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1. Introduction
The liquid crystal (LC) state, which is different from the known forms, was discovered in the 1888s during the studies of 
Reinitzer [1] and Lehmann [2] on some cholesterol esters. LC state, also called as the meso-phase, is known as a physical 
state located between the crystalline solid and the isotropic liquid phase. Although it is considered as a separate phase 
between the solid and liquid phase, it can have at least one property of the solid and liquid phase. In the LC structure, the 
spontaneous orientation of the molecules in a certain direction provides a geometric selectivity to the stationary phase 
[3–6]. The orientation of the molecules in the LC structure can also differentiate the properties and usage fields of the LC. 
LCs are widely used in sensor technology, technological devices, such as televisions, computers, tablets, and biological 
fields [7–10].

In the conventional gas chromatography (GC), certain stationary phases suitable for the chromatographic column 
studied are used. The probes in volatile form to be analysed in the GC are separated from each other depending on their 
polarity on conventional stationary phases. It is not possible to analyse high molecular weight and nonvolatile materials, 
such as LCs, polymers, composites, etc. in conventional GC [11–15]. Therefore, IGC-ID is a simple, low cost, high efficiency, 
and high accuracy technique developed to analyse such substances. This technique is based on filling the substances to be 
analysed into the chromatographic column as a stationary phase and retaining the probes passed over them in vapor form 
at different times [16–18]. 

Separation of the isomer series is crucial industrially. When LCs are used as stationary phase for separation of isomer 
series, generally better, more efficient results can be obtained compared to conventional stationary phases. By using the 
IGC-ID technique, faster and more accurate results can be obtained compared to conventional separation methods [19–
23]. 

Surface properties are closely related to important physicochemical phenomena such as colloidal stability, stickiness, 
and wettability. Besides, the surface properties, especially the surface energy, is an extremely important parameters in 
understanding the interaction between the surface of the material and various probes [24–26]. Surface energy arises from 
unbalanced molecular forces on the surface of the materials. The surface energy of the materials can be analysed using 
liquid adsorption, flow microcalorimetry, and contact angle measurements. Since the application of these techniques is 
difficult and limited, IGC-ID has become a preferred technique by researchers [27–31]. 

In the scope of this study, DBA’s ability to separate isomer series including butyl acetate series (n-butyl acetate (nBAc), 
iso-butyl acetate (iBAc) and tert-butyl acetate (tBAc)), butyl alcohol series (n-butyl alcohol (nBAl), iso-butyl alcohol (iBAl) 
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and tert-butyl alcohol (tBAl)) and amyl alcohol series (n-amyl alcohol (nAAl), iso-amyl alcohol (iAAl) and tert-amyl 
alcohol (tAAl)), and surface properties were investigated by IGC-ID technique. The selectivity of DBA was investigated in 
surface adsorption (303.2–328.2 K) and thermodynamic region (423.2–433.2 K). Additionally, the IGC-ID experiments 
were carried out to investigate the surface properties of DBA in relation to polar and nonpolar probes in surface adsorption 
region (303.2–328.2 K). Using the retention data obtained from IGC-ID experiments, the parameters used to determine 
the selectivity parameters and the surface properties were calculated. 

2. Theory of inverse gas chromatography at infinite dilution (IGC-ID)
2.1. The selectivity coefficient 
To determine selectivity of materials, the net retention volumes (VN) in surface adsorption region and thermodynamic 
region should be calculated as main data. For volatile polar and nonpolar solvents used in the analysis, the VN is closely 
related to the interaction of these solvents with the materials [32–36]. VN is calculated as follows: 

VN = Q.J.(tR – tA).T/Tf  (1)
Here, tR and tA are retention times of volatile probes and air, respectively; Q is the volumetric flow rate; T and Tf are the 

column and ambient temperature, respectively; J is James-Martin pressure correction factor.
The selectivity of the stationary phase contained in the chromatographic column can be calculated from the 

proportioning of the numerical difference between the retention times obtained from the IGC-ID experiments. Besides, 
selectivity coefficient can also be calculated from the ratio of VN calculated according to Eq. (1). The selectivity of stationary 
phase is determined depending on the size of the selectivity coefficient (a). This value is calculated as follows [37,38]:

a = (tR1 – tA) / (tR2 – tA) = VN1 / VN2 (2)
Here, tR1 and tR2 are the retention time of the first and second isomer from the isomer pairs, respectively; tA is the 

retention time of air; VN1 and VN2 are the net retention volume of the first and second isomer, respectively. 
2.2. Surface properties
In recent years, IGC-ID is commonly used for examining the surface properties of the materials. The standard free energy 
(DGAº) value for the adsorption of volatile probes on the stationary phase is calculated with the help of the VN resulting 
from the interaction between probe and stationary phase [39–41]. DGAº is calculated as follows: 

DGAº = – RT ln (VN) + K                (3)  
Surface energy is an extremely important parameter in explaining the interaction between stationary phase and volatile 

probes. The greater the surface energy, the more interactions between molecules. On the contrary, when this energy is low, 
the interaction decreases. Surface energy of the stationary phase (gS) can be calculated as a sum of dispersive energy (gS

D) 
generated by weak interactions on surface and specific energy (gS

S) generated by strong interactions on surface [42–44]: 
gS = gS

S + gS
D                  (4)

gS
D of stationary phase is determined when non-polar probes are injected at Henry’s law region. This energy is due to 

dispersive interactions between molecules on the surface of the material and non-polar probe molecules [45]. gS
D values 

can be calculated in the surface adsorption region according to the method proposed by Dorris–Gray [46] as follows:
gS

D = (DG[CH2])
2 / 4(NA)2(a[CH2])

2g[CH2]             (5)
Here, gS

D is the dispersive energy of the surface (mj/m2), DG[CH2] is the adsorption free energy of a methylene group, 
which is determined the slope of the plot between the number of alkanes versus RTlnVN values, NA is the Avogadro’s 
number, a[CH2] is the molecular area of a methylene group (0.06 nm2) and g[CH2] is the surface energy of a methylene group. 
g[CH2] values are calculated at any temperature (t oC) as follows [47]:

g[CH2] = 35.6 – 0.058t                   (6)
Additionally, the method proposed by Schultz is widely used to calculate dispersive energy of surface [48]. This energy 

is calculated as follows:
– RT ln (VN) = 2NAa(gS

D)0.5(gL
D)0.5 + K              (7)

Here, a is the cross-sectional area of the probes, NA is the Avogadro’s number, gL
D is the dispersive energy of the probes. 

The a and gL
D values were taken from the literature, and were listed in Table 1. gS

D values of stationary phase can be 
calculated from the slope of plot between RTlnVN versus a(gL

D)0.5 of non-polar probes.
DG[CH2] values are calculated as follows [49]:
DG[CH2] = – RT ln (VN,n /VN,n+1)               (8)
Here, R is the universal gas constant; VN,n and VN,n+1 are the net retention volumes of two n-alkanes having n and n+1 

carbon atoms, respectively.
DGA

S for the polar probes are calculated as follows:
DGA

S = – RT ln (VN /VN(ref))                (9)
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When the studies are carried out at different temperatures, DHA
S and DSA

S values can be calculated as follows [50]:
 DGA

S = DHA
S – TDSA

S               (10)
The value of DHA

S is linked with KA (donor or acidity group) and KD (acceptor or basicity group) parameters. This 
situation is due to the interactions that occur between probes and surfaces that do not have dispersive and entropic 
interactions. These values are calculated as follows [51,52]:

–DHA
S = KA(DN) + KD(AN*)             (11)

Here, DN is an electron donor or acidity number and AN* is an electron acceptor or basicity number determined by 
Gutmann [53]. By calculating the value of DHA

S for polar probes, a linear plot is drawn between –DHA
S/AN* and DN/AN*. 

The values of KA and KD of solid materials can be obtained from the slope and intercept of the line, respectively. If KD/KA > 
1, the surface is considered to be a basic; whereas, if KD/KA < 1, the surface is considered to be an acidic.

3. Materials and methods
All the properties of the chemicals used in this study are given in Table 2.

All measurements in IGC-ID studies were carried out using an Agilent Technologies HP-6890N device combined with 
thermal conductivity detector (TCD) (Hewlett-Packard, Palo Alto, CA, USA). The stainless-steel column (1/8” o.d., 2.10 
mm i.d. 10 m) was purchased from Alltech Associates, Inc. (Chicago, IL, USA). Chromosorb W (AW-DMCS-treated, 
80/100 mesh) was used as the support material and obtained from Sigma Aldrich. The DBA liquid crystal was dissolved 
in the Chloroform, and Chromosorb W was added slowly. A homogeneous mixture was obtained by continuous stirring 
in heating controlling water bath, and the LC was coated on support. Silane-treated glass wool used to plug the ends of 
the column was obtained from Alltech Associates Inc (Deerfield, IL, USA). The ends of the column were loosely plugged 
with silanized glass wool.  After the column was cut to a size of 1 m and cleaned thoroughly, approximately 1.21 g of the 
prepared column interior material was filled. The total loading of DBA liquid crystal on the support was determined as 
10.38% by weighing. Helium (He), which kept at a constant flow rate of 3.6 mL/min, was used as the mobile phase during 
the experiments. Probes and air were injected into the column with 1 mL and 10 mL Hamilton syringes, respectively. For 
infinite dilution, the probe (0.1 mL) was taken into the syringe and flushed into the air. Then, the retention times for probe 
and air were determined. At least four consecutive injections were made for each probe and air at each set of measurements.

4. Results and discussion
The main data (VN) obtained from IGC-ID studies were calculated for all probes injected surface adsorption region 
(303.2–328.2 K) and thermodynamic region (423.2–433.2 K) according to Eq. (1). The retention diagrams of DBA used 
as separator stationary phase in two regions were given in Figure 1 and 2, respectively. The “a” values for nBAc/iBAc, 
nBAc/tBAc, nBAl/iBAl, nBAl/tBAl, nAAl/iAAl, and nAAl/tAAl were obtained using their VN in two regions. “a” values 
calculated according to Eq. (2) determined the separation ability of DBA. The higher the values of the separation factor 
calculated according to Eq. (2), the better the selectivity for isomers. Table 3 and 4 shows the calculated the values for the 
isomer pairs in two regions. Considering these values, it is seen that isomers are separated. Besides, it was observed that 
structural isomers were better separated in the surface adsorption region than in the thermodynamic region. 

Table 1. The values of a and gL
D for non-polar and polar probes.

Probes a(x10–10 m2) gL
D (mj/m2)

n-Hexane (Hx) 51.5 18.4
n-Heptane (Hp) 57.0 20.3
n-Octane (O) 62.8 21.3
n-Nonane (N) 69.0 22.7
n-Decan (D) 75.0 23.4
Dichloromethane (DCM) 31.5 27.6
Chloroform (TCM) 44.0 25.9
Tetrahydrofuran (THF) 45.0 22.5
Ethyl acetate (EA) 48.0 19.6
Acetone (Ace) 42.5 16.5
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The main data (VN) obtained from IGC-ID studies was calculated for all probes between 303.2 and 328.2 K according 
to Eq. (1). Retention diagrams of non-polar and polar probes were given in Figure 3 and 4, respectively.

The surface energy of a solid materials depends on the chemical structure, physical properties, and composition. 
Interactions between molecules on a solid surface and polar or nonpolar probe molecules are due to long- and short-
range interactions known as weak interactions (London dispersive forces) and strong interactions (acid-base interactions). 
Dispersive surface energy occurs as a result of nonspecific interactions caused by the London dispersive forces known as 
weak or long-range interactions [54]. gS

D can be calculated using IGC-ID technique based on well-known approaches for 
data analysis, such as Dorris–Gray (Eq. (5)) and Schultz (Eq. (7)) methods. In these gS

D calculations, homologous alkane 
vapor series are used in infinite dilution, resulting in a single numerical gS

D value. DGA for the all probes were calculated 
from the Schultz method using Eq. (7) in the surface adsorption region (303.2–328.2 K). A plot of RTlnVN versus a(gL

D)0.5 
for all probes was plotted at 303.2 K in Figure 5. From Eqs. (5) and (7), gS

D of DBA was calculated using Schultz and Dorris-
Gray methods. The results obtained from studies were listed in Table 5.

It is showed that the value determined for gS
D of DBA have different ranges from 47.51–44.06 (Schultz method) to 

47.74–46.19 mj/m2 (Dorris-Gray method). Besides, it is observed that the gS
D values calculated by Dorris-Gray method are 

higher than those obtained from the Schultz method. The gS
D values obtained from the Schultz method decrease faster than 

the gS
D values obtained by the Dorris–Gray method with increasing temperature. The results obtained for the Schultz and 

Dorris–Gray method at surface adsorption region are close to each other, showing that these two methods are compatible 
and feasible. There is no study on DBA in the literature. A rough comparison can be made with reported LCs. In the 
literature, gS

D values for LCs were ranged from 30 to 42 mj/m2 in agreement with this study [50, 55]. 
The values of –DGA

S were calculated by the numerical difference between the calculated value of RTlnVN and that 
which was obtained from Eq. (7) of the linear plot of the nonpolar reference line. The variation of DGA

S between DBA and 
the polar probes for the studied temperatures is given in Table 6. Regarding the Table 6, it was seen that the temperature 
did not change the DGA

S values much. DHA
S values were calculated for polar probes and the results were given in Table 

7. The DHA
S values were calculated as the degree of interaction between the DBA molecule surface and the polar probe 

Table 2. Source, assay, and CAS registry numbers of the chemicals.

Chemicals Source CAS No Assay

DBA Sigma Aldrich 5519-23-3 0.980
nBAc Supelco 123-86-4 ≥ 0.995
iBAc Sigma Aldrich 110-19-0 ≥ 0.980
tBAc Sigma Aldrich 540-88-5 ≥ 0.990
nBAl Sigma Aldrich 71-36-3 ≥ 0.994
iBAl Supelco 78-83-1 ≥ 0.990
tBAl Sigma Aldrich 75-65-0 ≥ 0.990
nAAl Sigma Aldrich 71-41-0 ≥ 0.990
iAAl Sigma Aldrich 123-51-3 ≥ 0.990
tAAl Supelco 75-85-4 ≥ 0.990
Hx Supelco 110-54-3 ≥ 0.997
Hp Supelco 142-82-5 ≥ 0.990
O Sigma Aldrich 111-65-9 ≥ 0.990
N Sigma Aldrich 111-84-2 ≥ 0.990
D Sigma-Aldrich 124-18-5 ≥ 0.940
EA Supelco 141-78-6 ≥ 0.998
Ace Supelco 67-64-1 ≥ 0.998
DCM Supelco 75-09-2 ≥ 0.998
THF Supelco 109-99-9 ≥ 0.998
TCM Supelco 67-66-3 ≥ 0.998
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Figure 1. Net retention volumes (VN) of isomer series on DBA (Surface adsorption region).
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Figure 2. Net retention volumes (VN) of isomer series on DBA (Thermodynamic region).
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Table 3. The separation factor of DBA for the isomer pairs: nBAc/iBAc, nBAc/tBAc, nBAl/iBAl, nBAl/tBAl, nAAl/iAAl, 
and nAAl/tAAl (303.2–328.2 K).

a = VN1 / VN2

T (K) VNnBAc / VNiBAc VNnBAc / VNtBAc VNnBAl / VNiBAl VNnBAl / VNtBAl VNnAAl / VNiAAl VNnAAl / VNtAAl

303.2 1.52 3.99 1.72 6.26 1.34 6.49
308.2 1.55 4.15 1.58 6.69 1.31 6.19
313.2 1.57 3.98 1.60 6.66 1.48 6.20
318.2 1.57 4.00 1.65 7.41 1.35 6.03
323.2 1.58 3.90 1.70 7.89 1.46 5.97
328.2 1.57 3.88 1.74 8.34 1.35 5.46

Table 4. The separation factor of DBA for the isomer pairs: nBAc/iBAc, nBAc/tBAc, nBAl/iBAl, nBAl/tBAl, nAAl/iAAl, and 
nAAl/tAAl (423.2–433.2 K).

a = VN1 / VN2

T (K) VNnBAc / VNiBAc VNnBAc / VNtBAc VNnBAl / VNiBAl VNnBAl / VNtBAl VNnAAl / VNiAAl VNnAAl / VNtAAl

423.2 1.35 2.50 1.52 3.40 1.29 2.75
425.2 1.35 2.51 1.51 3.33 1.27 2.71
427.2 1.36 2.49 1.49 3.45 1.29 2.76
429.2 1.35 2.47 1.45 3.38 1.28 2.70
431.2 1.33 2.44 1.46 3.35 1.28 2.70
433.2 1.33 2.44 1.43 3.32 1.26 2.63

Figure 3. Net retention volumes (VN) of nonpolar probes on DBA.
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molecules. These values were followed the order THF>EA>Ace>TCM>DCM. The DCM probe molecule (DN = 0.0, AN 
= 16.4) showed the lowest –DHA

S value which is to be expected taking into account the acidic properties of this molecule 
and the acidic properties of LC surface given by the KA value. THF is a basic probe molecule (DN = 84.4, AN = 2.1), it may 
be expected to interact strongly with acid surfaces [56,57]. Considering the values of DHA

S and DGA
S for each polar probe, 

adsorption occurs exothermically and spontaneously for all studied temperatures. The specific intermolecular interactions 
are derived from the interaction between the polar probe and the Lewis acidic-basic sites on surface [58–60]. 

Figure 4. Net retention volumes (VN) of polar probes on DBA.

Figure 5. A linear plot of RTlnVN vs a(gL
D)0.5 for all probes on DBA at 303.2 K.
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A plot of –DHA
S/AN* versus DN/AN* was plotted by KA as the slope and KD as the intercept using Eq. (11), and it is 

shown in Figure 6. The character of DBA surface was determined by the ratio of KD/KA. The obtained KA and KD values were 
listed in Table 8. Due to the KD/KA value is lower than 1, DBA surface is an acidic character. 

5. Conclusion
IGC-ID technique was used to investigate the separation of isomer series in surface adsorption (303.2–328.2 K) and 
thermodynamic region (423.2–433.2 K) and the surface properties of DBA in surface adsorption region. Considering 
the separation factors, it was determined that the DBA in IGC-ID technique can be used to separate the isomer series in 
surface adsorption and thermodynamic region. The values of gS

D for DBA were determined to be 47.51–44.06 mj/m2 using 
the Schultz method and 47.74–46.19 mj/m2 using the Dorris–Gray method. gS

D values from both calculation methods 
decrease linearly with the increase in temperature in the range from 303.2 to 328.2 K. The values of KA and KD were found 
to be 0.2134 and 0.1907, respectively. As shown that, the KD value is lower than the KA. In this case, it can be said that 

Table 5. Dispersive surface energy (gS
D) of DBA.

gS
D mj.m–2

T (K) Schultz Dorris-Gray

303.2 47.51 47.74
308.2 47.06 47.69
313.2 46.38 47.36
318.2 45.89 47.27
323.2 44.71 46.45
328.2 44.06 46.19

Table 6. The variation of free energy of specific interactions, –DGA
S (kj/mol), between DBA and 

the polar probes for the studied temperatures.

T (K) EA Ace DCM TCM THF

303.2 4.21 2.48 2.21 0.91 2.69
308.2 3.99 2.10 2.39 0.54 2.50
313.2 3.68 1.92 2.42 0.45 2.28
318.2 3.54 1.83 2.53 0.42 2.03
323.2 3.63 2.03 2.67 0.44 2.00
328.2 2.95 1.24 2.17 -0.34 1.21

Table 7. Values of enthalpy (DHA
S) of adsorption 

on DBA for the polar probes.

Polar probes –DHA
S (kj/mol)

Ace 13.68
EA 17.20
THF 18.39
DCM 0.87
TCM 12.12
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the DBA surface is an acidic character. The IGC-ID technique is very important in improving the quality of products for 
industrial fields, since isomers can be separated effectively and the surface energy of samples can be easily determined. 
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Figure 6. The plot of –DHA
S/AN* vs DN/AN*.

Table 8. Lewis acid-base parameters, KA and KD, of DBA.

Liquid crystal KA KD KD/ KA

DBA 0.2134 ± 0.012 0.1907 ± 0.009 0.89
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