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1. Introduction
Due to the negative impact on the environmental using fossil fuels, the investigation for renewable energy research has 
taken its place as an indispensable subject of study worldwide. Therefore, photovoltaic organic solar cells (OSCs) based on 
organic sources have been the center of rising attention due to their flexibility, light weight, solution processability and as an 
inexpensive cost photovoltaic energy material [1–3]. The efficiency of photovoltaic organic solar cells is greatly increased 
by adding of the bulk-heterojunction (BHJ) term [4–8], an active fragment where electron acceptor and donor materials 
are blended in a solution and placed into a thin film sandwiched between two electrodes. Recently, huge progresses are 
being accomplished in the development of the power conversion capacity (PCE) of organic bulk-heterojunction solar cells. 
BHJ solar cells, based on polymer / fullerene combination, have attracted a great deal due to power conversion efficiency 
of over 10% [9–13]. Higher power conversion efficiencies are now obtained using low-band gap polymers that allow the 
collection of a wider segment of the solar spectrum [14,15].

Material innovation is an important factor that determines the efficiency of organic solar cells. Some polymer types 
have been preferred as electron donor in solar cell studies [16]. Fullerenes and their derivatives, which have been widely 
preferred as electron acceptor materials in OSCs and the poly(3-hexylthiophene-2,5-diyl) (P3HT) as the electron donor, 
are among the most widely used materials for industrialization in BHJ solar cell technology [17]. [6,6]-phenyl-C61- butyric 
acid methyl ester (PCBM), one of these fullerene derivatives, has fabulous photovoltaic features [18].

Phthalocyanines (Pcs), which are decent p-type semiconductors, offer active redox chemistry that can be modulated as a 
function of the periferal substitute groups and / or the central metal in the aromatic space of the pc ring. Consequently, when 
photoexcited, Pcs are capable of acting either as lectron-acceptors when linked to donor systems such as polythiophenes 
[19] or electron-donors when they are connected to suitable electron-acceptor groups such as fullerenes [20]. Although 
significant progress has been made for high-performance BHJ solar cells with P3HT, it has some disadvantages, such 
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as a restricted absorption wavelength [21]; hence, there is an obligation to improve new donor materials having larger 
absorption in the red region. For this purpose, Pcs are commonly used as donor compounds in solar cells. All these 
properties make these structures worthy photoactive materials. Normally, P3HT molecule absorbs light from 400 to 600 
nm, but if it is connected to a Pc molecule absorbs light at wavelengths between 600 and 700 nm to the active layer will 
lead to a broadening of the absorption range. Lately, the clear contribution of the Pc around 700 nm to the photocurrent 
has been proved by Torres et al [22]. There are many studies on thiophene derivatives as π-conjugated organic molecules 
because of their structural planarity permits strong electronic conjugation within the structure as well as their stability 
and well-known synthetic chemistry. For these reasons, attachment of these thienyl motions at the Pc ring as peripherally 
positions might result in the enlargement and improvement of the π-conjugation systems [23,24].

We report herein that the synthesis of unsymmetrical tetra substituted zinc phthalocyanines linked thiophene and 
amine groups at the peripheral positions and the use of electron donating novel phthalocyanines obtained in BHJ devices 
as an alternative to P3HT material has yielded successful results. The thiophene groups were chosen to provide the 
electron-releasing effect for the electronic properties of phthalocyanines. The combination of the sulfur atom in thiophene 
and amine groups as substituent in newly designed unsymmetrical zinc phthalocyanine has significantly improved 
performance of BHJ.

2. Experimental design 
All information about the used materials, equipment, synthesis, improved performance of BHJ, and photovoltaic 
behaviours were shown in the “Supplementary Information” Section [25,29].

3. Results and discussion
3.1. Synthesis and characterization
Today, asymmetric metal phthalocyanines (MPcs) have been the focus of attention in order to fine-tune the properties 
of these complexes because symmetrical MPcs do not always meet the requirement for developing large technology 
applications [30]. The new unsymmetrical phthalocyanine including thiophene groups (4) was synthesized step by step. 
After tetra-nitro-ZnPc derivative (1) was synthesized, tetra-amine-ZnPc (2) was synthesized by the reduction of tetra-
nitro-ZnPc in the medium of hydrazine hydrate and 10% Pd/C as the catalyst [25]. Finally, 4 was obtained with the 
statistical reaction of (2 and 3) affording in principle a mixture of two A2B2 type unsymmetrical zinc phthalocyanines 
complexes (Figure 1).

After chromatographic separation, unique spot was obtained for complex 4. To approve chemical structure of the 
new asymmetric Pc complex (4), spectroscopic methods were used such as UV–Vis, FT-IR, 1H-NMR and MALDI-TOF 
MS spectroscopies. Most of the phthalocyanines, especially unsubstituted ones, have low solubility in many organic 
solvents; however, substation of suitable functional groups on the Pc ring improves the solubility of some chemicals such 
as thiophene, alkyl, phenoxy and alkoxy groups. Pc (4), which is obtained by binding thiophene groups to tetra amine Pc 
(2), showed good solubility like Pc (2)  in many common solvents such as THF, CHCl3, DMF, and DMSO. 

For unsymmetrical zinc phthalocyanine derivation (4), the characteristic -N=C stretch at 1679 cm–1 was appeared in 
the FTIR spectrum, indicative of expected structure. The characteristics vibrations corresponding to amine groups (-NH2) 
were observed at 3343, 3231, 1609 cm–1 (for 4). Aromatic CH stretching at 3064 cm–1 was observed for the complex. 
Stretching vibration of thiophene rings in Pc complex 4 was also detected at 833 cm−1.

The UV–Vis spectra of the Pcs 1, 2 and 4 are given in Figure 2 in THF. In these spectra, two bands were observed: Soret 
or B band (350–352 nm) in the UV region and Q band (679–707 nm) in the visible region [31]. When the UV-Vis spectra 
of compounds 1 and 2 are compared, the shift observed between the Q band absorption peaks is caused by the reduction 
of the -NO2 groups in the peripheral positions to the electron donor -NH2 groups. Spectra of 2 and 4 in THF have intense 
Q bands at 707 and 690 nm due to a single π- π* transition with shoulders at 635 and 626 nm, respectively. Nine nm 
blue shifting was observed for asymmetric Pc compared to amine Pc due to binding thiophene groups on peripherally 
positions. However, the Soret (B) bands are observed at similar wavelengths as 350 and 352 nm, respectively (Table 1).

The newly synthesized Pc 4 was characterized by 1H-NMR spectrum, which was observed to be in good correlation 
with its own structure. 4 showed the phthalocyanine skeleton protons and thiophene protons as multiples between 9.06 
and 6.99 ppm as expected. The -NH2 protons at 4.38 ppm as singlet for 4 protons.

Also unsymmetrical Pc 4 was characterized by MALDI-TOF MS where molecular ion peak atm/z: 687.437 [M-2NH2 
–C9H6NS2-C4H3S+2H]+, 1013.27 [M+Na+2H]+., clearly indicates the formation of desired products as A2B2 types. 
In the Figure 1, it is seen that the spectral data of the newly synthesized compounds confirm the proposed structures.
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3.2. Photovoltaic characterization
It is well known that the surface morphology of the blend film is also important for the photovoltaic performance of the 
phtalocyanine based bulk heterojunction solar cells. In order to clarify the effect of the surface morphology of the blend 
film on the photovoltaic performance, the surface morphology of the blend film was analyzed by atomic force microscopy. 
The AFM image analysis was performed with commercial programmes associated with XEI and XEP software application 
to determine the surface roughness characterized by the root mean square (RMS) parameter. As a represantative results, 
Figures 3 (a) and 3 (b) shows the AFM surface topography of the blend films of 4.0:1.0 and 2.5:1.0, respectively. It is clear 
that the films’ morphology were considerably affected by the 4 ratio. The film with 4.0:1.0 blend ratio exhibited higher 

Figure 1. Synthetic route of Pc 4: (i) Pd/C, hydrazine hydrate, 1,4-dioxane; (ii) dry DMF, p-TsOH·H2O, 48 h, reflux.
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Figure 2. UV-Vis absorption spectra of complex 1, 2 and 4 in THF 
(1.0 × 10−5 M).

Table 1. UV-Vis data for zinc phthalocyanine complexes (1, 2 and 4) in THF.

     Complex λmax, nm (log ε, L mol-1 cm-1)
          1                 350 (4.73)      617a (4.55)       639a (4.62)        679 (4.97)      689 (4.97) 
          2                 350 (4.73)              635a (4.38)                      707 (4.99)
          4                 352 (4.73)                      626a (4.36)                      690 (4.99)
a Shoulder

Figure 3. AFM topography of the films with 4.0:1.0 (a) and 2.5:1.0 (b) blend ratios.
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surface roughness, while films with 2.5:1.0 blend ratio have displayed lower root mean square (rms) roughness. From the 
close analysis of the AFM images, the surface roughness was determined and was found to be 60 and 45 nm for the film 
with 4.0:1.0 and 2.5:1.0 blend ratio, respectively. 

Before the photo voltaic characterization, the conductivity of the PEDOT:PSS film and  the photocurrent vs. incident 
light wavelength measurements were carried out. Our results indicated that the conductivity of the PEDOT:PSS film was 
about 0.35 S/cm. 

The variation of the photo current with the incident light wavelength is presented in Figure 4 for the film of 4. It should 
be mentioned here that maximum photoconductivity was obdserved with 4 based film for all incident light wavelength. As 
is clear, the photo current increases with the increase in incident light wavelength, goes through a maximum at a certain 
wavelength and then decreases. 

Maximum photocurrent was observed at about 690 nm which is consistent with UV-Vis spectra of the compound of 
4. The wavelength dependence of the monitored photo current expresses that vigorously absorbed photons are mainly 
responsible for free carrier production and, therefore, photocurrent.

In order to evaluate the photovoltaic performance of 4 in BHJ solar cells as donor and the effect of the blend ratio on the 
main performance parameters, a series of BHJ devices with FTO/PEDOT:PSS/4:PCBM blend/Al structure were fabricated 
and characterized. During the fabrication and characterization studies, the ratio of PCBM was fixed at 1, and the ratio of 
donor (4) was varied from 0.5 to 4.0 because of its well-known critical impact on the device performance [32]. Current 
density-voltage (J-V) characteristics obtained with the FTO/PEDOT:PSS/4:PCBM blend/Al structure of BHJ solar cells 
devices with various blend ratio under AM 1.5 G illumination is shown in Figure 5 and evaluated performance parameters 
tabulated in Table 2. At first glance, it is obvious that all the devices fabricated exhibit rectifying behavior with various 

Figure 5. J-V characteristics of the 4 based device with various 
blend ratio.
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Table 2. Blend ratio dependence of the photovoltaic parameters for the investigated devices.

Blend Ratio VOC
((V)

J   JSC
(mA cm–2)

Vm
(V)

   Jm
(mA cm–2)  FF h

(%)
(0.5:1.0) 0.78 9.04 0.57 7.02 0.57 4.01
(1.0:1.0) 0.81 9.80 0.59 7.76 0.58 4.57
(1.5:1.0) 0.89 10.31 0.64 8.28 0.58 5.30

(2.0:1.0) 0.93 11.02 0.62 9.30 0.56 5.77

(2.5:1.0) 0.95 11.70 0.68 9.03 0.55 6.14
(3.0:1.0) 0.92 11.40 0.66 9.10 0.57 6.00
(3.5:1.0) 0.85 10.7 4 0.62 7.84 0.53 4.84
(4.0:1.0) 0.75 8.73 0.51 6.51 0.51 3.32

Figure 4. Variation of the photocurrent in 4 with the incident 
light wavelength.
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rectification ratios depending on the blend ratio. It is also clear that the photovoltaic performance parameters of the devices 
are modulated by the blend ratio of 4: PCBM. As usual, photovoltaic conversion efficiency of a solar cell which is defined a

η=Pm/Pin            (1)

where Pin is the power of incident light, Pm is maximum power output of the cell, which is defined as

Pm=JSC x VOC x FF           (2)

in the following equation; FF expressed as the filling factor is defined as the maximum power output of the solar cell per 
unit area divided by the product of VOC and JSC. 

FF = (Jm x Vm) / (JSC x VOC)          (3)

where Jm and Vm are the current density and voltage at which the cell delivers the maximum power density. Interestingly, it 
was observed that the open circuit voltage (VOC) of the devices increases with the increase of 4 ratio in the blend solution; 
when the blend ratio of 4:PCBM reached 2.5:1, the best 4:PCBM based cell was realized as shown in Figure 5, and then 
VOC decreases with further increase of 4 ratio (see Table 2).

From the close investigation of the Table 2, it will be clear that the performance of the devices strongly depends on 
the blend ratio, photovoltaic conversion efficiency of the device varies between 3.32% for 4.0:1.0 blend ratio and 6.14% 
for 2.5:1.0 blend ratio. The VOC, JSC, FF, and efficiency of the champion device were 0.95 V, 11.70 mA/cm2, 0.55, and 
6.14 %, respectively. To the best of our knowledge, these values are the highest reported for phthalocyanine based bulk 
heterojunction solar cells. In order to be sure that the dependence of the observed open circuit voltage on blend ratio is 
repeatable, the J-V measurements were repeated for another set of the devices from the same batch of the devices and these 
measurements verified that the observed dependence of open circuit voltage on the blend ratio are reproducible, except for 
a small shift in its value. It is well known that P3HT and PCBM are frequently preferred donor and acceptor substances in 
BHJ devices. Previous works on the BHJ devices made from P3HT: PCBM blends with various blend ratios have indicated 
that the photo voltaic performances of these devices strongly depend on the blend ratio [33–35].

The energetic disturbance of organic semiconductors, compared to their crystalline inorganic counterparts, causes the 
intramolecular and intermolecular interactions in a morphologically diverse film to expand the distribution of electronic 
states and is significantly affected by structural properties. Regardless of the functional shape (Gaussian or an exponential 
function-or a combination of these two) of density of states, increased broadening of the density of states invariably 
pushes tail states further into the band gap, and this leads to strong correlations between disorder and voltage losses in 
solar cells [36]. More recent reports on planar heterojunction [37] as well as bulk heterojunction solar cells [38–40] have 
shown that the open circuit voltage is strongly dependent on the difference between the highest occupied molecular orbital 
(HOMO) of the donor and the lowest unoccupied molecular orbital (LUMO) of the acceptor materials. It is proposed that 
the nanoscale morphology of the two components (donor/acceptor) in the photoactive layer and the efficient separation 
of charges at the donor– acceptor interface in bilayer planar and non-planar metal Pc/ C60 solar cells are also crucial 
in determining the VOC value. Relationship between energetic disorder and open-circuit voltage in bulk heterojunction 
organic solar cells has been investigated by Blakesley et al [41]. They were reported that the open circuit voltage associated 
with the charge-carrier recombination rates, donor-acceptor energy gap, contact work functions, illumination intensity, 
and the amount of energetic disorder. The complex factors leading open circuit voltage losses through energetic disorder 
in BHJ solar cells have been investigated by Nguyen et al [42]. It was reported that disorders contribute as much as 0.2 V 
of VOC loss. A reasonable explanation for the observed ratio dependence has been given by the eutectic phase behavior 
of donor and acceptor blends and suggested that morphology at the optimum composition ratio is slightly hypoeutectic 
[43,44]. 

To access efficient exciton dissociation in BHJ devices, the randomly oriented donor acceptor interfaces are employed, 
and the performance of the devices are determined by the morphology of the donor-acceptor interface [45,46], the 
molecular orientation, and aggregation behavior [47,48]. On the other hand, it is well known that interfacial energetic, 
which involves tightly bounded singlet excitonic states and loosely bounded charge transfer states, has direct impacts 
on open circuit voltage of the BHJ devices [46,49,50] It was reported previously that the upper limit of the open circuit 
voltage is determined by the loosely bounded charge transfer states and their disordered effect [51–53]. The obtained J−V 
characteristics for devices with a fixed donor material and different fullerene-based acceptor materials indicated that, as 
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the acceptor with higher lowest unoccupied molecular orbital level is employed, the open circuit voltage becomes larger 
due to the increased effective band gap [54]. 

Metal-insulator-metal (MIM) model is widely used to interpret and analyze the obtained open circuit voltage data. 
The MIM model assumes that the upper limit of the VOC is determined by the work function difference of the anode and 
cathode materials. Figure 5 clearly shows that, if the origin of the VOC is due to the work function difference all the devices 
should yield a VOC values of 0.47 (Work functions of FTO and Al is 4.80 and 4.33 eV, respectively), the MIM model can 
not be applied to our devices. More recently, many theoretical and experimental studies on BHJ have shown that the VOC is 
independent of the choice of cathode materials and depends on various factors including, energetic disorder in active layer, 
donor-acceptor energy gap, and rate of charge recombination [55–57]. Effects of blend composition on the morphology 
of Si-PCPDTBT: PC71BM based bulk heterojunction organic solar cells have been studied by Lin et al. [58], and it was 
reported that the exciton dissociation efficiency is highly dependent on the content of blend. For further understanding 
of the composition dependence of the performance of a BHJ device, the structural evolution during blend crystallization 
for P3HT:PCBM blends were investigated by Barrena et. al. [59]. They reported that donor:acceptor blends with ratios 
of 1.0:0.5, 1.0:0.8, and 1.0:2.0 exhibit differing microstructure during solidification. Therefore, the observed blend ratio 
dependence for open circuit voltage can be related to a differing nature of the microstructure of the blend films.

High level blend ratio of 4 give rise to more disordered film formation because of the high aggregation tendency of 
phthalocyanine molecule. Increased disordering in active layer leads to a decrease in exciton diffusion length, which 
destabilizes the charge separated states. Destabilization of the charge separated states leads to an increase in charge 
recombination rate, which could result in a decrease in VOC. The observed trend for short circuit current density supports 
this conclusion. By a close analysis of the Figure 5, it becomes clear that the short circuit current density follows the same 
trend with VOC, it increases with the increase of 4 ratio in the blend solution and reaches a maximum when the blend 
ratio of 4:PCBM reached 2.5:1. As it is well known, short circuit current density is another key parameter for a solar cell, 
which is determined by the product of photoinduced charges and their mobility. It was reported before by Gulbinas et 
al. [57] that the short circuit current density in a BHJ solar cell device is determined by the charge separation into free 
carriers which is strongly influenced by the blend ratio. It was also reported that the charge separation is efficient in 
PCBM rich blends, suggesting that high mobility of one type of carriers is essential for efficient charge separation, and 
morphology optimization doubles the charge pair separation efficiency and the short circuit current density. It can be 
again concluded that the structural evaluation during blend crystallization for 4:PCBM blends play crucial role in defining 
the basic performance parameters of a BHJ device.

4. Conclusion
Unsymmetrical zinc phthalocyanine (4) bearing thiophene and amine groups as donor was successfully synthesized 
as confirmed by FT-IR, UV-Vis, 1H-NMR, and MALDI-TOF MS. Bulk heterojunction solar cell devices using blended 
4:PCBM with eight different donors: acceptor ratios have been fabricated and characterized. Our preliminary results 
showed that the entire device fabricated exhibited photovoltaic character. It was also found that the ratio of donor: acceptor 
has a significant effect on the photovoltaic behavior of the devices. Photovoltaic conversion efficiency of 6.14% was achieved 
with a 4 based device.
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