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1. Introduction
In recent years, photoinitiated ‘thiol-ene polymerization’ has recently drawn a great deal of attention in the architecture of 
advanced polymers due to its advantages such as the rapid polymerization reaction with high rate conversion, insensivity 
to oxygen and negligible side product formation, leading the typical characteristics of click chemistry [1–4]. This highly 
efficient click reaction is able to be initiated by UV light irradiation and proceeds via the addition of a thiyl radical across the 
C=C bond followed by a chain transfer reaction with additional thiol affording the corresponding thioether. Photoinitiated 
thiol-ene polymerization is a promising candidate for many applications in polymer chemistry such as coatings, adhesives, 
and dental materials [5–7]. Nowadays, the advantages of this process are incorporated into inorganic nanoparticles with 
photocurable monomers [8–10].

Silica nanoparticles are of great importance in material science as a nanoplatform for the design of functional materials 
due to their physical and chemical properties. They have been studied in a variety of fields such as nanohybrids, fillers, 
drug delivery systems, coupling agents, sensors, and electrical and optical devices [11–13]. The use of trialkoxysilanes 
as a bonding compound between the surface of inorganic silica and the organic matrix allows improving the particle 
dispersion by increasing the hydrophobicity of surfaces [14–17]. Nanoparticles with suitable functional groups such as 
thiols on their surface are notable for their ability to undergo thiol-ene reaction, allowing further functionalization without 
any indicator or metal catalyst. This desirable method of covalently bonding nanoparticles to the polymer matrix prevents 
the phase separation and particle agglomeration. Moreover, this opportunity contributes greatly to the production of high-
performance materials [18–22]. 

In recent decades, most composite materials used in polymer industry contain special resins based on dimethacrylates. 
Bisphenol A glycerolate dimethacrylate is one of the commonly used dimethacrylate monomers with reinforcing fillers 
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as an epoxy dimethacrylate. The combination of the epoxy resins and methacyrlates has a major effect in polymerization 
systems due to the contribution of unique abilities of each. Moreover, their chemical structure includes unsaturated bonds 
which make them suitable for UV curing technology with radical photoinitiators [23–26]. However, the development of 
these materials is a hot topic for polymer chemistry, where different expectations arise every day. There are some tendencies 
to convert long chain compounds to resins before curing [27,28]. Otherwise, thiol-ene chemistry is an attractive method 
for improving these acrylate systems [29].

This article presents the synthesis of polyorganosiloxane nanoparticles with (3-mercaptopropyl) trimethoxysilane 
(MPTMS) and the preparation of nanocomposite films with these nanoparticles via the photoinitiated thiol-ene 
polymerization reaction. Although there are very few articles reported on the application of silica nanoparticles in 
photopolymerized thiol-ene systems up to date, not enough attention is paid to this field [30,31]. In the literature, Chen 
et al. studied UV curing photopolymerization of thiol-ene acrylates with commercial silica nanoparticles and investigated 
the thermal stability and chemical resistance of the resulting products [32]. Sowan et al. used functionalized silica 
nanoparticles as an additional fragmentation chain transfer agent in the thiol-ene resin system [33]. Wu et al. studied the 
investigation of the mechanical and physical properties of UV-cured coatings which were prepared with epoxy diacrylate, 
tripropylene glycol diacrylate, and trimethylolpropane triacrylate in presence of the modified silica nanoparticles, 
involving (3-mercaptopropyl) trimethoxysilane (MPTMS) [22]. Still, despite all these works, the use of MPTMS modified 
silica nanoparticles in a thiol-ene acrylate formulation that contains a difunctional epoxy dimethacrylate: bisphenol A 
glycerolate dimethacrylate (Bis-GMA) and an 3-arm thiol acrylate: trimethylolpropane tris(3-mercaptopropionate) 
(TMPMP) has not been adequately studied. In this study, after the nanoparticles with silica core covered with MPTMS 
shield were synthesized and then characterized by scanning transmission electron microscopy (STEM), dynamic light 
scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS), and the 
photocured nanocomposite films including these nanoparticles were prepared with bis-GMA and TMPMP. The aim of 
this study is to reveal the physical and morphological properties of films prepared with MPTMS-modified nanoparticle 
structures as a nanoplatform by photoinitiated thiol-ene polymerization.

2. Results and discussions
2.1. Characterization of silica nanoparticles
Silica nanoparticles with thiol groups (SiO2-MPTMS) were synthesized with (3-mercaptopropyl) trimethoxysilane (as 
shown in Scheme 1) and characterized by determining particle size distribution and morphology using DLS and STEM. 
Figure 1 shows that SiO2-MPTMS nanoparticles were almost spherical in nanometric size of about 200 nm. Furthermore, 
the size distribution of nanoparticles is centered on a size of 300 nm according to the data obtained from DLS measurement 
(as shown in Figure 1a). A little change in the size of nanoparticles was observed between the DLS data and STEM images 
for the reason that the hydrodynamic radiulus of nanoparticles. Scheme 1, Figure 1.

Figure 2 shows the comparison of FTIR spectrum of the pristine and MPTMS-modified SiO2 nanoparticles to 
investigate before and after surface functionalization. The spectra of pristine SiO2 (curve a) showed the characteristic 
stretching and bending vibrations of Si-O-Si and C-Si at 1063 cm−1 and 800 cm−1, respectively. Moreover, the peak at 960 

Scheme 1. Preparation of MPTMS-modified silica (SiO2-MPTMS) 
nanoparticles.
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cm−1 indicated the silanol groups (Si-OH streching). At 3385 cm−1 and 1637 cm−1, O–H stretching and H–O–H bending 
peaks, respectively, were observed due to the presence of physically adsorbed water on silica samples [27,34]. The spectra 
of SiO2-MPTMS nanoparticles showed additional absorption peaks appearing at 2939 cm–1 and 2849 cm–1, which are 
attributed to the aliphatic structure of propyl groups (curve b). The strength of the peaks around 3400 cm–1 and 1600 
cm–1 associated with the stretching of the hydroxyl groups (-OH) on the nanosilica surface almost disappeared, while 
the 1054 cm–1 peak corresponding to Si-O-Si increased. The FTIR spectrum results confirmed that the nanosilica surface 
was successfully modified by MPTMS silane coupling agent. However, it was seen that the appearance of the peak at 
3400 cm–1 in curve b was very weak. The condensation reaction carried out between the surface of silica (silanol groups) 

Figure 1. STEM picture of SiO2-MPTMS nanoparticles at a) 25,000× magnification (Inset: DLS spectrum of SiO2-MPTMS nanoparticles 
in ethanol) b) 100,000× magnification, and c) 150,000× magnification.
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and MPTMS (-OCH3) did not completely consume all -OH groups of the reactants. The peaks of thiol groups (-SH) of 
MPTMS structures could not be clearly observed in the spectra because of the vibrations overlapping with the vibrations 
of nanosilica (Figure 2).

Figure 3 shows the TGA results of the pristine and MPTMS-modified SiO2 nanoparticles together with the DTG 
spectra containing the derivative curves. The thermogram of the unmodified SiO2 nanoparticles exhibited a total weight 
loss of 8.2% (as shown in Figure 3a, curve a). It is known that dehydration of water physically adsorbed from the surface 
of the silica particles occurs below 120 °C and is followed by dehydroxylation of silanols between 200 °C and 600 °C and 
above 600 °C [35]. In the TGA spectrum of the SiO2-MPTMS nanoparticles, where the mass loss rates observed at the three 
step of DTG showed the loss up to 120 °C was only 1.4% (as shown in Figures 3a and 3b, curves b). The modification with 
silane coupling agent increases hydrophobicity which provides protection from the physical storage of the sample under 
environmental conditions such as water and residual organic solvents [16]. In addition, there are two weight loss stages 
between 120 °C and 650 °C, 17.6% and 5.1%, respectively, due to the decomposition and the carbonization of the organic 
part (as shown in Figure 3a, curve b). Indeed, the grafting density of SiO2-MPTMS nanoparticles was calculated as 22.9% 
by comparing the thermogravimetric behavior of the pristine SiO2 particles (Figure 3).

Further characterization of the SiO2-MPTMS nanoparticles was carried out with XPS (as shown in Figure 4). The 
attachment of MPTMS was clearly confirmed by XPS spectra indicating the presence of groups specific to its chemical 
composition. While the survey scan of the SiO2-MPTMS nanoparticles showed peaks corresponding to O 1s (532.8 eV) 
and Si 2p (103.8 eV) associated with silica surface, C 1s signal at 286.8 eV and S 2p signal at 164.8 were also observed due 
to the chemical modification of organic structure having propyl and thiol groups, respectively (Figure 4).
2.2. Characterization of nanocomposite films
Photocured nanocomposite films were prepared with the formulations mixing the selected amounts of SiO2-MPTMS 
(0.5 wt %, 1 wt %, 2.5 wt %, and 5 wt %) with a thiol-ene acrylate system in an equal molar double bond concentration of 
TMPMP and bis-GMA (as shown in Table 1 and Scheme 2). All cured nanocomposite films showed higher gel content 
values than the neat formulation (FTE0), indicating the absence of any extractable oligomers or unreacted monomers. 
The slight differences of gel content percentages of neat and nanocomposite films are attributed to the contribution of the 
thiol functional groups of MPTMS modified silica nanoparticles to the polymerization conversion. Gel content reveals the 
consistency of the double bond conversion and also the chemical crosslink density [36] (Scheme 2, Table 1).

Thermal stability of the nanocomposite films were investigated by TGA. Figure 5 shows the thermogravimetric curves 
of neat (FTE0) and nanocomposite (FTE0.5MS, FTE1MS, FTE2.5MS, and FTE5MS) films and also, the results are listed 

Figure 2. FTIR spectra of a) pristine SiO2 and b) SiO2-MPTMS nanoparticles.
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Figure 3. TGA and DTG plots of silica nanoparticles in Figures 3a and 3b, respectively; (a) pristine SiO2 (b) SiO2-MPTMS nanoparticles.

Figure 4. XPS spectra of SiO2-MPTMS nanoparticles.

Table 1. Composition of the thiol-ene resin/silica nanoparticle formulations.

Samples Molar ratio
TMPMP: Bis-GMA 
(mL/mol)

SiO2-MPTMS 
nanoparticles (%) Gel content(%)

FTE0 1:1 0 87.70
FTE0.5MS 1:1 0.5 89.98
FTE1MS 1:1 1 91.56
FTE2.5MS 1:1 2.5 90.08
FTE5MS 1:1 5 88.53

All formulations contain 0.5 wt % DMPA as a photoinitiator.
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Scheme 2. Preparation of nanocomposite films.

Figure 5. TGA thermograms of SiO2-MPTMS nanocomposite films.
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in Table 2. The TGA thermograms which were observed in one characteristic weight loss 10% of which was over 330 °C, 
extended up to 500 °C because of the cleavage of polymer chains. Both neat and hybrid films had close decomposition 
temperatures. Therefore, it is easy to say that the thermal stability of materials was close to each other. It is known that silica 
nanoparticles do not significantly change the thermal degradation mechanism of the films to which they are incorporated 
[18,37]. The chair yields of nanocomposites were higher than the neat film due to the particle content (Table 2, Figure 5).

Differential scanning calorimetry (DSC) thermograms of neat and hybrid films are shown in Figure 6. Glass transition 
temperatures (Tg) of nanocomposite films were determined around 138–139 °C (as shown in Table 2). The presence of 
silica nanoparticles in the polymer matrix did not significantly affect the thermal transition of the films (Figure 6).

In order to investigate the distribution of SiO2-MPTMS nanoparticles in polymer matrices, the morphology of 
photocured nanocomposite films with certain formulations containing the different particle amounts (0.5 wt %, 2.5 wt 
%, and 5 wt %) were observed by SEM. The increase in the amount of particles could be confirmed by SEM images of the 
fracture surfaces of nanocomposite films according to formulation system (as shown in Figure 7). These nanoparticles with 

Table 2. Thermal analysis results of SiO2-MPTMS nanocomposite films.

Samples 10% weight-loss 
temperature (°C)

50% weight-loss 
temperature (°C)

Max. weight-loss 
temperature(°C)

Residual part
(%)

Glass transition 
temperature (Tg, °C)

FTE0 335 393.5 365 9.10 139.1
FTE0.5MS 332 394.5 362 10.05 139.2
FTE1MS 345 397.5 364 14.60 139.6
FTE2.5MS 341.5 398.5 367 14.75 139
FTE5MS 334 396 366 14.40 139.2

[N2] atm.
Heating rate: 10 °C/min

Figure 6. DSC thermograms of SiO2-MPTMS nanocomposite films: a) FTE0, 
b) FTE0.5MS, c) FTE1MS, d) FTE2.5MS, e) FTE5MS.
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Figure 7. SEM images of SiO2-MPTMS nanocomposite films at 8000× 
magnification a) FTE0.5MS, b) FTE2.5MS, and c) FTE5MS.
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different ratios were fine-distributed in the film matrix. However, the aggregations could not be avoided when the addition 
amount further increased (as shown in Figure 7c). Moreover, a SEM image of the nanocomposite film containing 2.5 wt 
% particle content was obtained with the cross section of the surface at higher magnification. It was obviously seen that 
the silica nanoparticles dispersed in the film matrix were a diameter of about 200 nm in a circle appearance (as shown in 
Figure 8) (Figures 7 and 8).

The mechanical properties of prepared nanocomposite films were examined via tensile testing. The stress-strain curves 
of neat and hybrid films are shown in Figure 9 and the results showing the values of the tensil strength (σ, MPa), elongation 
at break (ε, %), and young modulus (E, MPa) are summarized in Table 3. The addition of nanoparticles made a significant 
increase in modulus according to neat film (FTE0) due to the uniform distribution and a good interfacial adhesion in 
hybrid film matrix. The well dispersed nanoparticles can directly enhance or improve the properties of composite films 
such as modulus. Moreover, the film flexibility is maintained in the polymer matrix containing nanofillers that have good 
interaction with the phases because the small sizes of particles do not create large stress [38]. By increasing the SiO2-
MPTMS nanoparticles content up to 2.5 wt %, the tensile strength increased to 10.06 MPa by 77.3% compared to neat 
sample (σFTE0(MPa) = 2.94). Efficient hybrid interactions with homogeneous distribution of MPTMS-modified particles 

Figure 8. SEM image of MPTMS-SiO2 nanocomposite FTE2.5MS film at 30,000× magnification.

Table 3. Mechanical properties of SiO2-MPTMS nanocomposite films.

Samples Tensile strength
(MPa)

Elongation at break
(%)

Elastic modulus
(MPa) Hardness (Shore A)

FTE0 9.64 70 2.94 80
FTE0.5MS 14.5 80 4.86 86
FTE1MS 21.1 82 5.04 87
FTE2.5MS 61.6 62 13.0 96
FTE5MS 29.7 55 6.36 90
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allowed to a significant increase in tensile strength. However, with the further addition of silica nanoparticles (5 wt %), 
the tensile strength and modulus values of the nanocomposite films decreased. In a majority of nanoparticles with more 
than a certain limit led to the agglomeration due to their heterogeneous dispersion in the film matrix. In addition, the 
maximum elongation at break of the films was detected in FTE1MS film. According to Shore A hardness tests performed 
on nanocomposite films, the hardness values showed an increase by the addition of SiO2-MPTMS nanoparticles (as shown 
in Table 3). The maximum Shore A hardness value of the FTE2.5MS film (similarly the tensile testing) was measured as 96 
due to the effect of homogeneous sol-gel unit (Table 3, Figure 9). 

3. Conclusion
The SiO2-MPTMS nanoparticles were successfully synthesized by a convenient condensation reaction. These nanoparticles 
were characterized by DLS, STEM, FTIR, and XPS, revealing the size and size distribution, morphology, and functional 
groups on the surface. The TGA results showed that the grafting ratio of thiol groups was 22.9% pointing to the successful 
modification process. A series of nanocomposite films were prepared by photoinitiated thiol-ene polymerization of an 
equimolar TMPMP: bis-GMA. The modulus and tensile strength of nanocomposite films increased as the amount of 
particles in the polymer matrix increased up to 2.5 wt %. Both STEM and SEM studies showed that the particle sizes of 
SiO2-MPTMS were in the nanoscale. The MPTMS-modified nanoparticles are promising candidates for thiol-ene matrix 
as a nanofiller.

4. Materials and methods
4.1. Materials
Tetraethyl orthosilicate 98% (TEOS), (3-mercaptopropyl) trimethoxy silane 95% (MPTMS), bisphenol A glycerolate 
dimethacrylate (Bis-GMA) Trimethylolpropane tris(3-mercaptopropionate) ≥95% (TMPMP), 2,2-Dimethoxy-2-
phenylacetophenone 99% (DMPA) were all purchased from Sigma-Aldrich. Ammonia solution (25%) and all solvents 
were purchased from Merck. All of the chemical reagents were used as received.
4.2. Preparation of silica nanoparticles
The silica nanoparticles were synthesized according to the Stöber method [14,39]. In a 250-mL single-neck round bottom 
flask, 100 mL of methanol was mixed with 68 mg (1 mmol) of 25%–30% ammonia and 1.98 g (110 mmol) of water, and 

Figure 9. Stress (%)–strain (MPa) curves of SiO2-MPTMS nanocomposite films.
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stirred for 10 min. Then, 10.41 g (50 mmol) of TEOS was added dropwise and the solution was stirred for 3 days. The 
particles were precipitated in 150 mL of hexane and diethyl ether solution (2:1). It was then isolated and washed three 
times with ethanol by centrifugation at 4000 rpm for 20 min, and 3.7 g colorless powder is obtained after vacuum.
4.3. Surface modification of SiO2 nanoparticles
Five grams of silica particles was dispersed into 300 mL dry toluene in a 500-mL two-necked flask on ultrasonic bath. The 
reaction flask was equipped with a dropping funnel and condenser on a magnetic stirrer. Ten grams of silane compound 
agent MPTMS was added dropwise for half an hour at room temperature. After the reaction mixture was stirred for 
overnight at 80 °C, the particles were isolated via centrifugation at 4000 rpm for 20 min and washed several times with 
toluene and ethanol to remove the nonbonded MPTMS. Lastly, the synthesized SiO2-MPTMS nanoparticles were dried at 
90 °C under vacuum for 12 h.
4.4. Preparation of nanocomposite coatings
The formulations were prepared by combining the SiO2-MPTMS nanoparticles (0.5%, 1%, 2.5%, and 5% by weight of the 
resin) dispersed in acetone (5 mL) by ultrasonication for 10 min with the mixed thiol-ene resin consisting of bis-GMA 
and TMPMP in a stoichiometric ratio of 1:1, along with DMPA (0.5% by weight of the resin; as a type I photoinitiator has 
an absorption extending up to 380 nm [40]) in a 10-mL beaker. The formulations were stirred adequately in an ultrasonic 
bath and then on a magnetic stirrer at room temperature to obtain homogeneous mixtures, as the solvent was removed by 
evaporation. The formulation mixtures were then poured onto glass plates and coated onto the surfaces with a gauged bar 
applicator to obtain uniform thickness of 100 µm. Then, photopolymerization was carried out with a 300 W high pressure 
mercury lamp (Osram Ultra Vitalux 300 W 230 V E27 UVA/UVB, λmax = 365 nm) for 60 min of irradiation time. The 
lamp system, where the irradiation source was placed 80 cm above the fixed plate, was cooled by a fan cooling unit. 
Moreover, free films were prepared by pouring into a silicone mold (10 mm × 100 mm × 3.85 mm) with the same 
formulations with those used in the previous process. After the irradiation (60 min), free nanocomposite films were 
obtained. 

Additionally, neat films without any nanoparticles as both a coating and a free film were prepared to compare the 
thermal and mechanical properties with the nanocomposite films. 

The obtained photocured films were dried under vacuum at room temperature. Detailed formulation compositions of 
the films are listed in Table 1. The characterization of these films was studied with films coated on glass plates. Mechanical 
tests and SEM analyses were carried out with free films.
4.5. Instrumentation
FTIR analysis was performed to characterize the particles on a Perkin-Elmer 100 FTIR spectrometer. The spectra were 
obtained over the frequency range of 4000–650 cm–1 at a resolution of 4 cm–1 with an attenuated total reflectance (ATR) 
cell equipped with a ZnSe single crystal.

DLS measurements were conducted with dilute dispersions of nanoparticles (around 0.1 mg/mL) to reveal their size 
distributions at 25 °C using Nano-S Zetasizer (Malvern Instruments). 

STEM analysis was carried out for the morphologies of SiO2-MPTMS nanoparticles at 25,000×, 100,000×, and 150,000× 
magnification using Philips-FEI XL30 ESEM-FEG SEM.

XPS was used to characterize the modification effects of nanoparticles using a Thermo Scientific K-Alpha XPS with Al 
K α X-ray radiation with energy of 150.0 eV and take off angle of 90°. The data acquired was shifted in reference to C 1s 
quantum level positioned at 254.8 eV.

The thermogravimetric analysis (TGA) was performed in a SEIKO TG/DTA 6300 analyzer using alumina sample pan 
under nitrogen atmosphere (50 mL/min) from room temperature to 650 °C with a heating rate of 10 °C/min. The grafting 
ratio  calculated according to the Eq. (1) [22].

Rg=(W1/W’1 -W0/W’0 )×100%                   (1)
W1 is the starting weight of the modified silica nanoparticles and W’1 is the residual weight of the modified silica 

nanoparticles at 650 °C; W0 is the starting weight of unmodified silica nanoparticles, and W0’ is the residual weight of 
unmodified silica nanoparticles at 650 °C.

The gel content was determined on the neat and nanocomposite films by measuring the weight loss after 20 h extraction 
with boiling acetone according to the standard test method (ASTM D2765).

The morphology of the nanocomposite films was investigated by SEM using an FEI QUANTA 450 FEG ESEM SEM 
FEG 450 under low vacuum. SEM images of the fracture surfaces and the cross section of nanocomposite films were taken 
at 8000× and 30,000× magnification, respectively.

The thermal characterization of the films was performed by DSC using Seiko DSC 7020 system. Approximately 10 mg 
of the composite films was put in aluminum pan and heated at a 0–250 °C temperature range with a rate of 10 °C/ min 
under nitrogen atmosphere (50 mL/min).
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Mechanical properties of free film sheets were investigated using a Zwick/Roell Z1.0 universal test machine. Thus, 
specimens (length: 100 mm; width: 9.5 mm; thickness: 3.5 mm, on average) were tested at room temperature according to 
the DIN EN ISO 527-1 standard with a crosshead speed of 50 mm/min. Moreover, hardness of free films was measured in 
Shore A scale using a Zwick hardness tester (Zwick, Ulm, Germany) according to ASTM D-2240.
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