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Abstract: Cancer is a disease characterized by the continuous growth of cells without adherence to the rules that healthy normal cells
obey. Carbonic anhydrase I and II (CA I and CA II) inhibitors are used for the treatment of some diseases. The available drugs in the
market have limitations or side effects, which bring about the need to develop new drug candidate compound(s) to overcome the
problems at issue. In this study, new pyrazole-sulphonamide hybrid compounds 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1H-
pyrazol-1-yl]benzenesulphonamides (4a - 4j) were designed to discover new drug candidate compounds. The compounds 4a - 4j were
synthesized and their chemical structures were confirmed using spectral techniques. The hypothesis tested was whether an introduction
of methoxy and polymethoxy group(s) lead to an increased potency selectivity expression (PSE) value of the compound, which reflects
cytotoxicity and selectivity of the compounds. The cytotoxicity of the compounds towards tumor cell lines were in the range of 6.7 -
400 uM. The compounds 4i (PSE, = 461.5) and 4g (PSE, = 193.2) had the highest PSE values in cytotoxicity assays. Ki values of the
compounds were in the range of 59.8 + 3.0 - 12.7 + 1.7 nM towards hCA I and in the range of 24.1 + 7.1 - 6.9 £ 1.5 nM towards hCA
II. While the compounds 4b, 4f, 4g, and 4i showed promising cytotoxic effects, the compounds 4c and 4g had the inhibitory potency
towards hCA T and hCA TI, respectively. These compounds can be considered as lead compounds for further research.

Key words: Sulphonamide, pyrazoline, chalcone, cytotoxicity, OSCC, carbonic anhydrase

1. Introduction

Cancer is a disease characterized by the continuous growth of cells without obeying the rules that normal healthy cells do.
It is second amongst the reasons for death after cardiovascular diseases [1 - 4]. Based on the World Health Organization
(WHO) report in 2018, 18.1 million people around the world had cancer, and 9.6 million died from the disease. It will
reach 29.4 million in 2040. Although several therapeutic approaches are available, such as chemotherapy, which includes
drug therapy and has great importance. The development of new chemotherapeutics is needed since the available drugs in
the market have numerous side effects, resistance development to itself, or selectivity problems [1, 3, 5].

Oral cancer is ranked as the sixth most common malignancy worldwide [6 — 8]. The main carcinogens for oral
squamous cell carcinoma (OSCC) are cigarette and alcohol products [9, 10]. Understanding the molecular mechanisms
of tumorigenesis and metastasis process for OSCC can lead researchers to discover new chemotherapeutic strategies and
improve the treatment of oral cancer.

Although there are several types of anticancer therapeutic products, novel aryl sulphonamides have recently been
reported to have anticancer properties and can be used to treat different types of cancers. Among them, pazopanib, a
tyrosine kinase inhibitor for renal cell carcinoma and soft tissue sarcoma, belinostat, a histone deacetylase inhibitor for
peripheral T-cell lymphoma, and dabrafenib, a BRAF inhibitor for metastatic melanoma, have been approved for in the
clinic treatment of patients [11] (Figure 1).

As another well-known pharmacophore in drugs or bioactive compounds are pyrazoline and its analogs. Their
numerous bioactivities have been reported including their anticancer/cytotoxic activities [12 — 14].

Our research group reported anticancer activities of many pyrazoline-based sulphonamides against OSCC lines [12 -
14]. For instance, (4-[5-(2,3,4-trimethoxyphenyl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl]benzensulphonamide
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compound (34) showed remarkable cytotoxicity with potency-selectivity expression (PSE) and tumor specificity (TS) (10.5
and 9.5) values towards OSCC lines [15]. Other studies also supported that pyrazoline-sulphonamides hybrid compounds
are good candidates to develop new anticancer drugs [13 - 15]. Besides this, we reported a large library of methoxy
substituted pyrazoline derivatives since this group attracted our attention with their cytotoxic properties against OSCC
lines in our previous study [16]. Many other studies reporting on the valuable anticancer properties of several mono- or
poly-methoxylated chemicals towards OSCC cell lines compared to substituents other than methoxy are available [16 — 18].

The hybrid approach is one of the strategies to obtain a compound or a drug with increased activity in medicinal
chemistry for new drug development [19].

Of the pharmacophores used, sulphonamide has a very well-known carbonic anhydrase (CA) inhibitory effect. CA is
an enzyme that catalyzes the reversible hydration/dehydration of CO,/HCO, [20, 21] and has various roles in physiological
events such as carbon dioxide and bicarbonate transport processes, respiration, pH balancing, and CO, homeostasis [22,
23]. There are 16 isoforms (hCA I-XVI) that have different localizations [24, 25], of which CAs, CA I and CA II are the
abundant forms. The hCA I isoform is associated with retinal and cerebral edema, and the inhibition of CA I may help cure
such conditions [22, 26 - 38]. The physiologically dominant isoform is hCA II, which is another enzyme that is associated
with several disease such as epilepsy, edema, glaucoma, and altitude sickness [22, 26 - 37]. Furthermore, it has also emerged
in the past few years that these enzymes can be used as potential targets for designing antiinfective drugs with a novel
mechanism of action [39 - 41]. Of a-class carbonic anhydrases, CA IX and CA XII are the ones that are related to tumors.
In cancer cases, CA IX levels especially increase.

In this study, the first aim was to synthesize pyrazolebenzene-sulphonamide hybrid compounds bearing mono- or
polymethoxy (di/tri) group(s). The chemical structure of the compounds is 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-
1H-pyrazol-1-yl]benzenesulphonamide (4a - j, Figure 2). Secondly, the compounds (4a - j) were tested on oral squamous
cell carcinoma (OSCC) and normal oral cells to find new anticancer drug candidate compounds. As a final step, it was
planned to investigate the CA inhibitory effect of the compounds on hCA I and hCA II. Since CA I and II are the widely
available forms of CAs, we had the opportunity facility to study them as sulphonamides are very well-known inhibitors of
CAs. If impressive results are obtained is on hCA I/ I, inhibition tests towards cancer-related CA IX and CA XII isoenzymes
can be considered in future studies.

2. Materials and methods

2.1. Chemistry

The chemical structures of the final compounds 4a - j were confirmed by nuclear magnetic resonance (NMR) spectra; 'H
NMR (400MHz), “C NMR (100 MHz) (Varian Mercury Plus spectrometer, Varian Inc., Palo Alto, CA, U.S.) and mass
spectra (HRMS) (Shimadzu Corporation, Kyoto, Japan). Chemical shifts (§) are reported in ppm and coupling constants
(J) are expressed in hertz (Hz). Mass spectra (HMRS) for the compounds were taken using a liquid chromatography ion
trap-time of flight tandem mass spectrometer (Shimadzu Corporation) equipped with an electrospray ionization (ESI)
source, operating in both positive and negative ionization modes. Shimadzu’s LCMS Solution software was used for data
analysis. Melting points were determined using an Electrothermal 9100/IA9100 instrument (Bibby Scientific Limited,
Staffordshire, UK), which is uncorrected. Reactions were monitored by thin layer chromatography (TLC) using silica gel
60 HF254 (Merck KGaA). A solvent mixture of chloroform: methanol (4.8: 0.2) was used as a thin-layer chromatography
(TLC) solvent system. DMSO-d_(Merck) was used as a NMR solvents.

Synthesis of chalcone compounds 3a - j, 3-(Benzo[d][1,3]dioxol-5-yl)-1-arylprop-2-en-1-one (Figure 2)
The title compounds were synthesized by Claisen — Schmidt condensation following to the procedure reported [25, 42]
in the literature. All of the intermediate compounds (3a - j) were recorded in the literature [43 — 49]. Briefly, a mixture of
suitable acetophenone (1 mmol) and benzo[d][1,3]dioxole-5-carbaldehyde (1 mmol) was dissolved in ethanol (5 mL). An
aqueous sodium hydroxide solution (30%, 10 mL) was added into to the mixture under cold conditions (0 - 5 °C). After
stirring overnight at room temperature, the reaction mixture was poured into an ice-water mixture and acidified with an
HCl solution (10%) to pH = 6 - 7 (Figure 2). The compounds were used as a starting materials without further purification
for the synthesis of pyrazoline derivatives.

2.1.1. General procedure for the synthesis of pyrazolines (Figure 2, 4a - j)

A suitable chalcone (1.00 mmol) and 4-hydrazinobenzenesulphonamide hydrochloride (1.10 mmol) were dissolved
in ethanol (50 mL) and then a catalytic amount of glacial acetic acid was added. The mixture was refluxed for 18 - 24
h [12, 50, 51]. Reactions were followed by thin layer chromatography (TLC). After the reaction was stopped, some of
the solvent was removed under a vacuum. The obtained solid was filtered, dried at room temperature, and crystallized
from methanol-diisopropylether. The compounds, 4-[5-(1,3-benzodioxol-5-yl)-3-phenyl-4,5-dihydro-1H-pyrazol-
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Figure 1. Structures of sulphonamide-bearing anticancer drugs in the clinic.
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Figure 2. Synthesis of target pyrazoline derivatives 4a - 4j. Reagents and conditions. i: NaOH (10%), C,H,OH, rt, 24h, ii:
4-hydrazinobenzenesulphonamide hydrochloride, C,H,OH, glacial acetic acid Ar: phenyl (3a, 4a), 4-methoxyphenyl (3b, 4b),
3-methoxyphenyl (3¢, 4¢), 2-methoxyphenyl (3d, 4d), 3,4-dimethoxyphenyl (3e, 4e), 2,5-dimethoxyphenyl (3f, 4f), 2,4-dimethoxyphenyl
(3g, 4g), 2,4,5-trimethoxyphenyl (3h, 4h), 3,4,5-trimethoxyphenyl (3i, 4i), 4-hydroxy-3-methoxyphenyl (3j, 4j).

1-yl]benzenesulphonamide  (4a),  4-[5-(1,3-benzodioxol-5-yl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]
benzenesulphonamide (4b) and 4-[5-(1,3-benzodioxol-5-yl)-3-(3-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]
benzenesulphonamide (4c) were reported previously [45, 52, 53]. The compound’s chemical structures were confirmed
with '"H NMR, “C NMR, and HRMS in this study.

4-[5-(1,3-Benzodioxol-5-yl)-3-phenyl-4,5-dihydro-1H-pyrazol-1 yl]benzenesulphonamide (4a)

Isolated as a dark yellow solid, (yield: 30%) : mp : 196 - 198 °C (212 - 214 °C, [45]). '"H NMR (400 MHz, DMSO - d,)
S, ppm (J, Hz) : 7.66 (d, 1H, ] = 5.0 Hz, Ar-), 7.60 (d, 2H, J = 8.8 Hz, Ar-), 7.33 (s, 1H, Ar-), 7.13 (d, 1H, ] = 8.6 Hz, Ar-),
7.05-7.01 (m, 6H, Ar-, SO,NH,), 6.87 (d, 1H, ] = 7.9 Hz, Ar-), 6.76 - 6.72 (m, 2H, Ar-), 5.98 (s, 2H, methylene, piperonal
ring), 5.56 (dd, 1H, J = 5.0, 11.9 Hz, pyrazoline ring), 3.93 (dd, 1H, J = 11.9, 17.5 Hz, pyrazoline ring), 3.19 (dd, 1H, J = 5.1,
17.4 Hz, pyrazoline ring); "C NMR (100 MHz, DMSO - d,) §, ppm : 147.8, 146.6, 145.9, 145.6, 135.1, 134.9, 133.0, 128.5,
128.3, 127.9, 127.1, 118.9, 111.9, 108.6, 105.9, 101.1, 62.1, 43.6. HRMS, found, m / z: 421.1096 [M+4H]*. C_H N,O,S.
Calculated, m / z: 425.9793.
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4-[5-(1,3-Benzodioxol-5-yl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]benzenesulphonamide (4b)

Isolated as a light yellow solid (yield: 38%) : mp : 171 - 173 °C; "H NMR (400 MHz, DMSO - d,) §, ppm (J, Hz): 7.73 (d,
2H, J = 8.7 Hz, Ar-), 7.59 (d, 2H, ] = 8.7 Hz, Ar-), 7.06 (d, 2H, J = 8.8 Hz, Ar-), 7.01 (d, 2H, J = 8.7 Hz, 6.86 (d, 1H, J = 7.9
Hz, Ar-), 6.75 - 6.72 (m, 2H, Ar-), 5.97 (s, 2H, methylene, piperonal ring), 5.51 (dd, 1H, ] = 4.9, 11.8 Hz, pyrazoline ring),
3.88 (dd, 1H, J = 11.9, 17.6 Hz, pyrazoline ring), 3.80 (s, 3H, OCH,), 3.15 (dd, 1H, J = 5.0, 17.6 Hz, pyrazoline ring); *C
NMR (100 MHz, DMSO - d6) S, ppm: 160.7, 150.2, 148.2, 147.1, 146.5, 136.1, 133.1, 128.2, 127.6, 124.8,119.5, 114.7, 112.3,
109.1,106.5, 101.6, 62.4, 55.8, 43.6. HRMS, found, m / z: 452.1260 [M+H]". C,,H, N,0.S. Calculated, m / z: 452.1275.

4-[5-(1,3-Benzodioxol-5-yl)-3-(3-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]benzenesulphonamide (4c)

Isolated as a cream color solid. (yield: 46%) : mp : 184 - 186 °C (219 - 221 °C, [45]). "H NMR (400 MHz, DMSO - d,) §,
ppm (J, Hz): 7.61 (d, 2H, J = 8.8 Hz, Ar-), 7.36 (d, 2H, J = 4.9 Hz, Ar-), 7.31 (s, 1H, Ar-), 7.10 (d, 2H, J = 8.9 Hz, Ar-), 7.05
(s, 2H, SO,NH,), 7.00 - 6.97 (m, 1H, Ar-), 6.87 (d, 1H, J = 7.8 Hz, Ar-), 6.76 - 6.73 (m, 2H, Ar-), 5.97 (s, 2H, methylene,
piperonal ring), 5.56 (dd, 1H, J = 5.0, 11.9 Hz, pyrazoline ring), 3.88 (dd, 1H, ] = 11.9, 17.7 Hz, pyrazoline ring), 3.82 (s,
3H, OCH3), 3.15(dd, 1H, J = 5.1, 17.7 Hz, pyrazoline ring); *C NMR (100 MHz, DMSO - d6) S, ppm: 159.9, 150.1, 148.2,
147.1, 146.3, 135.9, 133.6, 130.3, 127.6, 119.5, 119.1, 115.7, 113.9, 112.6, 111.4, 109.1, 106.4, 101.6, 62.7, 55.7, 43.4; HRMS,
found, m / z: 452.1262 [M+H]*. C,H, N.OS. Calculated, m / z: 452.1275.

4-[5-(1,3-Benzodioxol-5-yl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]benzenesulphonamide (4d)

Isolated as a cream color solid (yield: 35%) : mp : 183 - 185 °C; "H NMR (400 MHz, DMSO - d,) &, ppm (], Hz): 7.93 (d,
2H, J=7.7 Hz, Ar-), 7.60 (d, 2H, J = 8.8 Hz, Ar-), 7.42 - 7.38 (m, 1H, Ar-), 7.1 - 7.01 (m, 5H, Ar-, SOZNHZ), 6.86 (d, 1H,
J=7.8Hz, Ar), 6.76 - 6.73 (m, 2H, Ar-), 5.97 (s, 2H, methylene, piperonal ring), 5.56 (dd, 1H, ] = 4.8, 11.8 Hz, pyrazoline
ring), 3.98 (dd, 1H, J = 12.0, 18.3 Hz, pyrazoline ring), 3.80 (s, 3H, OCH,), 3.22 (dd, 1H, ] = 5.1, 18.2 Hz, pyrazoline ring);
BC NMR (100 MHz, DMSO - d6) S, ppm: 157.9, 149.4, 148.2, 147.0, 146.5, 136.1, 133.3, 131.3, 128.8, 127.6, 121.2, 119.4,
113.9,112.8,112.4, 109.1, 106.4, 101.6, 62.5, 56.1, 46.8. HRMS, found, m / z: 452.1267 [M+H]". C23H21N3OSS. Calculated,
m / z: 452.1275.

4-[5-(1,3-Benzodioxol-5-yl)-3-(3,4-dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]benzenesulphonamide (4e)

Isolated as a cream color solid (yield: 72%) : mp : 243 - 245 °C; 'H NMR (400 MHz, DMSO - d,) §, ppm (J, Hz): 7.59
(d, 2H, J = 8.8 Hz, Ar-), 7.42 (s, 1H, Ar-), 7.25 (d, 1H, ] = 8.4 Hz, Ar-), 7.08 (d, 2H, ] = 8.8 Hz, Ar-), 7.03 (s, 2H, SO,NH,),
7.00 (d, 1H, J = 8.5 Hz, Ar-), 6.87 (d, 1H, ] = 7.9 Hz, Ar-), 6.76 - 6.73 (m, 2H, Ar-), 5.97 (s, 2H, methylene, piperonal ring),
5.52 (dd, 1H, ] = 4.8, 11.8 Hz, pyrazoline ring), 3.88 (dd, 1H, J = 11.9, 17.6 Hz, pyrazoline ring), 3.85 (s, 3H, OCH,), 3.80 (s,
3H, OCH,), 3.17 (dd, 1H, ] = 5.0, 17.6 Hz, pyrazoline ring); "C NMR (100 MHz, DMSO - d) §, ppm: 150.1, 149.9, 148.8,
147.7, 146.6, 145.9, 135.6, 132.6, 127.1, 124.4,119.6, 118.9, 111.8, 111, 5, 108.7, 108.6, 105.9, 101.1, 61.9, 55.53, 55.50, 43.1.
HRMS, found, m / z: 482.1358 [M+H]*. C,H N O S. Calculated, m / z : 482.1380.

4-[5-(1,3-Benzodioxol-5-yl)-3-(2,5-dimethoxyphenyl)-4,5-dihydro-1 H-pyrazol-1-yl|benzenesulphonamide (4f)

Isolated as a white color solid (yield: 34%) : mp : 144 - 146 °C; '"H NMR (400 MHz, DMSO - d,) 6, ppm (], Hz): 7.59
(d, 2H, ] = 8.9 Hz, Ar-), 7.46 (s, 1H, Ar-), 7.08 (d, 2H, ] = 8.8 Hz, Ar-), 7.03 (s, 2H, SO,NH.), 7.00 - 6.97 (m, 2H, Ar-),
6.86 (d, 1H, ] = 7.9 Hz, Ar-), 6.76 - 6.72 (m, 2H, Ar-), 5.97 (s, 2H, methylene, piperonal ring), 5.48 (dd, 1H, J = 5.0, 11.9
Hz, pyrazoline ring), 3.97 (dd, 1H, J = 12.1, 18.4 Hz, pyrazoline ring), 3.78 (s, 3H, OCH,), 3.75 (s, 3H, OCH3), 3.22 (dd,
1H, J = 5.2, 18.3 Hz, pyrazoline ring); *C NMR (100 MHz, DMSO - dﬁ) S, ppm: 153.1, 151.9, 148.6, 147.7, 146.6, 145.9,
135.6,132.9,127.1, 121.3, 118.9, 116.3, 113.9, 112.7, 112.0, 108.6, 105.9, 101.1, 62.1, 56.3, 55.5, 46.1. HRMS, found, m / z:
482.1380 [M+H]*. C,,H,,N.OS. Calculated, m / z: 482.1360.

4-[5-(1,3-Benzodioxol-5-yl)-3-(2,4-dimethoxyphenyl)-4,5-dihydro-1 H-pyrazol-1-yl|benzenesulphonamide (4g)

Isolated as a cream color solid (yield: 52%) : mp : 134 — 136 °C; "H NMR (400 MHz, DMSO - d,) §, ppm (J, Hz): 7.86 (d,
1H,J = 9.2 Hz, Ar-), 7.58 (d, 2H, ] = 8.9 Hz, Ar-), 7.08 - 6.96 (m, 4H, Ar-, SO,NH ), 6.86 (d, 1H, ] = 7.8 Hz, Ar-), 6.75 - 6.72
(m, 2H, Ar-), 6.65 - 6.62 (m, 2H, Ar-), 5.97 (s, 2H, methylene, piperonal ring), 5.42 (dd, 1H, J = 4.9, 11.8 Hz, pyrazoline
ring), 3.92 (dd, 1H, J = 12.1, 19.2 Hz, pyrazoline ring), 3.82 (s, 3H, OCH,), 3.80 (s, 3H, OCH,), 3.18 (dd, 1H, J = 5.1, 18.2
Hz, pyrazoline ring); "C NMR (100 MHz, DMSO - d,) 8, ppm: 162.3, 159.3, 149.4, 148.2, 147.0, 146.6, 136.3, 132.9, 129.9,
127.6, 119.4, 113.9, 112.2, 109.1, 106.7, 106.4, 101.5, 99.2, 62.3, 56.2, 55.9, 46.8. HRMS, found, m / z: 482.1380 [M+H]*.
C,,H,N.OS. Calculated, m / z: 482.1359.

4-[5-(1,3-Benzodioxol-5-yl)-3-(2,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl|benzenesulphonamide
(4h)

Isolated as a yellow color solid (yield: 49%) : mp : 191 - 193 °C; '"H NMR (400 MHz, DMSO - d,) 8, ppm (J, Hz): 7.57 (d,
2H, ] = 8.9 Hz, Ar-), 7.49 (s, 1H, Ar-), 7.06 - 7.01 (m, 4H, Ar-, SONH.), 6.86 (d, 1H, ] = 7.9 Hz, Ar-), 6.75 - 6.72 (m, 3H,
Ar-), 5.97 (s, 2H, methylene, piperonal ring), 5.43 (dd, 1H, J = 4.9, 11.8 Hz, pyrazoline ring), 3.95 (dd, 1H, J = 11.9, 18.3 Hz,
pyrazoline ring), 3.84 (s, 3H, OCH,), 3.80 (s, 3H, OCH,), 3.79 (s, 3H, OCH,), (one of the proton peaks of the pyrazoline
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ring was under DMSO solvent peak); "C NMR (100 MHz, DMSO - d,) 8, ppm: 153.3, 151.8, 149.3, 148.2, 147.0, 146.5,
143.4,136.3,132.9, 127.5,119.4, 112.3, 112.2, 111.5, 109.1, 106.4, 101.6, 99.0, 62.4, 57.0, 56.7, 56.2, 46.8. HRMS, found, m
/z:512.1486 [M + H]". C,,H N.O.S. Calculated, m / z: 512.1478.

4-[5-(1,3-Benzodioxol-5-yl)-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1 H-pyrazol-1-yl|benzenesulphonamide
(4i)

Isolated as a cream color solid. (yield: 54%) : mp : 212 - 214 °C; '"H NMR (400 MHz, DMSO - d,) §, ppm (J, Hz): 7.59
(d, 2H, J = 8.9 Hz, Ar-), 7.11 - 7.04 (m, 6H, Ar-, SONH,), 6.87 (d, 1H, ] = 7.8 Hz, Ar-), 6.75 - 6.72 (m, 2H, Ar-), 5.98 (s,
2H, methylene, piperonal ring), 5.57 (dd, 1H, ] = 4.7, 11.9 Hz, pyrazoline ring), 3.90 (dd, 1H, ] = 12.0, 17.6 Hz, pyrazoline
ring), 3.85 (s, 6H, OCH,), 3.70 (s, 3H, OCH,), 3.26 (dd, 1H, ] = 4.9, 17.8 Hz, pyrazoline ring); "C NMR (100 MHz, DMSO
-d,) 8, ppm: 153.0, 149.8, 147.7, 146.6, 145.8, 138.7, 135.5, 132.9, 127.3, 127.1, 118.9, 111.9, 108.6, 105.9, 103.5, 101.0, 62.1,
60.1, 55.9, 43.1. HRMS, found, m / z: 512.1486 [M+H]*. C H, N,O_S. Calculated, m / z: 512.1480.

4-[5-(1,3-Benzodioxol-5-yl)-3-(4-hydroxy-3-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]
benzenesulphonamide (4j)

Isolated as a dark yellow solid (yield: 54%) : mp : 161 - 163 °C; 'H NMR (400 MHz, DMSO - d,) §, ppm (], Hz): 9.56
(bs, 1H, OH), 7.58 (d, 2H, ] = 8.8 Hz, Ar-), 7.37 (s, 1H, Ar-), 7.16 (d, 2H, ] = 8.1 Hz, Ar-), 7.06 - 7.03 (m, 4H, Ar-, SO,NH.),
6.86 (d, 1H, ] = 7.8 Hz, Ar-), 6.75 - 6.72 (m, 2H, Ar-), 5.98 (s, 2H, methylene, piperonal ring), 5.50 (dd, 1H, ] = 4.7, 11.7
Hz, pyrazoline ring), 3.85 (s, 6H, OCH,), 3.15 (dd, 1H, J = 4.9, 17.6 Hz, pyrazoline ring), (one of the proton peaks of the
pyrazoline ring was under DMSO solvent peak); *C NMR (100 MHz, DMSO - d,) §, ppm: 150.7, 148.9, 148.23, 148.20,
147.0, 146.5, 136.1, 132.9, 127.6, 123.6, 120.4, 119.4, 115.9, 112.2, 110.0, 109.1, 106.4, 101.6, 62.3, 56.1, 43.7. HRMS, found,
m / z: 468.1224 [M+H]*. C_H, N.O S. Calculated, m /z: 468.1205.

2377210 376
2.2. Biological assays

2.2.1. Cytotoxicity assay

The cytotoxicity of the compounds 4a - 4j were assayed towards human tumor cell lines [gingival carcinoma (Ca9-22),
oral squamous cell carcinoma (HSC-2)] and human normal oral cells [gingival fibroblasts (HGF), and periodontal
ligament fibroblasts (HPLF)] as described [42, 54 — 56]. In brief, all cells were cultured in Dulbecco’s modified eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS). The following concentrations of the compounds in
dimethylsulfoxide (DMSO) were added to the medium and incubated at 37 °C for 48 h: 4a - 4j (0.32, 1, 3.2, 10, 31.6, 100,
316 and 1000 mmol/L), melphalan (3.12, 6.25, 12.5, 25. 50, 100, 200 and 400 mmol/L) and 5-FU (7.8, 15.6, 31.3, 62.5,
125, 250, 500 and 1000 mmol/L). The media that contained the same concentration of DMSO (0.0078, 0.156, 0.03125,
0.0625, 0.125, 0.25, 0.5 or 1%) were used as controls since DMSO above 0.25% is cytotoxic. The viable cell numbers were
determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The CC,; values were
determined from dose-response curves.

2.2.2. Carbonic anhydrase enzyme assay

Human CA isoforms (hCAI and hCAII) were purified by the sepharose - 4B — L - tyrosine sulfanilamide affinity
segregation method as reported [57, 58]. The Bradford technique was used to measure protein concentrations at 595 nm
[59]. Inhibitory effects of the compounds were investigated by measuring the esterase activity according to Verpoorte et
al. [60] as described in previous studies [61 — 63]. The hCA activity was determined by measuring the conversion of the
p-nitrophenyl acetate substrate to p-nitro phenolate at 348 nm by the spectrophotometer (UV - VIS Spectrophotometer,
UV mini-1240, Shimadzu Corporation) [64]. Acetazolamide (AZA) was used as a control drug. The Lineweaver-Burk plot
was used to calculate inhibition constants (K,) of the compounds [65] by using the following equation:

VImax
I

1+F

Vmax -

—
—

-~

V. o maximal velocity; VI, maximal velocity of inhibitor; I, inhibitor; K, the inhibitor constant.
Lineweaver-Burk graphics are presented as a supplementary file.

3. Results and discussion

3.1. Chemistry

The compounds (4a - j), 4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1H-pyrazol-1-yl]benzenesulphonamide,
were synthesized successfully. The aryl part was changed as phenyl (4a), 4-methoxyphenyl (4b), 3-methoxyphenyl
(4c), 2-methoxyphenyl (4d), 3,4-dimethoxyphenyl (4e), 2,5-dimethoxyphenyl (4f), 2,4-dimethoxyphenyl (4g),
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2,4,5-trimethoxyphenyl (4h), 3,4,5-trimethoxyphenyl (4i), 3-methoxy-4-hydroxyphenyl (4j). The chemical structure of
the final pyrazoline compounds were elucidated by '"H NMR, *C NMR, and HRMS.

The NMR data proved that the target pyrazoline ring was successfully synthesized under the reaction conditions
applied. A peak belonging to the proton on the fifth position of the pyrazoline ring was seen in the range of 5.57 - 5.42
ppm as double doublet (dd). Also, one of the protons on the fourth position of pyrazoline was seen in the range of 3.98 -
3.88 ppm while another proton was observed in the range of 3.22 - 3.15 ppm as dd. Two aliphatic carbons of pyrazoline
(C-4 and C-5) also appeared in the range of 62.4 — 43.1 ppm in “C NMR spectra as expected. HRMS results were found
compatible with predicted and calculated values for the compounds.

3.2. Cytotoxicity

Cytotoxicity’s of the compounds 4a - 4j were evaluated towards Ca9-22, HSC-2, HSC-3, and HSC-4 human oral squamous
cell carcinoma cell lines as tumor cell lines and HGE, HPLE, and HPC human normal oral cells as nontumor cells (Table 1)
according to the procedure in the literature [42, 54 - 56]. 5-Fluorouracil (5-FU) was used as a reference anticancer drug.

First, the question that whether the compounds have cytotoxic/anticancer properties should be answered. The
cytotoxicities of the compounds towards tumor cell lines were in the range of 6.7 — 400 uM (Table 1). This shows that the
compounds had anticancer properties. The compounds having more potent cytotoxicity than 5-FU and their times of
potency (shown in the parenthesis) were as follows towards cell lines: Ca9-22 cell line: 4a (1.3), 4b (1.6), 4d (1.6), 4f (2.3),
4g (2.2), 4i (2.4), and 4j (1.3), and HSC-2 cell line: 4a (10), 4b (14.5), 4c (14.3), 4d (15.3), 4f (16.6), 4g (19.3), 4i (8.4), 4j
(9.8). On the other hand, compounds did not show considerable cytotoxicity towards HSC-3 and HSC-4 cell lines, except
compound 4i towards HSC-4.

As previously mentioned in the introduction, novel anticancer drugs that show less side effects and higher selectivity
towards cancer cells urgently need to be developed [1, 3, 5]. Normal cells surround tumor cells in humans. Consequently,
candidate compounds that are planned to be used in future clinical applications should show higher cytotoxicity against
tumor cells rather than normal cells. The selectivity index (SI) value reflects this property. The SI values of the compounds

Table 1. Cytotoxicity results of pyrazoline derivatives (4a - 4j).

Tumor cell lines CC, | (M) Non-tumor cell lines CC, (uM)

Ca9-22|SI |HSC-2|SI |HSC-3|SI HSC-4|SI |mean [SD | HGF | HPLF| HPC |mean |SD | TS TS, |PSE, PSE

(D/B?) | (C/A?
x100 | )x100

4a 17.1 3.1 |26.1 |2.0 {208 2.5 |26.1 2 225 |44 |[563 |37.6 |63.2 |524 |133 |23 |33 |10.3 19.3
4b 14.0 21.4|18.0 16.7| 16.2 18.5 |18.2 16.5{16.6 |2.0 [400 |400 |98.7 |299.6|174.0|18 28.6 |108.6 205.1
4c 19.5 6.1 |183 |65 |13.9 8.6 |[18.0 66 (174 |24 (382|178 |140 |118.7|723 |68 |2.0 |39.1 10.1
4d |13.8 27 |171 |22 |12.4 3.0 |[149 25 (146 |20 [369 |39.7 |37 37.8 | 1.6 26 |27 |179 19.5
4e | 472 8.5 |400 1.0 |61.0 6.6 |400 1.0 {227 |199.8(400 |400 |400 |400 |0.0 1.8 (85 (0.8 17.9
4f 9.7 28.2|15.7 17.4| 11.5 23.8 |12.0 22.8(12.2 |25 [400 |276.3 |147 |274.4|126.5|22.4 |41.2 |183.6 425.1
4g |99 25.8|13.5 18.9|9.8 26.0 {12.7 |20.1|11.5 |1.9 (400 [234.3 131 |[255.1|1357|22.2 |40.3 |193.2 405.4

A B C D D/B |C/A

4h | 400 1.0 | 400 1.0 |21.3 18.8 |21.8 18.3(211 |218.5(400 |400 |400 |400 |0.0 1.9 1.0 {09 0.3
4i 9.3 30.6(30.9 |92 [11.3 252 6.7 42.5(14.6 [11.0 (400 |83.7 |371.3|285 |174.9|19.6 |43 134.6 461.5
4j 17 3.8 1267 |24 [263 2.5 |16.8 39 |21.7 |56 |76.7 [64.7 |543 |652 |[11.2 |3.0 |45 |13.8 26.4

5-FU| 22 44.8]261 38 (7.8 126.4| 12.5 78.9175.8 |[123.6|1000 [ 1000 |958.3|986.1 [24.1 |13.0 |454 |17.1 206

HGF (human gingival fibroblast), HPLF (human periodontal ligament fibroblast), HPC (human pulp cell), Ca9-22, HSC-2, HSC-3,
and HSC-4 oral squamous cell carcinoma cell lines. CC,; values refer to the concentrations of the compounds in micromolar (uM)
which reduce the viable cell number by 50%. Tumor selectivity (TS ) was calculated for the compounds by dividing the average CC,
value towards normal cells into the average CC, value towards cancer cell lines (D/B), tumor selectivity (TS,) was calculated for the
compound by dividing the average CC_ value towards HGF cells into the CC, value towards Ca9-22 cells (C/A). Selectivity index (SI)
figures were generated which are quotients of the average CC_ values of nonmalignant cells and CC, figure of a compound towards
a specific cell line. A potency selectivity expression (PSE) values were calculated according to equation i.e. (D/B?) x 100 and (C/A?) x
100. CC, value was determined from the growth curves plotted at different concentrations of each compounds in triplicate wells. 5FU:
5-fluorouracil (reference compound), SD: standard deviation.
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were calculated towards a specific cell line as described before [55] and presented in Table 1. The SI figure being higher
than 1 reflects the selectivity of the tested compound toward tumor cells, rather than a normal cell. In terms of SI figures,
all compounds presented SI values of 2.6 — 30.6 towards Ca9-22 cell line (except 4h) while all compounds showed SI values
of 2.0 - 18.9 towards HSC-2 cell line (except 4e, and 4h). On the other hand, all compounds showed SI values of 2.5 - 26.0
towards HSC-3 cell line while all compounds had SI values of 2.0 - 42.5 toward HSC-4 cell line (except 4e).

The tumor selectivity (TS, and TS)) of each compound was calculated as described in previously reported literature
procedures [55] and these figures are presented in Table 1. Based on the TS, values, 4f and 4g which have 2,5 and 2,4-dimethoxy
substituents had the highest TS, values in a series with 22.4 and 22.2, respectively. On the other hand, the 3,4,5-trimethoxy
substituted compound 4i (TS,: 19.6) had the second highest TS, value. Among mono-methoxy compounds, the para-methoxy
compound 4b had a TS, value of 18 and was the third highest. As expected, they were in accordance with the literature
findings [16 - 18]. The second calculation (TS,) considered the differences of sensitivity between the malignant (Ca9-22) and
non-malignant (HGF) cells derived from the same tissue (gingiva). According to TS, values obtained, 4i (3,4,5-trimethoxy)
had the highest TS, value of 43. This result was followed by 4f (2,5-dimethoxy), 4g (2,4-dimethoxy), and 4b (4-methoxy).

As seen in both calculations poly-methoxylated compounds had higher TS value than mono derivatives’ The selectivity
order changed as tri > di > mono or di > tri > mono. These findings also supported in our previous reports [16 — 18], thus the
methoxylated compounds can be considered for new anticancer drug designs.

The desired properties for a lead compound are being both markedly cytotoxic and selectively toxic for tumors. To
identify lead compounds of the study PSE (PSE, and PSE)) values were calculated as shown in Table 1 [55]. PSE1 reflects
general cytotoxicity and selectivity potency of the compound towards all cells used, whereas PSE, seems more specified since
it was considered for the same origin cells. When the compounds tested towards OSCC lines were considered in terms of
PSE, values of the compounds. The best poly-methoxylated compounds were 4i (with 3,4,5-trimethoxy, PSE, = 461.5) > 4f
(with 2,5-dimethoxy, PSE, = 425.1) > 4g (with 2,4-dimethoxy, PSE, = 405.4) while the best mono-methoxylated derivative
was 4b (with 4-methoxy, PSE, = 205). On the other hand, the non-substituted or non-metoxylated derivative 4a had a PSE,
value of 19.3. The reference anticancer drug 5-FU had a PSE, value of 206, which is a similar value to 4-methoxy derivative
4b’s.

PSE, values of 4i, 4f, 4g were 2.2 (4i), 2.1 (4f) and 2.0 (4g) times more potent than the reference drug 5-FU. Mono- or poly-
methoxylation increased the PSE, values in 4b (4-methoxy), 4f (2,5-dimethoxy), 4g (2,4-dimethoxy), 4i (3,4,5-trimethoxy)
derivatives for 10.6, 22.0, 21.0 and 24.0 times, respectively, compared to the methoxylated compound 4a. Methoxylation
did not change the PSE, value very much in 4d (2-methoxy), 4e (3,4-dimethoxy), 4j (4-hydroxy-3-methoxy) derivatives
compared to the methylated compound 4a. Interestingly decreased PSE, values were observed in 4c (3-methoxy, at half the
value) and 4h (2,4,5-trimethoxy, with a dramatic decrease which is 64.3 times.

Therefore, it can be said that except for 4h and 4c, mono- or poly-methoxylation mostly increased or did not change
PSE, values of the compounds compared to non- methoxylated 4a. Even if small increases or decreases occurred with the
nine methoxylated compounds, only three of them (33.3%) decreased PSE, value, while 6 of them (66.6%) increased the
PSE, value. This suggests that methoxylation can be considered to be a useful modification to increase cytotoxicity and
selectivity of compounds (PSE,) in general. Among mono-methoxylated ones, the (4b, 4c, 4d), 4-methoxy derivative (4b)
had the best PSE value, of the dimethoxylated; 2,5-dimethoxylated (4f) and 2,4-dimethoxylated (4g) had the highest and best
PSE values. When PSE, value was considered, 2-methoxy (4d) compound had a similar PSE value to non-methoxylated 4a.
Adding a methoxy group to 4-position in addition to 2-position in 4g compound caused 20.8 fold increase in cytotoxicity
and selectivity (PSE,) compared to 4d (2-methoxy) and 2.0 fold increase compared to 4b (4-methoxy) derivatives. This means
that the synergic effect was obtained in compound 4g when compared to 4d and 4b. Similarly, in compound 4f which is a
2,5-dimethoxy derivative, PSE value increased by 21.8 times compared to 4d (2-methoxy) and 42.1 times compared to 4c
(3-methoxy) derivatives. The data confirmed that, this is a synergic effect of polymethoxy derivatives when compared to its
corresponding mono analogs.

The introduction of the third methoxy group into the structure in compound 4i (3,4,5-trimethoxy) increased the PSE,
value, which reflects cytotoxicity and selectivity. Increases in PSE, were 2.3, 45.7, and 23.7 times in 4i compared to mono-
methoxylated compounds 4b, 4c, and 4d. Increases were 1.1 and 1.12 times in 4i compared to dimethoxylated compounds
4f and 4g, respectively.

In addition, an introduction of an electron-donating hydroxy group which is a hydrogen bonding donor group to para
positions of phenyl with a meta methoxy substituent in compound 4j, increased the PSE, value 2.6 times in 4j comparing to
4c (3-methoxy). This was also found to be a useful modification for the increase in PSE, value.

When the order of PSE, values was considered, it was as follows 4g (2,4-dimeyhoxy) > 4f (2,5-dimeyhoxy) > 4i
(3,4,5-trimethoxy) > 4b (4-methoxy), while it was 4i > 4f > 4g > 4b in PSE, calculation. Mono- or poly-methoxylation (di or
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tri) increased the PSE, value of the compounds by 22.2%, while it increased the PSE, value by 77.7%.

In a  previous study, = 4-(5-(3,4-dimethoxyphenyl)-3-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)
benzenesulphonamide compounds’ having free methoxy groups on its chemical structure were reported as cytotoxic
against OSCC [13]. The compounds’ CC, values were in the range of 22 — 200 uM, while their TS values were 0.7 and 3.4.
When we compared our compound 4b that has piperonal moiety, which is a cyclic form of 3,4-dimethoxy groups in the
previous compound [13], it can be expressed here using a piperonal structure, therefore making it a useful modification
since it increased the tumor specificity of compound 4b (TS: 18 and 28.6) by 8 - 25 times towards OSCC. These significant
outcomes indicate that a piperonal moiety may be used as a favorable group for designing new bioactive compounds in
future studies.

The methoxy group is an electron-donating group and can form hydrogen bonds with enzymes. This is an important in
the bioactivity of many compounds and drugs. Increases in the bioactivity of the compounds may be attributed to; proper
interaction of the compound with the active site of the enzyme, the stability of this complex formed, and the adequate
concentration of the biomacromolecules of the compound at the active site of the compound, which depends on the
pharmacokinetic properties of that compound. The other factor affecting the cytotoxic potency can be the type of cell line
used and the mechanism of action of the compound for the activity at issue. Furthermore, decreases in cytotoxicity may
be attributed to the low stability of the compounds, which affect the concentration of the compound at the active side, or
improper position of the compound at the active side which limits proper interaction. Unchanged bioactivity can bring
the mind ineffectiveness of some groups to realize the activity in question partition coefficient of the compounds can also
direct compound travel and its effect. Additionally, the size of molecules can be considered as an affecting factor since the
behavior of the molecule in cells can be affected differently.

3.3. Carbonic anhydrase I and II inhibition
hCA T and hCA II inhibition results of the compounds are presented in Table 2 as IC_ (uM) and K, (uM). When CA
inhibitory profiles of the compounds were investigated based on the IC, values, the compounds were effective at 6.6 - 30.1
uM toward hCA I while they were effective at 9.2 - 20.0 uM toward hCA II isoenzyme. The 3-methoxy-bearing compound
4c was the most effective inhibitor on hCA I and hCA II while phenyl-bearing compound 4a had the least effective toward
hCA T in terms of IC, values. The reference compound, acetazolamide (AZA), had IC_| values of 16.6 uM and 8.4 uM
towards hCA I and II, respectively. The compounds 4b (1.5), 4c (2.5), 4d (1.3), 4e (1.6), 4f (1.2), 4g (2.5), 4h (1.2) times
were more potent than AZA towards hCA I while all compounds had less inhibition potential than AZA towards hCA II
in terms of IC_ .

When the inhibition constants (K,) were considered, K, values of the compounds were in the range of 12.7 + 1.7 uM -
59.8 + 3.0 uM towards hCA Tand in the range of 6.9 + 1.5 uM - 24.1 £ 7.1 uM towards hCA II. The K, values of AZA towards

Table 2. The hCA I and hCA II inhibition values of the compounds (4a - 4j).

IC,, (uM) K, (uM)
Compounds

hCAT r’ hCA I r’ hCAI hCATI
4a 30.1 0.9863 10.7 0.9846 59.8 + 3.0 89 £ 23
4b 11.3 0.9881 16.3 0.9733 319 £ 1.9 115 + 4.6
4c 6.6 0.9483 9.2 0.9595 215 £ 1.5 69 £ 1.5
4d 12.8 0.9487 10.7 0.9509 285+ 1.6 8.9+19
4e 10.2 0.9576 15.2 0.9679 255+1.6 9.3+0.6
af 14.0 0.9607 16.3 0.9732 27.8+10.1 123+£28
4g 6.7 0.9734 11.3 0.9623 12.7 £ 1.7 7.8+£22
4h 13.8 0.9875 14.3 0.9506 49.6+1.9 93+1.6
4i 29.7 0.9743 12.5 0.9412 525+ 1.8 241+7.1
4j 17.9 0.9459 20.0 0.9386 29.8+94 93+19
AZA* 16.58 0.9887 8.4 0.9825 30.2x+7.8 44+ 0.6

*Acetazolamide (AZA) was used as a standard inhibitor for both hCA I and II isoenzymes.
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hCA T'and hCA II were 30.2 + 7.8 uM and 4.4 + 0.6 pM, respectively. When K| values were considered, the compound 4g,
which has a 2,4-dimethoxy substituent, towards hCA I and compound 4c, which has a 3-methoxy substituent, towards
hCA IT had the best inhibition potential. Differences in inhibition potentials of the compounds may result from differences
in their chemical structures and also differences in their interactions with the active site(s) of enzymes.

In another study conducted by our research group, a series of poly-methoxylated pyrazoline benzene sulphonamides
were synthesized and their inhibitory effects on CAs were investigated. All compounds presented superior CA inhibitory
activity compared to the reference compound, acetazolamide, on CAs with inhibition constants in the range of 30.1 - 49.2
nM against hCA I and of 23.8 - 30.1 nM against hCA II in terms of IC,  values, respectively [13]. Based on the literature
findings, to obtain more potent hCA I, II inhibitors, and cytotoxic compounds, pyrazoline type compounds can be derived
with poly-methoxylated phenyl rings such as 2,3,4-trimethoxy, 2,4,6-trimethoxy, and 2,4-dimethoxy groups. Additionally,
bioisosteric heterocyclic rings such as furan and thiophen can be used instead of phenyl rings. Furthermore, molecular
docking studies can be carried out to identify molecular interactions in future research.

4. Conclusion

A new series of pyrazole-sulphonamides, [4-[5-(1,3-benzodioxol-5-yl)-3-aryl-4,5-dihydro-1H-pyrazol-1-yl]
benzenesulphonamide] were synthesized and evaluated their cytotoxicities and carbonic anhydrase inhibitory potencies.
The cytotoxicities of the compounds towards tumor cell lines were in the range of 6.7 — 400 uM. The compounds 4i (PSE,
= 461.5) and 4g (PSE, = 193.2) had the highest PSE values in cytotoxicity assays. The use of methoxy substituents in
different parts of the ring severely affected bioactivity. All compounds presented hCA I and hCA II inhibition potency.
The compounds 4c¢ (K, = 6.9 + 1.5 uM, hCA 1I) and 4g (K, = 12.7 + 1.7 uM, hCA 1) had the lowest K values as the best
CA inhibitors. The compounds that show impressive bioactivities on the targets can be considered as lead compounds for
turther studies.
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HRMS of compound 4a
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Compound 4b
SO,NH,

N-N
|
<O O O OCH3
(0]

Chemical Formula: Cy3Hy1N3O5S
Exact Mass: 451,1202
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HRMS of compound 4b
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Compound 4c
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Chemical Formula: C,o3H51N305S
Exact Mass: 451,1202
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HRMS of compound 4c
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Compound 4d
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Chemical Formula: Co3Hy1N305S

Exact Mass: 451,1202
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HRMS of compound 4d
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Compound 4e
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Chemical Formula: Co4Ho3N306S
Exact Mass: 481,1308
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HRMS of compound 4e
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Chemical Formula: Co4H23N306S
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HRMS of compound 4f
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Compound 4g

SO,NH,

N-N
0~ AL )oon
$ O HyCO

Chemical Formula: Co4Ho3N306S
Exact Mass: 481,1308

'H NMR of compound 4g
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HRMS of compound 4g

Event#: 1 MS(E+) Het Time: 7.573 = 8107 Scan# : 1137 -= 1217
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Compound 4h

SO,NH,

OCH,

N-N
o) / O OCHj3
<O O OCHj;

Chemical Formula: Cy5Ho5N307S
Exact Mass: 511,1413

'H NMR of compound 4h
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HRMS of compound 4h

Eventf: 1 MS(E+) Ret Time : 7.560 Scan¥ : 1135
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Compound 4i

SO,NH,

NN OCHj
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<O O OCHj3;
Chemical Formula: C5H,5N307S
Exact Mass: 511,1413

'"H NMR of compound 4i
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HRMS of compound 4i
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Compound 4j

SO,NH,

NN OCH
0 O ! OH
(0]

Chemical Formula: C3H51N306S
Exact Mass: 467,1151

'"H NMR of compound 4;
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HRMS of compound 4j
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