl phthalate
DPrP Dipropyl phthalate DINP Diisononyl phthalate
DIPP Diisopentyl phthalate DIPrP Diisopropyl phthalate
DNP Dinonyl phthalate DIHP Diheptyl phthalate
DUP Diundecyl phthalate DIOP Di-isooctyl phthalate
DTDP Ditridecyl phthalate
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2.2. Calculation of comprehensive characteristic values of the MTE of PAEs using the gray interconnect degree method
A gray relation analysis (GRA) is a multifactor statistical analysis method, based on the similarity or dissimilarity of 
development trends between factors, which is used to measure the degree of correlation between factors [31]. The GRA 
results were obtained by the correlation between an indicator and factors that affect the indicator because this method 
involves longitudinal averaging of gray interconnect coefficients [32]. However, the PAEs molecules (indicators)’ 
comprehensive toxicity effect on four aquatic organisms (factors) was studied in this paper. It was not necessary to obtain 
the order of the degree of influence between each factor and the indicator, which requires horizontal averaging of gray 
interconnect coefficients.

Because the dimensions of the acute toxicity prediction values of PAEs are the same, no dimensionless processing was 
required. The acute toxicity classification standard (LC50/EC50 < 1.0 mg/L) was used as the reference sequence, X0, and 
the toxicity values of four organisms to green algae, daphnia, mysid, and fish were used as the comparison sequence, Xi (i 
= 1,2,3,4), the weight of the four groups of comparison sequences was set to 25%. After obtaining the absolute difference 
between the corresponding points of the reference sequence, X0, and the comparison sequence, Xi (i = 1,2,3,4, k = 1,2,3, 
… ,14), and substituting each column’s maximum and minimum values of the absolute difference into Eq. (1) to calculate 
gray interconnect coefficients (ξ0i(k)) of the four comparison sequences (Xi) and the reference sequence (X0), where ρ is the 
resolution coefficient, ρ∈(0,1), and generally takes a value of ρ = 0.5.
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Eq. (2) was used to calculate the average value of the gray interconnect coefficients horizontally to obtain the gray 
interconnect degree, yok, of PAEs and four aquatic organisms. This was used as a comprehensive characterization of the 
MTE of PAEs, where n = 4.
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2.3. Construction method of the pharmacophore model of the multireceptor low-toxicity comprehensive effect of PAEs
The structural formulas of 14 PAE molecules were drawn by SYBYL-X2.0 software, entering the molecular construction 
mode from “sketch” in the toolbar, then optimizing the PAE molecules’ force field after drawing, selecting the molecules’ 

Table 2. Predicted acute toxicity values of 14 PAEs molecules to 4 recipient organisms.

PAEs

Green algae Daphnid Mysid Fish

96-EC50 48-LC50 96-LC50 96-LC50

mg/L mg/L mg/L mg/L

DEHP 0.00157 0.01 0.000419 0.01
DIDP 0.0000758 0.000669 0.0000115 0.000787
DNOP 0.00124 0.008 0.000317 0.008
DPP 0.111 0.463 0.067 0.327
DCHP 0.045 0.206 0.023 0.155
DUP 0.0000131 0.000138 0.00000143 0.000183
BCHP 0.149 0.602 0.095 0.417
BDP 0.006 0.032 0.0019 0.028
BMPP 0.032 0.15 0.015 0.116
BOP 0.025 0.121 0.011 0.095
DINP 0.000272 0.002 0.0000526 0.002
DIPP 0.141 0.573 0.088 0.398
DNDP 0.0000598 0.00054 0.0000087 0.000646
HEHP 0.006 0.035 0.002 0.03
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lowest energy conformation as the dominant stable conformation, optimizing each molecule’s energy in the “Tripos” force field 
with the molecular program “minimize” and selecting “Gasteiger–Huckel” from the “charges” option menu. Using Powell’s 
energy gradient method, “minimize details” was clicked, selecting the maximum number of repetitions (max. iterations) to 
10,000, reducing the energy convergence limit (gradient) to 0.005 [33]. The “gradient” value is a termination criterion and, if 
the gradient difference calculates twice consecutively below this value, the calculation is terminated and the molecular structure 
optimization is completed.

The “3D-QSAR pharmacophore model generation” module in Discovery Studio 4.0 software was used to build the 
pharmacophore model [34]. The selected model’s pharmacophore characteristics include: hydrogen bond donor (HBD), 
hydrogen bond acceptor (HBA), hydrophobic group (H), hydrophobic ring (HA), and ring aromatic (RA). The parameters for 
generating all molecular conformations were set as follows: “conformation generation” selected the best mode (best), the default 
energy cutoff of “energy threshold” was 20 kcal/mol, the “maximum conformations” was 255, the “minimum interfeature 
distance” was 1.5, the number of pharmacophore features was 0–5, and the energy threshold of each homolog to generate a 
similar conformation was 10, while other parameters adopted default values.

The “Hypo Gen” module in Discovery Studio 4.0 software was selected to evaluate the constructed pharmacophore model. 
“Cost function”, one of the model’s evaluation indicators, was used to express and evaluate the model’s complexity and chemical 
characteristics as well as errors between each model’s predicted values and experimental data. Each pharmacophore model 
had its own total consumption (total cost). According to Occam’s Razor [35],  the lower the “total cost” value, the closer it is 
to the “fixed cost” value, so the pharmacophore model is more reliable. “Configuration cost”, another important parameter, is 
determined by the model’s spatial complexity. The “configuration cost” value of a significant pharmacophore model should not 
be greater than 17 [36]. The larger the model correlation coefficient “R2” (> 0.7), the more predictive the pharmacophore model, 
and the more likely it is to meet the analytical needs [37]. In addition, “root mean square,” “fit value,” and “error” can be used as 
the pharmacophore model’s evaluation indices.
2.4. Molecular docking and quantum chemical calculation methods
Molecular docking supposes that the binding between the ligand and the receptor conforms to the “lock and key principle”, 
which satisfies the matching of spatial shape and energy, and finally obtains the optimal binding mode and stable composite 
conformation. Herein, the Lib–Dock quick docking method in Discovery Studio 4.0 softwarewas used [38]. The Poling 
algorithm performs a conformation search on the ligand molecule and then analyzes the binding site of the receptor and uses 
the grid-like algorithm to generate a series of polar and nonpolar hot spots. Finally the conformation and hot spots are matched 
with the energy and geometry to obtain the docking result. Considering that the crystalline water molecule at the binding site 
may affect the binding of ligand receptor, the water molecule at the protein binding site is eliminated when docking. “Find 
sites from receptor cavities” under the “Define” module determines the possible binding sites for ligand receptors, followed 
by selecting “user specified” in “Docking preferences”, setting the maximum saved conformation to “10”, and the rest of the 
parameters are the default values. The docking result is expressed using the “Lib–Dock score.” The magnitude of the value 
represents the strength of the binding ability. 

The quantum chemistry calculations herein are based on the Gaussian 09 software package, the computer operating system 
used is Linux, and the Gaussian calculation results are displayed using the Gauss view 5.0 program. The DFT method is used to 
calculate the reactants, products, and transition state (TS) of the primary metabolic reaction at the B3LYP/6-31G(d) basis set 
level, and the reaction energy barrier (ΔE) of the primary metabolic pathway of PAEs molecules is calculated using Eq. (3). The 
TS has only one imaginary frequency, and the reaction path is verified through the intrinsic reaction coordinate [39].

ΔE=ETS-ΣE reactant (3)

3. Results and discussion
3.1. Calculation of comprehensive characterization of the MTE of PAEs
Using the gray interconnect degree to process the original data (predicted by EPI Suite software), the absolute difference 
between the corresponding points of X0 and Xi, should be found, and the minimum and maximum values of each column’s 
absolute difference should be obtained (Table 3, for calculation validity, retaining six significant digits).

We substitute into Eq. (1) to calculate the gray interconnect coefficient ξ0i(k) of each corresponding point and then obtain 
the gray interconnect degree y0k of PAEs and four aquatic organisms from Eq. (2) (Table 4).

Comprehensive characterization values of the MTE of PAEs are seen in Table 5.
3.2. Construction and evaluation of pharmacophore model of the multireceptor low-toxicity comprehensive effect of PAEs
Herein, 14 PAE molecules were divided into 10 training set molecules used for the construction of pharmacophore 
models, and four test set molecules were used to validate the pharmacophore models.The pharmacophore models with 
good performance parameters are listed in Table 6.
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It was demonstrated that Hypo 1 had the best evaluation score among the five models. “Total cost” value (51.61) and 
“RMS” value (0.055) were the smallest, “total cost” was closest to “fixed cost” (33.636), “configuration” value was 16.834 
(<17) and “correlation” (0.85) was closest to 1, the absolute value of “error” value of the molecules was less than 2 [40], and 
was within the tolerance range. Therefore, the model is significant and meets the requirements, so Hypo 1 was selected as 
the optimal pharmacophore model. The model has a hydrogen bond acceptor, a hydrophobic group, and a hydrophobic 
ring. The test set was used to verify this pharmacophore model, the “fit values” of the PAEs molecules were high, and the 
absolute “error” values were less than 2 (shown in Table 7), which shows that Hypo 1 had a stable prediction ability for PAE 
molecules other than the training set.

Table 3. Absolute difference between X0(k) and Xi(k).

k |X0(k)-X1(k)| |X0(k)-X2(k)| |X0(k)-X3(k)| |X0(k)-X4(k)|

1 0.990000 0.998430 0.990000 0.999581
2 0.999213 0.999924 0.999331 0.999989
3 0.992000 0.998760 0.992000 0.999683
4 0.673000 0.889000 0.537000 0.933000
5 0.845000 0.955000 0.794000 0.977000
6 0.999817 0.999987 0.999862 0.999999
7 0.583000 0.851000 0.398000 0.905000
8 0.972000 0.994000 0.968000 0.998100
9 0.884000 0.968000 0.850000 0.985000
10 0.905000 0.975000 0.879000 0.989000
11 0.998000 0.999728 0.998000 0.999947
12 0.602000 0.859000 0.427000 0.912000
13 0.999354 0.999940 0.999460 0.999991
14 0.970000 0.994000 0.965000 0.998000
Min(i)(k) 0.583000 0.851000 0.398000 0.905000
Max(i)(k) 0.999817 0.999987 0.999862 0.999999

Table 4. Grey interconnect coefficients of PAEs to 4 receptor organism.

ξ01(k) ξ02(k) ξ03(k) ξ04(k) y0k

0.7268 0.9016 0.6027 0.9369 0.7920 
0.7224 0.9007 0.5989 0.9367 0.7897 
0.7259 0.9014 0.6019 0.9369 0.7915 
0.9233 0.9726 0.8660 0.9805 0.9356 
0.8052 0.9285 0.6940 0.9513 0.8447 
0.7221 0.9007 0.5987 0.9367 0.7895 
1.0000 1.0000 1.0000 1.0000 1.0000 
0.7357 0.9043 0.6117 0.9379 0.7974 
0.7825 0.9203 0.6652 0.9461 0.8285 
0.7708 0.9159 0.6512 0.9436 0.8204 
0.7229 0.9008 0.5994 0.9367 0.7900 
0.9828 0.9941 0.9687 0.9950 0.9852 
0.7223 0.9007 0.5989 0.9367 0.7896 
0.7367 0.9043 0.6130 0.9379 0.7980 
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3.3. Determination of substitution groups and substitution sites of target molecules, DINP, and DEHP, based on the 
Hypo 1 optimal pharmacophore model
DEHP, which has priority control of pollutants, and DINP, which has the largest comprehensive characterization of the 
MTE of PAEs in the training set, were selected as target molecules to determine the molecular modification site. Derivative 
molecules were designed based on this. Figure 1 shows the superposition relationship of Hypo 1 with DINP and DEHP. 
The Hypo 1 pharmacophore model contained one hydrogen bond acceptor (green), one hydrophobic (light blue), and one 
hydrophobicity ring (dark blue); their positions on the molecular structure can be seen. 

Among them, the hydrophobic group was at the position of carbon atom No.2 of the branch chain, connected to the 
No.2 carboxyl oxygen atom of DINP molecule, the position of carbon atom No.6 of the branch chain connected to the No.1 

Table 5. Comprehensive characterization values of 14 PAEs’ MTE.

PAEs DEHP DIDP DNOP DPP DCHP DUP BCHP

Value 0.7920 0.7897 0.7915 0.9356 0.8447 0.7895 1.0000
PAEs BDP BMPP BOP DINP DIPP DNDP HEHP
Value 0.7974 0.8285 0.8204 0.7900 0.9852 0.7896 0.7980

Table 6. Five pharmacophore models statistical data constructed by Hypo Gen.

Hypo NO. Total cost RMS Correlation Feature

1 51.610 0.055 0.85 HBA, H, HA
2 51.611 0.056 0.67 HBA*2, RA
3 51.612 0.057 0.58 HBA*2, H
4 51.612 0.058 0.56 HBA*2, RA
5 51.613 0.059 0.60 HBA*2, RA
Fixed cost 33.636 Configuration 16.834

HBA: hydrogen bond acceptor; H: hydrophobic; 
HA: hydrophobic ring; RA: aromatic ring.

Table 7. Comprehensive evaluation values of Hypo 1 and PAEs’ training set, test set.

PAEs Fit value Estimated Active Error

Training set

DINP 5.92 0.72 0.79 –1.10
DEHP 5.91 0.74 0.792 –1.06
BDP 5.88 0.79 0.797 –1.01
BOP 5.87 0.80 0.82 –1.03
HEHP 5.87 0.81 0.798 1.01
DNOP 5.86 0.82 0.792 1.03
DPP 5.85 0.84 0.936 –1.11
BMPP 5.84 0.87 0.829 1.05
DCHP 5.82 0.90 0.845 1.07
BCHP 5.74 1.09 1.0 1.09

Test set

DIDP 5.96 0.66 0.79 –1.20
DUP 5.85 0.84 0.79 1.06
DNDP 5.82 0.90 0.79 1.13
DIPP 5.77 1.02 0.985 1.03



CHEN and LI / Turk J Chem

313

carboxyl oxygen atom of the DEHP molecule (shown in Figure 2). Therefore, introducing a hydrophobic group at branch 
positions can affect the PAEs’ toxic activity. The positions of the substitution groups, introduced by DINP and DEHP, are 
shown in Figure 2; that is, molecular modification of this site was determined, which provides a basis for further screening 
derivative molecules for the MTE of PAEs.
3.4. Molecular modification of PAE derivatives based on the multireceptor low-toxicity pharmacophore model
Eleven common hydrophobic group were selected as substituent groups: methyl (–CH3), ethyl (–CH2CH3), propyl (–
CH2CH2CH3), vinyl (–CH=CH2), phenyl (–C6H5), methoxyl (–OCH3), hypochlorite (–Cl), fluoride (–F), bromo (–Br), 
sulfydryl (–SH), and nitro (–NO2), to monosubstituted modification for DINP and DEHP, obtaining 22 modified derivative 
molecules. The constructed optimal pharmacophore model, Hypo 1, was used to predict the comprehensive characterization 
value of the MTE of PAE derivative molecules and compared with the toxicity comprehensive characterization values of 
corresponding target molecules,as shown in Table 8. The results showed that 16 PAE derivative molecules with toxicity 
comprehensive characterization values increased by more than 10%, including nine DINP derivative molecules (an 
increase of 11.95%–208.12%), and seven DEHP derivative molecules (an increase of 13.02%–48.07%), indicating that the 
toxicity of 16 derivative molecules was significantly lower than the target molecule.
3.5. Evaluation and verification of multireceptor comprehensive toxicity of PAE derivatives
3.5.1. Evaluation and verification of the MTE of PAE derivatives based on the EPI database
The ECOSAR module in the EPI Suite software was used to predict the above 16 PAE derivative molecules’ toxicity values to 
multireceptor model (green algae, daphnia, mysid, and fish), taking the negative logarithmic values, as shown in Table 9. The 
DINP derivative molecules’ predicted toxicity to the multireceptors was lower than that of the target molecule (decreased 
by: green algae, 43.91%–93.45%; daphnia, 53.03%–111.83%; mysid, 43.96%–92.12%; and fish, 50.10%–104.63%). DEHP-
OCH3, DEHP-F, DEHP-Br, and DEHP-NO2 in the DEHP derivative molecules had lower toxicity prediction values for the 
multireceptor model than the target molecule (decreased by: green algae, 3.75%–34.96%; daphnia, 8.88%–44.88%; mysid, 
5.57%–34.22%; and fish, 7.31%–40.65%), and the decline of multireceptors was close to 1:1:1:1. Therefore, a total of 13 PAE 
derivative molecules were screened, with a significant reduction in toxic activity.
3.5.2. Evaluation and verification of the MTE of PAE derivativesbased on the single receptor pharmacophore model
Based on the negative logarithm of toxicity values (predicted by EPI Suite software) of 14 PAEs on multireceptors as data 
sources, the abovementioned PAEs’ toxicity comprehensive effect pharmacophore model construction method was used 
to construct green algae, daphnia, mysid, and fish’ single receptor optimal pharmacophore models, as shown in Table 10. 
The “configuration” values of the four pharmacophore models were 16.674 (<17), while the “correlation” values were all 
greater than 0.7. This shows that the established pharmacophore model exhibits stable prediction ability.

Figure 1. Hypo 1 pharmacophore model overlay with target molecules –DINP, 
DEHP.

Figure 2. Location of hydrophobic substitution sites for target molecules DINP and 
DEHP.
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The above PAEs single receptor pharmacophore model was used to predict the PAEs derivative molecules’ toxic activity 
on the corresponding receptors (negative logarithmic values, Table 11). Among these, DINP-C6H5 and DEHP-F derivatives 
showed a consistent decrease in toxic activity on the multireceptor model, and this was consistent with the trend in the 
predicted value of the comprehensive effect pharmacophore model, which further verifies the reliability of the PAEs’ 
multireceptor toxicity comprehensive effect pharmacophore model.
3.6. Evaluation of functional properties andpersistent organic pollutants (POPs) properties of PAE derivatives 
3.6.1. Evaluation of functional properties of PAE derivatives 
The functional characteristics of PAE molecules include stability and insulation. The “total energy,” “energy gap” (which 
is the difference between the highest occupied orbital energy–EHOMO, and the lowest empty orbital energy–ELUMO of the 
molecule [41]), “frequency” of the target molecule, and its derivative molecules were calculated using Gaussian software. 
The “total energy” value represents stability, the “energy gap” value represents insulation, and the larger the energy gap 
value, the stronger the insulation. At the same time, the “frequency” value (>0) was used to evaluate whether the derivative 
molecules can exist stably in the environment [42]. As can be seen from Table 12, in the designed PAEs derivative 
molecules, the “total energy” value of DINP-C6H5 decreased 6.34%, while the DEHP-F increased, but the increase was 
small (<5%), indicating the PAEs derivative molecules’ stability had improved or remained unchanged compared with 
the target molecule. The “energy gap” value demonstrated a smaller change, indicating that the PAEs derivative molecules’ 
stability had increased, while insulation was less affected. Both PAEs derivatives had “frequency” values greater than zero, 
indicating that their structures could exist stably in the environment.
3.6.2. Evaluation of persistent organic pollutants (POPs) properties of PAE derivatives
EPI Suite software was used to predict the bioaccumulation, long distance migration, and persistence of two PAE derivative 
molecules [43]. Based on POPs characteristic parameter values of DINP and DEHP, from the analysis in Table 13, the 
“LOGKOW” values of the two PAE derivative molecules had decreased by 6.56%–22.84%. The “LOGKOA” values had also 
decreased by 8.88%–12.56%, indicating that PAE derivative molecules had significant bioaccumulation and long distance 
migration in the environment. Because the PAE molecule itself is not a persistent organic pollutant (half-life in air>two 
days), the increase in the “half-life” value of the PAE derivative molecules had no significant effect on its persistence in the 
environment.
3.7. Analysis of the mechanism of PAE derivatives with low multireceptor toxicity
3.7.1. Analysis of toxicity mechanism of PAE derivatives based on molecular docking
Under external stress, a large number of oxygen radicals were generated in the algae cells. At this time, the antioxidant 
system was activated, and the peroxidase catalysis promptly removed a large amount of reactive oxygen species. PAEs 
caused oxidative damage to algae cells by acting on mitochondria (Mn-SOD) and cytoplasm (Cu/Zn-SOD) [44]. 
Glutathione (GSH) is an important antioxidant in living organisms. Copepods are rich in unsaturated fatty acids and, 

Table 8. Prediction of comprehensive characterization values of PAEs derivatives’ MTE.

Compounds Estimated Change rate Compounds Estimated Change rate

DINP 0.7171 DEHP 0.7441
DINP-CH3 0.8214 14.54% DEHP-CH3 0.7442 0.01%
DINP-CH2CH3 0.6997 –2.43% DEHP-CH2CH3 1.0099 35.72%
DINP-CH2CH2CH3 0.8028 11.95% DEHP-CH2CH2CH3 0.7456 0.20%
DINP-CH=CH2 0.8247 15.00% DEHP-CH=CH2 0.8410 13.02%
DINP-C6H5 0.8124 13.29% DEHP-C6H5 0.8641 16.13%
DINP-OCH3 1.1392 58.86% DEHP-OCH3 1.1018 48.07%
DINP-CI 0.6761 –5.72% DEHP-CI 0.7906 6.25%
DINP-F 1.0018 39.70% DEHP-F 0.9070 21.89%
DINP-Br 0.9851 37.37% DEHP-Br 0.8554 14.96%
DINP-SH 2.2095 208.12% DEHP-SH 0.7712 3.64%
DINP-NO2 1.6933 136.13% DEHP-NO2 0.8929 20.00%
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Table 9. Negative logarithmic predicted values of PAEs derivative molecules on green algae, daphnia, mysid, and 
fish based on the EPI database.

Compounds
Green algae

Change rate
Daphnid

Change rate
EC50 (mg/L) LC50 (mg/L)

DINP 3.5654 2.6990
DINP-CH3 1.2218 –65.73% 0.5784 –78.57%
DINP-CH2CH2CH3 1.8861 –47.10% 1.1612 –56.98%
DINP-CH=CH2 1.4559 –59.16% 0.7852 –70.91%
DINP-C6H5 2.0000 –43.91% 1.2676 –53.03%
DINP-OCH3 0.3251 –90.88% –0.2350 –108.71%
DINP-F 0.8356 –76.56% 0.2262 –91.62%
DINP-Br 1.0410 –70.80% 0.4056 –84.97%
DINP-SH 0.8182 –77.05% 0.2097 –92.23%
DINP-NO2 0.2336 –93.45% –0.3193 –111.83%
DEHP 2.8041 2.0000
DEHP-CH2CH3 3.1331 11.73% 2.3010 15.05%
DEHP-CH=CH2 3.0400 8.41% 2.2218 11.09%
DEHP-C6H5 3.5918 28.09% 2.6990 34.95%
DEHP-OCH3 1.9208 –31.50% 1.1871 –40.65%
DEHP-F 2.3979 –14.48% 1.6383 –18.09%
DEHP-Br 2.6990 –3.75% 1.8239   –8.80%
DEHP-NO2 1.8239 –34.96% 1.1024 –44.88%

Compounds
Mysid

Change rate
Fish

Change rate
LC50 (mg/L) LC50 (mg/L)

DINP 4.2790 2.6990
DINP-CH3 1.4949 –65.07% 0.7100 –73.70%
DINP-CH2CH2CH3 2.3010 –46.23% 1.2441 –53.90%
DINP-CH=CH2 1.7696 –58.65% 0.8996 –66.67%
DINP-C6H5 2.3979 –43.96% 1.3468 –50.10%
DINP-OCH3 0.4425 –89.66% –0.0453 –101.68%
DINP-F 1.0410 –75.67% 0.3830 –85.81%
DINP-Br 1.3010 –69.59% 0.5436 –79.86%
DINP-SH 1.0223 –76.11% 0.3665 –86.42%
DINP-NO2 0.3372 –92.12% –0.1248 –104.63%
DEHP 3.3778 2.0000
DEHP-CH2CH3 3.7670 11.52% 2.3010 15.05%
DEHP-CH=CH2 3.6576 8.28% 2.2218 11.09%
DEHP-C6H5 4.3170 27.80% 2.6990 34.95%
DEHP-OCH3 2.3010 –31.88% 1.2676 –36.62%
DEHP-F 2.9208 –13.53% 1.6990 –15.05%
DEHP-Br 3.1898 –5.57% 1.8539 –7.31%
DEHP-NO2 2.2218 –34.22% 1.1871 –40.65%
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Table 10. Construction results of toxicity activity pharmacophore model of PAEs on green algae, daphnia, mysid, and fish.

Hypo No. Configuration Total cost RMS Correlation Features

Hypo for green algae 16.674 52.043 0.348 0.72 HBA*2, H
Hypo for daphnid 16.674 52.270 0.409 0.87 HBA*2, H, HA
Hypo for mysid 16.674 51.738 0.246 0.82 HBA*2, H*2
Hypo for fish 16.674 51.787 0.265 0.90 HBA*2, H, RA

Table 11. Toxicity prediction value of PAEs derivative molecules on green algae, daphnia, mysid, and fish 
based on pharmacophore model.

Compounds Green algae Change rate Daphnid Change rate

DINP 2.3039 1.3371
DINP-CH3 2.0049 –12.98% 2.0082 50.19%
DINP-CH2CH2CH3 2.1938 –4.78% 2.9862 123.33%
DINP-CH=CH2 1.2773 –44.56% 2.4678 84.56%
DINP-C6H5 2.1943 –4.76% 0.394 –70.53%
DINP-OCH3 2.1396 –7.13% 1.9394 45.05%
DINP-F 1.4256 –38.12% 2.3887 78.65%
DINP-Br 1.3281 –42.35% 1.100 –17.73%
DINP-SH 1.6563 –28.11% 5.5234 313.09%
DINP-NO2 1.7235 –25.19% 1.1611 –13.16%
DEHP 2.4583 2.5771
DEHP-OCH3 2.0141 –18.07% 5.3772 108.65%
DEHP-F 2.3623 –3.91% 2.2673 –12.02%
DEHP-Br 1.7537 –28.66% 1.9605 –23.93%
DEHP-NO2 1.9213 –21.85% 0.7316 –71.61%

Compounds Mysid Change rate Fish Change rate

DINP 3.0064 1.8487
DINP-CH3 1.9758 –34.28% 2.3857 29.05%
DINP-CH2CH2CH3 2.4324 –19.09% 1.3578 –26.55%
DINP-CH=CH2 2.9583 –1.60% 1.1800 –36.17%
DINP-C6H5 2.0074 –33.23% 0.7200 –61.05%
DINP-OCH3 2.2089 –26.52% 3.1838 72.23%
DINP-F 1.9745 –34.32% 3.1892 72.52%
DINP-Br 2.4098 –19.84% 2.4892 34.65%
DINP-SH 1.9857 –33.95% 1.5304 –17.21%
DINP-NO2 2.1128 –29.72% 2.1955 18.77%
DEHP 2.5511 1.2037
DEHP-OCH3 1.9799 –22.39% 1.2720 5.67%
DEHP-F 2.2677 –11.11% 0.7456 –38.06%
DEHP-Br 5.0185 96.73% 0.9164 –23.87%
DEHP-NO2 2.7852 9.18% 0.4750 –60.54%
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when environmental stress exceeds the capacity of copepods, unsaturated fatty acids are degraded and lipid peroxidation 
occurs [45]. Chitinase is closely related to shrimp growth, food digestion, and disease defense [46], while PAEs may have 
toxic effects on shrimp by affecting chitinase gene expression [47]. Peroxisome proliferator-activated receptors (PPARs) 
control many intracellular metabolic processes. Among these, PPAR-α receptors are abundantly expressed in liver cells, 
and activation is a necessary condition for phthalate compounds to cause toxic hepatic reactionsin fish [48]. This article 
downloaded the MN-SOD enzyme crystal structure (1BA9), glutathione peroxidase crystal structure (3DWV), chitinase 
crystal structure (3ZXX), and PPAR-α protein crystal structure (3KDT) from the PDB protein database, which respectively 
represent green algae, daphnia, mysid, and fish receptors, docked with PAE molecules before and after modification, and 
expressed the recipient organism’s toxic activity by the molecular docking ability [49].

The target molecules (DEHP, DINP) and derivative molecules (DEHP-F, DINP-C6H5) were molecularly docked with 
the four enzyme proteins by using Discovery Studio 4.0 software and the corresponding scoring function values were 
calculated. The lower the scoring function value, the weaker the binding ability between molecules and enzyme protein, 
and the lower the toxic effect on the recipient organism. Table 14 shows that the scoring function values of the two PAE 
derivative molecules docking with four enzyme proteins were lower than the target molecules (a decrease of 3.9%–19.8%), 
indicating that the designed PAE derivative molecules had a weaker receptor binding ability, reducing toxicity to the 
receptor organism.

After the molecule binds to the receptor protein, it falls into the pocket formed by the amino acid residues around the 
receptor protein and reacts with the receptor mainly through hydrogen bonding, charge, or polar interaction, followed by 

Table 12. Evaluation of stability and insulation properties of PAEs derivatives.

Compounds
Stability Insulation

Frequency 
(cm–1)Total eenergy

(a.u.)
Change rate
(%)

Energy gap
(eV)

Change rate
(%)

Before 
modification

DINP –1317.02 5.51 7.60
DEHP –1238.39 5.56 11.39

After 
modification

DINP-C6H5 –1233.51 –6.34  5.18 –5.99 17.73
DEHP-F –1298.30 4.84 5.49 –1.26 5.44

Table 13. POPs characteristic parameter values of PAEs target molecules and derivative molecules.

Compounds
Mobility Bioaccumulation Persistence

log KOA
Change rate
 (%) log KOW

Change rate
 (%)

Half-life
(hr)

Change rate 
(%)

Before 
modification

DINP 13.585 9.37 11
DEHP 12.557 8.39 11.7

After 
modification

DINP-C6H5 12.378 –8.88 7.23 –22.84 14.2 29.1
DEHP-F 10.980 –12.56 7.84 –6.56 12.8 9.4

Table 14. Scoring function values for the docking of PAEs target and derivative molecules with enzyme protein molecules.

Compounds 1BA9 Change
rate 3DWV Change

rate 3ZXX Change
rate 3KDT Change

rate

Before
modification

DINP 97.701 66.242 74.518 142.43
DEHP 72.054 56.532 63.789 82.86

After 
modification

DINP-C6H5 83.904 –14.1% 59.264 –10.5% 68.658 –7.9% 114.19 –19.8%
DEHP-F 58.184 –19.2% 53.211 –5.9% 58.610 –8.1% 79.66 –3.9%
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the main chain and side chain of amino acids, generally interact with acceptor molecules in the form of hydrogen bonds. 
The docking results show that the main forces when PAEs and their derivatives bind to 3KDT and 1BA9 proteins are 
electrostatic force and van der Waals force, and the main forces, when they bind to 3DWV and 3ZZX proteins, include 
the electrostatic force, van der Waals force, and hydrophobic interaction. Compared with the target molecule, when the 
derivative molecule binds to the receptor protein, the number of surrounding amino acid residues that interact with it 
decreases and the binding ability becomes weaker. Therefore, it is possible to explain the decrease in the scoring function 
values for the binding of the derivative molecule to the receptor protein. When DINP-C6H5 binds to 3DWV, the number 
of surrounding amino acid residues that interact with 3DWV is larger than that of the target molecule; however, the 
scoring function value is lower. The possible cause for this is that when the target molecule is combined with 3DWV, it 
forms hydrogen bonds with amino acid residues TRPB137 and HOHB3105 and forms a π-bond interaction with TRPB137, 
whereas DINP-C6H5 only forms a π-bond interaction with TRPB137 when combined with 3DWV. 
3.7.2. Analysis of toxicity mechanism of PAE derivatives based on metabolic response
The primary metabolite of PAEs, phthalate monoesters, has been detected in aquatic environments [50]. Ge Jian et al. [51] 
studied the metabolism of DEP, DBP, BBP, and DEHP in grass carp organs, and results showed that the main metabolites 
were corresponding phthalate monoesters. When studying the degradation products of black algae, Chen Bo [52] found 
that the phthalate monoesters, MBP and MEHP, were distributed in black algae. The primary metabolic pathway of PAEs 
in aquatic organisms is hydrolysis to the corresponding monoester compounds under the action of enzymes. According to 
these mimics the primary metabolic processes of PAEs, and their derivative molecules, in aquatic organisms,the products 
of DINP, DEHP, and derivative molecules DINP-C6H5, DEHP-F after primary metabolism are MINP, MEHP, MINP-
C6H5, and MEHP-F (Figure 3).

Figure 3. Simulation of primary metabolic pathways of PAEs target and derivative molecules in aquatic organisms.
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Toxicity values of the primary metabolites of PAE target and derivative molecules (phthalate monoesters) to multireceptors 
were predicted using the EPI database (Table 15). The toxicity of PAE derivative monoester molecules was significantly lower 
than that of the target monoester molecules (green algae, 146.1%–2683.4%; daphnia, 125.5%–1880.3%; mysid, 188.4%–
5070.1%; and fish, 112.6%–1473.4%).

Gaussian software was used to calculate the reaction energy barriers of the primary metabolic pathways of PAE target and 
derivative molecules and to determine whether the reaction could proceed, and how easy it was, by comparing the activation 
energy barriers in the transition states of the primary metabolic pathway response before and after molecular modification 
[53] as shown in Table 16. The reaction energy barrier of DINP was 51.77 KJ/MOL and DINP-C6H5 was 5.96 KJ/MOL; a 
reduction of 88.5% compared with DINP. The reaction energy barrier of DEHP was 4.08 KJ/MOL and DEHP-F was 0.31 KJ/
MOL; a reduction of 92.4% compared with DEHP, indicating that the energy required for the first-order metabolism of PAE 
derivative molecules was greatly reduced compared with the target molecules, and the derivative molecules were more easily 
metabolized in aquatic organisms, causing the toxic activity of the organism to be reduced significantly.

4. Conclusion
Herein, the gray interconnect degree method assisted the PAE multireceptor low-toxicity effect and the pharmacophore 
model were established, passing validation of the traditional pharmacophore model and successfully applying it to the 
PAE multireceptor low-toxicity comprehensive effect of molecular modification. Based on the evaluation of the functional 
characteristics and POPs characteristics, two PAE derivative molecules were screened, with a reduction in comprehensive 
toxicity of 13.29% and 21.89%. Molecular docking and simulation methods of primary metabolic mechanisms in aquatic 
organisms confirmed the reason for the decrease in the multireceptor low-toxicity comprehensive effect of PAE derivative 
molecules. The method established in this article broke through the limitations of traditional pharmacophore models for single 
effect modeling of pollutants and provided theoretical support for building pharmacophore models that can simultaneously 
control multiple effects of pollutants.
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Table 15. Toxicity prediction of PAEs target and derivative monoester molecules to green Algae, daphnia, mysid, and fish 
based on EPI database.

Compounds Green algae
EC50 (mg/L) Change rate Daphnid

LC50 (mg/L) Change rate

Before
modification

MINP 1.929 7.553
MEHP 4.05 14.669

After
modification

MINP-C6H5 53.691 2683.4% 149.574 1880.3%
MEHP-F 9.966 146.1% 33.081 125.5%

Compounds Mysid
LC50 (mg/L) Change rate Fish

LC50 (mg/L) Change rate

Before
modification

MINP 1.288 5.131
MEHP 3.115 9.454

After
modification

MINP-C6H5 66.591 5070.1% 80.731 1473.4%
MEHP-F 8.984 188.41% 20.10 112.6%

Table 16. Energy barrier values of primary metabolic reactions of PAEs target molecules and derivative molecules.

Compounds Energy barrier
(KJ/mol)

Change
rate Compounds Energy barrier

(KJ/mol)
Change
rate

Before modification DINP 51.77 DEHP 4.08
After modification DINP-C6H5 5.96 –88.5% DEHP-F 0.31 –92.4%
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