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1. Introduction
Acid catalysis is an important area of organic synthesis and vital industrial significance predominantly in the petrochemical, 
fine chemical, and pharmaceutical industries [1]. Many intrinsic drawbacks of the use of homogeneous acid catalysts 
have stimulated the research for recyclable strong solid acids to replace conventional, toxic, homogeneous acid catalysts. 
Heterogeneous catalysts such as phosphosulfonic acid, nano sulfated zirconia, and boric acid [2–4] are being utilized as a 
replacement of homogeneous acids in industrially important reactions. As a lucrative alternative to classical solid catalysts, 
the use of economical solid catalysts like activated fly ash precipitated silica catalyst, sulfated zirconia/fly ash, cerium 
triflate/fly ash, scandium triflate/fly ash, phosphomolybdic acid/fly ash, fly ash solid base catalyst [5–10], and other waste-
derived catalysts [11–15] is gaining interest nowadays.

Perlite is a hydrated, pozzolanic, naturally occurring volcanic glass formed by the cooling of volcanic eruptions, 
estimating about 1.1 million metric tons production in Turkey [16]. It has a layered structure whose skeleton mainly 
comprises oxides of silicon, aluminium, potassium, and sodium, while oxides of titanium, calcium, magnesium, iron, and 
chemically combined water, etc. are present in small quantities [17]. Its particles are neutral, fluffy, non-toxic, can expand 
up to 20 times than their original volume on heating beyond 900 °C. Its particle size and specific surface area are 0.2‒4 
mm and 1.22 m2g–1 respectively [18,19]. It is mainly used in producing construction materials, adsorption and removal of 
atmospheric pollutants, horticulture, etc. [20–22], while its application in heterogeneous catalysis is not much explored in 
past except only a few reports [23–30].  Turkey is the third worldwide leading producer of perlite and accounts for about 
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16% of its total production [14]. It is, thus, assumed that Turkish perlite, which has high silica and alumina composition 
might possess significant stable surface-active sites and can be converted into a potential heterogeneous acid catalyst for 
catalyzing industrially beneficial organic transformations. Nickel-based catalysts supported on different substrates like 
silica, alumina, zeolites have attracted research attention because of their potential applications in many important reactions 
such as hydrogenation, diesel steam reforming, ozonation of 2,4-dichlorophenoxyacetic acid, dry reforming of methane 

[31–34], etc. Particularly, supported nickel oxide catalysts have been utilized in numerous potential reactions such as 
hydrogen production, oxidative dehydrogenation, hydrogen peroxide decomposition, etc. [35–37], while fewer records are 
found for its application in condensation reactions [38]. Catalyst support is vital as it facilitates higher dispersion of nickel 
oxide and prevents its aggregation [39], which, in turn, enhances the efficiency of catalyst, and, thus, maximum conversion 
and yield % of desired products are achieved. With the increasing social interests over environmental degradation and 
future resources, it is of great importance for chemists to come up with new approaches that are less hazardous to human 
health and the environment. In this series, we have tried to explore stable surface-active sites of a novel silica-alumina 
enriched natural waste- Turkish perlite and its efficiency as catalyst support. 

In the current work, a novel, efficient Turkish perlite supported nickel oxide catalyst (NPC-15) was prepared by 
loading nickel oxide on thermally activated Turkish perlite (TAP), and it successfully catalyzed a series of Claisen–
Schmidt condensation reactions giving a higher isolated yield % of desired products, 2,6-bis(substituted benzylidene)
cyclohexanones, used in anti-tumor, anti-cancer, and cytotoxic activities [40] and also serve as an important precursor for 
the synthesis of potentially bioactive pyrimidine derivatives [41, 42]. Table 1 summarizes some nickel catalysts supported on 
economical substrates already precedented in literature, utilized in different reactions including Turkish perlite supported 
nickel oxide catalyst (NPC-15) presented in this work. Our work is different and innovative in terms of sustainability 
and reusability of NPC-15 up to six consecutive reaction cycles, also the catalytic potential of NPC-15 was tested for a 
series of Claisen–Schmidt condensation reactions, which is quite an uncommon field of catalysis for supported nickel 
oxide catalysts. Use of less expensive support, recyclable catalyst, solvent-less reaction conditions, green methodology, 
ease of product purification are the key features of this protocol, and, thus, it may be considered as an efficient alternative 
to the existing, high-priced, less-effective procedures. This work is aimed to act as a stepping-stone for the prospective 
researchers into the rewarding field of utilization of waste materials like Turkish perlite as the catalyst support in the 
development of heterogeneous catalysts.

2. Experimental
2.1. Chemicals
Nickel nitrate, sodium hydroxide, nickel oxide, cyclohexanone, and aromatic aldehydes were purchased from Sigma Aldrich, 
Bengaluru, Karnataka, India. Turkish perlite was supplied by Indica Chem. Ind. Pvt. Ltd., Kotdwar, Uttarakhand, India.

Table 1. Various nickel catalysts supported on different, economical substrates.

Name of catalysts Supports used Chemicals used Method used for 
catalyst synthesis Catalytic applications

NiFAk
 [37] Fly ash Ni(NO3)2.6H2O, CaO,

urea
Microwave assisted 
solution combustion H2O2 decomposition

NiPCH [36] Porous clay 
heterostructures

Ni(NO3)2.6H2O, oxalic 
acid Evaporation Oxidative dehydrogenation 

of ethane

Ni/SiO2-RHA [43] Rice husk ash Ni(NO3)2.6H2O, aq. NH3 Ion exchange -

Ni-10/AC [44] Activated carbon Ni(NO3)2.6H2O Wet impregnation Benzaldehyde 
hydrogenation

Ni/PF-B [26] Perlite treated with 
Na2CO3

Ni(NO3)2.6H2O and 
Mg(NO3)2.6H2O, solid 
anhydrous Na2CO3

Co-precipitation 
followed by reduction

Sunflower oil
hydrogenation

Nickel boride catalyst [45] Hydrothe-rmal 
modified perlite 

NiCH3(CO2)2.4H2O, 
NaBH4, NaOH Impregnation Hydrogenation of 

nitrobenzene

NPC-15 [This study] Turkish perlite Ni(NO3)2.6H2O, 6 M 
NaOH solution

Deposition-
precipitation

Series of Claisen-Schmidt 
condensation reactions
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2.2. Catalyst synthesis
After being received, Turkish perlite was initially activated thermally at 800 °C for 3 h to remove moisture, carbon, and 
other impurities to form TAP (thermally activated perlite).  All the catalysts investigated in this study (NPC-10, 15, and 
50) were synthesized by loading 10, 15, and 50 wt.% nickel oxide on TAP by deposition-precipitation method, using NaOH 
as a basification agent. The required amounts (1.97 g for 10 wt. %, 2.95 g for 15 wt. %, 9.83 g for 50 wt. %) of precursor 
salt (nickel nitrate) in an aqueous solution phase were mixed with 5 g of TAP and agitated for 12 h at room temperature. 
Thus, obtained homogeneous mixture of metal salt and TAP was treated with 6 M NaOH solution until pH value becomes 
9–10. Then, formed precipitated gel was filtered, washed several times up to neutral pH, dried at 110 °C for 12 h, and then 
calcined in static air at 450 °C for 4 h. The negative results of Dimethylglyoxime (DMG) tests confirm that no nickel ions 
leached off from the catalysts during their synthesis. The synthesis process of NPC catalyst is presented in Scheme 1. 
2.3. Catalyst characterization
Structural and morphological features of all catalytic materials were analyzed by BET surface area analysis (Anton Paar 
India Pvt. Ltd., Gurgaon, Haryana, India), XRD (Bruker, Mumbai, Maharashtra, India), SEM, SEM-EDX JEOL India Pvt. 
Ltd. Mumbai, Maharashtra, India.), TEM (Hitachi High-Tech India Private Limited, Mumbai, Maharashtra, India), FT-IR, 
pyridine adsorbed FT-IR (Bruker, Mumbai, Maharashtra, India), UV-Vis DRS (Perkin Elmer (India) Pvt Ltd., New Delhi, 
India) and TGA (Mettler Toledo) techniques.1H NMR spectra of products were recorded on Bruker DRX300 spectrometer.
2.4. Catalyst evaluation
The condensation reactions (Scheme 2) catalyzed by NPC-10, 15, and 50 were performed in a liquid phase batch reactor 
equipped with 250 mL RBF (round bottom flask), magnetic stirrer, and spiral glass condenser, placed in a thermostat. In 

Received Turkish perlite 

Deposition-
precipitation method

Dissolution of requisite amount 
of nickel nitrate (10, 15 and 50 
wt%) in distilled water and 
addition to 5 g TAP

Stirring of resultant slurry at 
room temperature for 12 h

Titration of slurry with aqueous 
NaOH solution until pH = 9-10

Filtration of precipitated gel and 
washing with distilled water up to 
neutral pH

Drying at 110 °C for 12 h
Calcination in static air 
at 450 °C for 4 h

Nickel oxide Turkish perlite 
catalyst (NPC-10, 15 and 50) 

�ermal activation 
of Turkish perlite at 
800  °C for 3 h (TAP)

Scheme 1. Synthesis of nickel oxide Turkish perlite catalyst.
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this procedure, a mixture of cyclohexanone and aromatic aldehydes (molar ratio = 1:2) was placed in a RBF and mixed 
with the activated catalyst. The reaction mixture was stirred at different times and temperatures. Once the reaction is over, 
the catalyst was removed from the reaction mixture by simple filtration. Melting points of products were detected by using 
Melting Point System MP30, Mettler Toledo India Pvt. Ltd., Vasai, Maharashtra, India, melting apparatus.

 

𝐼𝐼𝑠𝑠𝑜𝑜𝑙𝑙𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑	𝑦𝑦𝑖𝑖𝑒𝑒𝑙𝑙𝑑𝑑	%	𝑜𝑜𝑓𝑓	2,6 − 𝑏𝑏𝑖𝑖𝑠𝑠(𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑢𝑢𝑡𝑡𝑒𝑒𝑑𝑑	𝑏𝑏𝑒𝑒𝑛𝑛𝑧𝑧𝑦𝑦𝑙𝑙𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛𝑒𝑒)𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑥𝑥𝑎𝑎𝑛𝑛𝑜𝑜𝑛𝑛𝑒𝑒	𝑜𝑜𝑏𝑏𝑡𝑡𝑎𝑎𝑖𝑖𝑛𝑛𝑒𝑒𝑑𝑑

= 	100	 ×	
𝑔𝑔	𝑜𝑜𝑓𝑓	2,6 − 𝑏𝑏𝑖𝑖𝑠𝑠(𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑢𝑢𝑡𝑡𝑒𝑒𝑑𝑑	𝑏𝑏𝑒𝑒𝑛𝑛𝑧𝑧𝑦𝑦𝑙𝑙𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛𝑒𝑒)𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑥𝑥𝑎𝑎𝑛𝑛𝑜𝑜𝑛𝑛𝑒𝑒	𝑜𝑜𝑏𝑏𝑡𝑡𝑎𝑎𝑖𝑖𝑛𝑛𝑒𝑒𝑑𝑑	𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑟𝑟𝑖𝑖𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎𝑙𝑙𝑙𝑙𝑦𝑦
𝑔𝑔	𝑜𝑜𝑓𝑓	2,6 − 𝑏𝑏𝑖𝑖𝑠𝑠(𝑠𝑠𝑢𝑢𝑏𝑏𝑠𝑠𝑡𝑡𝑖𝑖𝑡𝑡𝑢𝑢𝑡𝑡𝑒𝑒𝑑𝑑	𝑏𝑏𝑒𝑒𝑛𝑛𝑧𝑧𝑦𝑦𝑙𝑙𝑖𝑖𝑑𝑑𝑒𝑒𝑛𝑛𝑒𝑒)𝑐𝑐𝑦𝑦𝑐𝑐𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑥𝑥𝑎𝑎𝑛𝑛𝑜𝑜𝑛𝑛𝑒𝑒	𝑜𝑜𝑏𝑏𝑡𝑡𝑎𝑎𝑖𝑖𝑛𝑛𝑒𝑒𝑑𝑑	𝑡𝑡ℎ𝑒𝑒𝑜𝑜𝑟𝑟𝑒𝑒𝑡𝑡𝑖𝑖𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑦𝑦

 

3. Results and discussion
3.1. Characterization of catalysts
Table 2 shows the surface properties of Turkish perlite and NPC-10, 15, and 50 catalysts with different nickel oxide loadings 
(10, 15, and 50 wt. %). The results indicate that when the nickel oxide loading increased from 10 to 15 wt. % in NPC catalyst, 
a decrease in the surface area was observed. Further increase in nickel oxide loading resulted in a significant decrease in 
surface area, which may be due to the blockage of pores of Turkish perlite by nickel oxide dispersion. Thus, from these 
results, it can be established that an increase in nickel oxide loading is responsible for the agglomeration of nickel oxide 
species to form bigger particles, and, thus, their diffusion decreases. These results are in good agreement with XRD results. 
Despite this, it was also observed that in NPC‒10 and 15 the crystallite size remains unaltered, but, on further increase 
in nickel oxide loading, crystallite size also increased. The above discussion indicated that higher wt. % loading of nickel 
oxide does not provide sufficient active sites due to their agglomeration as inferred from increased crystallite size [46,47].

The XRD of Turkish perlite (Figure 1a) shows the existence of a hump between 2θ = 10‒15° attenuated to amorphous 
silica [48]. However, in TAP, a small crystalline peak appears at 2θ = 27.642° (Figure 1b) which confirms the formation of 
quartz crystalline phase in the sample on heating [49] along with a broad hump at 2θ = 22‒23° showing amorphous content 
of silica [50,51]. The absence of crystalline peaks in X-ray diffraction patterns of NPC‒10 and 15 (Figures 2a and 2b) is 
due to the dispersion of nickel oxide particles on the Turkish perlite surface in the amorphous phase and tiny in size to 
give an XRD peak [52] in lower wt. % catalysts. While, in case of NPC‒50 (Figure 2c), small peaks begin to appear at 2θ = 
37.26, 43.29, 62.88° corresponding to Miller indices [003], [012] and a combination of the [104] and [110] reflections of 
nickel oxide, respectively [53], which are evident of formation of Ni‒O phase in the sample. However, because of the weak, 
broad, and partially overlapping peaks, the crystallite size determination of the nickel oxide containing phase is difficult 
in NPC‒50 [54].

O

+

CHO O

CHHC

NPC

Cyclohexanone

R R

2,6-Bis (substituted benzylidene)cyclohexanone

R

Aromatic aldehydes
Scheme 2. Condensation of cyclohexanone and aromatic aldehydes over NPC to give 2,6-bis(substituted benzylidene)
cyclohexanone.

Table 2. BET specific surface area of samples.

Samples BET specific surface area
(m2/g)

Turkish perlite 2.3
NPC-10 2.2
NPC-15 1.9
NPC-50 1.1
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SEM micrograph of Turkish perlite (Figure 3a) revealed randomly placed irregular shred particles with uneven edges, 
open pores also shown in other reports [55, 56]. SEM image of TAP (Figure 3b) is mainly fragmatic, glassy, and random 

[57], but the morphology is less irregular indicating removal of water at a high temperature, which leads to a reduction in 
porosity and also agglomeration of smaller particles. SEM images of NPC‒10, 15, and 50 (Figures 3c, 3d, 3e) demonstrate 
the dispersion of shiny, fine nickel oxide particles on the surface of Turkish perlite. It was also found that the porosity of 
Turkish perlite particles was decreased on the loading of nickel oxide.

EDX analysis of Turkish perlite, NPC‒10, 15, and 50 (Table 3) shows the presence of SiO2, Al2O3, K2O, Na2O, and other 
minor metal oxides in the samples. However, the presence of nickel oxide in all NPC catalysts confirms its effective loading 
on the Turkish perlite surface.                                                              

A more realistic vision of irregular morphology, ragged shreds of Turkish perlite can be furnished by its TEM image 
(Figure 4a). The micrograph of NPC‒15 (Figure 4b) shows fine dispersion of nickel oxide particles on the Turkish perlite 
surface. These results are in agreement with SEM images. TEM observations also show that the particle size of NPC‒15 is 
less than 50 nm.

FT-IR spectrum of Turkish perlite is shown in Figure 5a. A broad band in the range between 3700‒3000 cm‒1 shows 
the presence of surfacial hydroxyl groups (–Si-OH) with strong intermolecular hydrogen bonding and physisorbed water 
molecules [58,59]. The intensity and broadness of this band diminished in TAP (Figure 5b), which is due to the loss of water 
as a consequence of thermal activation. A peak at 1178 cm‒1, attenuated to the Si‒O‒Si asymmetric vibrational frequency, 
confirms the presence of silica skeleton in Turkish perlite. After thermal activation, this peak gets shifted to 1227 cm‒1, 
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Figure 1.   X-ray diffraction patterns of (a) Turkish perlite and 
(b) TAP.

Figure 2.   X-ray diffraction patterns of (a) NPC‒10, (b) NPC‒15 
and (c) NPC‒50.
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Figure 3. SEM micrographs of (a)Turkish perlite, (b) TAP, (c) NPC‒10, (d) NPC‒15 and (e) NPC‒50.



MALPANI et al. / Turk J Chem

1103

Table 3. EDX analysis of Turkish perlite, NPC‒10, NPC‒15, and NPC‒50.

Samples SiO2 (wt%) Al2O3 (wt%) K2O (wt%) Na2O (wt%) ZnO (wt%) FeO (wt%) NiO (wt%) LOI

Turkish perlite 72.74 14.79 7.48 2.10 2.04 0.91 - 4.1
NPC‒10 71.09 12.14 5.68 1.86 - - 8.42 1.2
NPC‒15 67.40 11.69 5.24 1.78 - - 13.89 0.8
NPC‒50 40.28 9.47 - 1.54 - - 48.69 0.24

LOI- Loss on ignition

(a)                                                                                                                      (b) 
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Figure  4. TEM micrographs of (a) Turkish perlite and (b) NPC‒15.

Figure 5. FT‒IR spectra of (a) Turkish perlite and (b) TAP.
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which is a common phenomenon in amorphous silica samples [60]. An intense peak around 1630 cm‒1 in Turkish perlite, 
characteristic of bending mode (δO‒H) of water molecule [61,62] again highly decreased in TAP. 

While loading nickel oxide on TAP, its surface gets activated by hydroxyl groups because aqueous NaOH was used as 
a basification agent during catalyst preparation. Consequently, the FT‒IR spectra of NPC‒10, 15, and 50 (Figure 6) show 
an increase in broadness and peak intensity of the band attributed to –OH groups. A new band appeared around 1050 
cm‒1 can be assigned to ≡ Si‒O‒Ni stretching vibration [63], which is normally observed in the range of 1100–1000 cm‒1, 
but, here, it cannot be resolved because of its overlap with the absorbance of Si‒O‒Si stretching, appearing in the range of 
1300‒1000 cm‒1. An absorption band due to surficial Si‒O‒Ni stretching vibration has appeared at 964 cm‒1 [64]. It is also 
found that the intensity of the band was increased to some extent after increasing nickel oxide incorporation. 

The FT‒IR spectra of NPC‒10, 15, and 50, obtained after pyridine adsorption in the range of 1550‒1400 cm‒1 are 
shown in Figure 7. The peak at 1538 cm‒1 (Figure 7a) indicates the presence of few Bronsted acidic sites in NPC‒10. In 
NPC‒15 (Figure 7b), a peak and a broad band appearing at 1438 and 1540 cm‒1, respectively [65–67] show the existence 
of some Lewis and optimal Bronsted acidic sites for suitable catalytic activity. NPC‒50 has the highest Lewis acidic sites 
corroborated by the appearance of intense peaks at 1438 and 1450 cm‒1 (Figure 7c).

UV–Vis DRS is used to determine the state of nickel oxide incorporated into the Si‒O‒Si skeleton of TAP. During steps 
of synthesis, due to the calcination of catalysts at 450 °C for 4 h, the presence of Ni(OH)2 can be declined. A broad band 
around 250 nm (Figure 8), which becomes more intense with an increase in weight percentage of nickel oxide loading 
suggests that Ni+2 ions are in an octahedral local environment [68].

The TGA and DSC curve of NPC‒15 (Figure 9) comprises of two main regions having a major weight loss of about 
8.96% up to 643.83 °C and a minor one of approximately 0.82% weight loss at higher temperature along with an exothermic 
DSC peak. The weight loss in the first region could be due to the removal of bulk water, physisorbed water, and loosely 
bound hydroxyl groups [69], and decomposition of nickel salt (used as a precursor) [70]. The second region shows a minor 
weight loss, which may be due to the conversion of Ni(OH)2 into NiO.
3.2. Catalytic activity
The catalytic performance was preliminarily tested by Claisen–Schmidt condensation reaction of cyclehexanone and 
benzaldehyde to give 2,6-bis(benzylidene)cyclohexanone in a single step, one-pot reaction conditions. The reaction was 
carried out at 120 °C for 150 min, taking 0.2 g of catalyst, and cyclohexanone/benzaldehyde (molar ratio 1:2). Results given 
in Table 4 show that Turkish perlite, TAP, and commercial NiO do not possess any catalytic activity for this reaction. In the 
case of NPC-10, a lower isolated yield (58%) is obtained due to the presence of fewer Bronsted acid sites on the catalytic 
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Figure 6. FT‒IR spectra of (a) NPC‒10, (b) NPC‒15 and (c) NPC‒50.
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surface, while, in the presence of NPC‒15, the isolated yield % is highest due to significant increment of active catalytic 
sites. The isolated yield % is again decreased on using NPC‒50 due to blockage of surface-active Bronsted acidic sites by 
bulk deposition of NiO crystallites. 

As depicted from Table 5, NPC‒15 gave a good isolated yield % of 2,6-bis(benzylidene)cyclohexanone in the first as well 
as in the last run with decent enough consecutive reaction runs when compared with some previously reported catalysts.

Based on these results, NPC‒15 was chosen as the main catalyst for catalyzing a series of Claisen‒Schmidt reactions 
(Table 6). In this series, the reactions of cyclohexanone and various aromatic aldehydes were studied for different periods 
at 110‒140 °C taking 0.2 g of catalyst and cyclohexanone/aromatic aldehydes (molar ratio 1:2).
3.3. Proposed reaction mechanism
Based on results drawn from XRD, FT-IR, pyridine adsorbed FT-IR, UV-Vis DRS studies, models can be proposed for 
Turkish perlite, NPC‒10, 15, and 50 catalysts (Scheme 3). They show the presence of Bronsted and Lewis acid sites on 
the surface of catalysts. The possible pathway for the production of 2,6-bis(substituted benzylidene)cyclohexanones by 
condensation of cyclohexanone and aromatic aldehydes catalyzed by NPC‒15 is shown in Scheme 4. The surface Bronsted 
acidic sites of NPC‒15 initiate the reaction by ketone protonation (protonation of carbonyl functional group) followed by 
abstraction of a proton from α-carbon of the ketone, and active enol intermediate form is produced. Thus, intermediate 
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Figure 7. Pyridine adsorbed FT‒IR spectra of (a) NPC‒10, (b) NPC‒15, and (c) 
NPC‒50.

Figure 8. UV‒Vis DRS spectra of NPC‒10, 15, and 50.
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Table 5. Comparison of results using NPC-15 with some previously reported catalysts for Claisen–Schmidt condensation reaction 
between cyclohexanone and benzaldehyde.

Catalysts Reusability of catalyst
(No. of runs)

Isolated yield in
1st run (%)

Isolated yield in 
 last run (%)

SiO2-R-SO3H
a [71] 10 80 70

40% PW/N-SiO2
b [72] 04 98 86

Cs2.5H0.5PW12O40
c [73] 05 74 ~70

2-HEAAd [74] - 93 -
NPC-15e[This study] 06 90 83

Reaction conditions: aTime = 72 min; Temperature = 90 °C; molar ratio (cyclohexanone/benzaldehyde   = 1:2); catalyst weight =0.3 g.
bTime = 30 min; Temperature = Room temperature; molar ratio (cyclohexanone/benzaldehyde   = 1:2); catalyst weight =0.2 g.
c Time =  10 min; Temperature = 50 °C; molar ratio (cyclohexanone/benzaldehyde = 1:2); catalyst weight = 8 mol%.
dTime = 60 min; Temperature = 80 °C; molar ratio (cyclohexanone/benzaldehyde = 1:2); catalyst weight = 0.2 mmol.
eTime = 150 min; Temperature = 120 °C; molar ratio (cyclohexanone/benzaldehyde = 1:2); catalyst weight =0.2 g.

Table 4. Catalytic activity of different catalysts for Claisen–Schmidt 
condensation. reaction.

Catalysts Isolated yield (%)

Turkish perlite Nil
TAP Nil
Commercial NiO Nil
NPC‒10 58
NPC‒15 90
NPC‒50 48

Reaction conditions:Time = 150 min; Temperature = 120 °C; molar 
ratio (cyclohexanone/benzaldehyde   = 1:2); catalyst weight =0.2g.
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form condenses with aromatic aldehydes via nucleophilic addition to form desired products and releases water as a side 
product.
3.4. Regeneration of catalyst
The spent catalyst was regenerated by doing simple filtration, washing with acetone, drying at 110 °C in an oven for 12 
h, and finally by calcination at 450 °C in a muffle furnace for 1 h. Thus, obtained regenerated catalyst showed efficient 
catalytic activity up to consecutive 6 reaction cycles giving almost similar isolated yield % in the range of 90%–83%, 
indicating the presence of stabilized acidic sites in the regenerated catalyst. After the sixth reaction cycle, the yield % was 
decreased significantly, this may be due to blockage of acidic sites of the catalyst by the deposition of carbonaceous residues 

 

Entry         Aldehyde                      Products b                                             Time            Isolated                      M. pt. (°C)
                                                                                                                      (h)               yield (%)                             
                                                                                                                                                                     Found     Reported

O

2.5 90 1181

5a

O

CH3

CH3H3C

3 92 171
2

CHO

OCH3

5b

O

OCH3H3CO

5c

3 92 2013

CHO

Cl

O

Cl
5d

Cl

3 92 1464

CHO
Cl

O

5e

Cl Cl

5
3.5 91 102

CHO

NO2

O

NO2

5f
O2N

6 6 93 160

CH=CH-CHO O

5g

3 93 180
7

117 [75]

147-148 
[76]

159 [77]

203-204 
[77]

170 [76]

180 [77]

CHO

CHO

--

Table 6. NPC‒15 catalyzed Claisen–Schmidt reaction between cyclohexanone and different aromatic aldehydes.

a Reaction conditions:Temperature = 110–140 °C; molar ratio (cyclohexanone/aromatic aldehydes   = 1:2); catalyst weight = 0.2 g.
b Products (5a–5g) were characterized by melting point and spectral (IR and 1H-NMR) data and compared with the literature.
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of organic reactants and products on the surface. The FT‒IR spectrum (Figure 10) of regenerated NPC‒15 regenerated 
after the sixth reaction cycle is similar to that of fresh NPC‒15 demonstrating the stability of nickel oxide loading on 
Turkish perlite. 
3.5. Product identification by 1H-NMR  (CDCl3, 500 MHz)
All the products synthesized by Claisen–Schmidt condensation reactions were identified by melting point analysis and 
1H-NMR spectroscopy. δ-values of all synthesized products are summarized in Table 7. 

4. Conclusion
15 wt. % nickel oxide loaded on Turkish perlite (NPC-15) was proven to be an effective and competent solid acid catalyst, 
possessing significant Bronsted acidity to catalyze condensation reactions between cyclohexanone and aromatic aldehydes 
with high isolated yield (90%–93%) of desired products in one-pot, liquid phase, solvent-free reaction conditions. The 
catalyst was easily filtered, regenerated, and recycled several times with analogous efficiency, suggesting the stability of 
acidic sites of the catalyst during the reactions. The results of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) 
surface area, pyridine adsorbed Fourier-transform infrared (FT-IR), etc. recommended that the optimum catalytic activity 
of NPC-15 was due to the presence of sufficient surface-active Brönsted acidic sites. While, at higher wt. % loading, NiO 
crystallites increased Lewis acidic sites and blocked the active Bronsted acidic sites, which ultimately decreased isolated 
yield % of desired products.  XRD results depicted that, in NPC-15, nickel oxide particles were finely dispersed on the 
Turkish perlite surface in the amorphous phase. A fine dispersion of nickel oxide particles was also shown in scanning 
electron microscope (SEM) and transmission electron microscope (TEM) images of NPC-15. The novelty of this work is the 
utilization of abundant natural waste, Turkish perlite as solid support for the synthesis of highly efficient heterogeneous acid 
catalysts. This investigation also suggests that Turkish perlite could be an alternative to commercial silica for synthesizing 
novel solid acid catalysts, which can catalyze various industrially important reactions in a cost-effective manner.
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Figure 10. FT‒IR spectra of (a) fresh NPC‒15 and (b) regenerated NPC‒15 after the sixth reaction cycle.

Table 7. Product Identification by 1H-NMR (CDCl3, 500MHz).

Product name Delta value (δ)

5a, 2,6-Dibenzylidenecyclohexanone 7.7 (s, 2H), 7.23-7.55 (m, 10H), 2.82-2.98 (m, 4H), 1.72-1.88 (m, 2H).
5b, 2,6-Di(p-methylbenzylidene)cyclohexanone 7.69 (s, 2H), 7.1-7.31 (m, 8H), 2.82-2.86 (t, 4H), 2.30 (s, 6H), 1.68-1.78 (p, 2H).
5c, 2,6-Di(p-methoxybenzylidene)cyclohexanone 7.66 (s, 2H), 6.88-7.26 (m, 8H), 3.68 (s, 6H), 2.72-2.84 (t, 4H), 1.68-1.8 (p, 2H).
5d, 2,6-Di(p-chlorobenzylidene)cyclohexanone 7.64 (s, 2H), 7.26-7.46 (m, 8H), 2.7-2.82 (t, 4H), 1.67-1.78 (p, 2H).
5e, 2,6-Di(o-chlorobenzylidene)cyclohexanone 7.81 (s, 2H), 7.16-7.28 (m, 8H), 2.67-2.76 (t, 4H), 1.68-1.8 (p, 2H)
5f, 2,6-Di(p-nitrobenzylidene)cyclohexanone 7.9 (s, 2H), 7.4-7.6 (m, 8H), 2.74-2.86 (t, 4H), 1.72-1.86 (p, 2H).
5g, 2,6-Dicinnamylidenecyclohexanone 6.78-7.21(m, 16H), 2.62-2.76 (t, 4H), 1.68-1.78 (p, 2H).
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