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1. Introduction
Numerous types of dyes and pigments have been discharged into the aquatic environment through wastewater from various 
industries such as paper and pulp, textile, leather, and printing industries [1]. Wastewater from the textile dyeing operation 
contains unused dyes (~8% to 20% of the total pollution load) and auxiliary chemicals and significantly contribute to water 
pollution [2]. The presence of dyes in water imparts daunting effects in photosynthesis process as dye pollutants resist 
the supply of sunlight penetration [3]. Dyes are classified into a number of types owing to their structural variation and 
complex nature [4]. Cationic dyes, that can also be called as basic dyes, are used as a basic raw material in wide number of 
industrial applications including silk, nylon, acrylic, and dyeing of wool [5]. Due to the structure complexity, these dyes 
are resistant to degradation by conventional wastewater treatment techniques involving physicochemical and biological 
techniques [6]. Furthermore, degradation by a physical, chemical or biological mechanism would result in the generation 
of wide variety of intermediate species that can prove to be more toxic than parent dye compound [5,7].

Conventional methods to eradicate coloured compounds and organic contaminants from polluted streams include 
coagulation, flocculation, reverse osmosis, photo irradiation, ozonation process, and carbon adsorption [8–10]. Among 
these processes, the adsorption technique has widely practised due to its effectiveness, simplicity, high efficiency, and 
availability of a wide range of materials [11–15]. Carbon nanotubes (CNTs) are the latest type of carbon materials and 
it finds many applications in different areas of wastewater treatment and other engineering methods such as adsorption, 
separations, catalysis, in sensors, as biomedicine and synthesizing electronic devices [16–23]. Due to its larger specific 
surface area, small pore size, and hollow structural characteristics, carbon nanotubes have been proven to possess a great 
potential as a superior adsorbent for removing many kinds of organic and inorganic toxic components from the aqueous 
phase [24]. In most of the investigation done in past, dye adsorption studies onto carbon nanotubes were exclusively 
carried out for a single pollutant system and relatively less work is published narrating adsorption of dyes from a binary dye 
system. For real wastewater, multiple dyes are generally present and that versatilities may affect dye adsorption behaviour. 
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Competitive effects usually modify the conduct of adsorption of each dye. Therefore, this research aims to study the dye 
adsorption from a multiple dye system onto high surface area nanomaterial. In view of the going further, the objective 
of this work is to investigate adsorption kinetics, isotherm, and thermodynamics for the treatment of polluted water. 
Different combinations of cationic and anionic test dyes were considered and experimental results were analyzed. 

2. Materials and methods
2.1. Reagents
An industrial-grade nonfunctionalized MWCNTs (Purity > 90 wt%, length: 10–30 m, Outer diameter: 10–30 nm) was 
purchased from Cheap Tubes Inc. USA and it was used without any further modification. Analytical grade Congo Red 
(C32H22N6Na2O6S2, molecular weight = 696.67 g/mol, λmax = 498 nm, PKa= 3.5) and Rhodamine-B (C28H31ClN2O3, molecular 
weight = 472.02 g/mol, λmax = 518 nm, PKa= 4.3) were purchased from Sinopharm Chemical Reagent Co. Ltd (Shanghai, 
China). The NaOH and HCl were bought from Merck (Darmstadt, Germany) and were used for adjusting the pH of dyes 
solution. One thousand ppm stock solutions of each pollutant dye were prepared by dissolving accurately weighing the 
required amount of CR and RhB. The single and binary dyes solution samples were obtained by appropriately mixing and 
diluting the stock solution to the desired concentration for subsequent experimentation. 
2.2. Material characterization 
Functional groups on the surface of material were determined by analysing it through fourier transform infrared spectroscopy 
(FTIR-4100-Jacso) using ZnSe ATR module within the IR range of 4000–650 cm–1. The surface area of MWCNTs was 
estimated through BET surface area analyzer (Micrometrics, ASAP 2020). The topology of the MWCNTs was observed 
using the field emission scanning electron microscope (Mira3, Tescan, UK) equipped with energy dispersive X-ray (x-act 
INCA, Oxford-USA) at accelerating voltage of 10 KV. To avoid the accumulation of electric charge on the sample, the 
specimen was coated with gold by placing the specimen in a sputter coater (AGB7340, Agar-UK) under vacuum for 1 
min. Zeta potential of the MWCNTs was measured as a function of pH by differential light scattering technique (NanoZS, 
Malvern ZetaSizer-UK) using ethanol as an electrolyte. Homogeneous dispersions of MWCNTs were prepared by placing 
the dispersions in an ultrasonic liquid processor (VCX-750, Sonics-USA) for 5 h prior to the analysis. The buffer solutions 
of 0.1M HCl and 0.1 M NaOH were used to prepare dispersions of MWCNTs with different pH values (2–11).
2.3. Batch adsorption
All batch adsorption experiments with single as well as binary dye solution were carried out in an Erlenmeyer flask by 
taking 100 mL specimen solution. The test flasks were agitated at 200 rpm by fixing them on an orbital shaker. The effect 
of various parameters like MWCNTs dosage (0.025 g to 0.2 g), contact time of pollutant solution with adsorbent (1 min to 
40 min), initial solution pH (2 to 9), initial concentration of dye solution and temperature (293 K to 323 K) were observed. 
For the co-adsorption of dyes from binary dye solution, the experiments were carried out by fixing the concentration of 
one dye and vary the concentration of other dye (100–400 ppm) and vice versa. After the equilibrium was achieved in a 
particular run, the solution was filtered out to separate the adsorbent from solution and filtrate was analyzed using a UV–vis 
spectrophotometer (JASCO Model V-6700). For the single dye systems, the remaining concentration of dye was evaluated 
by comparing the absorbance of solution (corresponding to λmax of each dye) with calibration curve recorded earlier for 
pre-determined dye concentrations. For binary dye systems, absorption value was measured against both wavelength and 
unknown concentrations in solutions were determined by the following equations [25].
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where k11, k21, k12 and k22 are the cross-calibration constants for components CR (1) and RhB (2) at the wavelength λ1,max, 
λ2,max, and their values are 0.039, 0.039, 0.026, and 0.217 respectively. A1 and A2 are the absorbance at wavelength λ1,max 
and λ2,max, respectively. The adsorption capacity of each dye per unit weight of adsorbent at equilibrium, qe (mg dye/g 
adsorbent) can be calculated by using the equation:
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where qe is the adsorption capacity of a single or binary system and Co and Ceq are the initial and the final equilibrium 
concentration of dye. V is the volume of the dye-containing solution (L) and w is the mass of the adsorbent (g). Moreover, 
thermodynamic selectivity of MWCNTs in the single and binary solution can be calculated by the following equation: 
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where Qi,s and Qi,b represents the amount of Congo Red adsorbed, i, in single and binary solution respectively. However,  
Qj,s and Qj,b are the amount of Rhodamine B adsorbed, j, in single and binary solutions respectively. 

3. Results and discussion
3.1. Characterization analysis
FTIR spectra of MWCNTs is shown in Figure S1. Presence of transmittance peak at 3746 cm–1 is due to the aromatic C-H 
stretching. However, the transmittance peaks at 1534 cm–1 and 975 cm–1 in the fingerprint region exhibit the Sp2 hybridized 
-C=C and -C-C vibrational stretching in the MWCNTs structure, respectively. Absence of any other characteristic peak 
in the spectrum confirms that there is no organic impurity in the MWCNTs. The SEM micrographs in Figure S2 depicts 
that the MWCNTs are randomly oriented, highly tangled, and have a sharp nonporous tubular structure. The elemental 
analysis by energy dispersive X-ray (EDX) indicates the presence of only carbon as can be seen in Figure S3 which exhibits 
that there exists no surface impurity in MWCNTs. Figure S4 shows the BET analysis of the MWCNTs. The adsorption-
desorption data of N2 gas was used to determine the surface area. The BET surface area of MWCNTs was 121.8 m2/g which 
is good for the adsorption process. Zeta potential results in Figure S5 show that pH ~6.7 corresponds to the isoelectric 
point (IEP) of MWCNTs. At pH < pHIEP the surface will accumulate positive charge in contrast to pH > pHIEP where the 
surface has net negative charge.
3.2. Influence of adsorbent dose
The adsorbent amount required to eradicate the pollutant from waste solution estimates the capacity of adsorbent and in 
turn cost-effectiveness of the process. The experimental results of the effect of dosage on the removal of dyes from aqueous 
solution bearing single pollutant dye are presented in Figure 1. It is indicated that higher dosage favours the removal of 
dyes because the greater amount of adsorbent provides more surface for attachment of dye molecules either by physical 
and/or chemical interaction with the surface. The acidic CR has a good affinity toward the MWCNTs when compared to 
the basic dye RhB. At a particular dosage, the CR removal is higher compared to RhB probably because of more negatively 
charged functional groups (-SO2Na) in the CR dye as compared to RhB (∅-N+

-X). Based on the effect of adsorbent dose 
data 100 mg dosage was selected for subsequent experiments for determining the percent removal and the adsorption 
capacity. 
3.3. Kinetic study
Optimal adsorption time is a significant parameter to ensure complete equilibrium between pollutants and adsorbent. The 
influence of contact time on the uptake capacity of MWCNTs is shown in Figure 2. It is clearly noticed from the measured 
concentration versus time profile that both CR and RhB dye pollutants attain equilibrium at ~86 mg/g and ~65 mg/g 
respectively in less than 10 min and no significant change was observed after it. Equilibrium adsorption time is a key factor 
to study the adsorption kinetics [26,27]. Adsorption kinetics provides useful information regarding the mechanism of 
adsorption which is necessary for optimization and feasibility study of a sewage treatment process. The adsorption kinetic 
data were modelled by pseudo-first-order (Lagergren-first-order) and pseudo-second-order kinetic equations. The best fit 
for each model was evaluated based on the value of the regression coefficient (R2). The nonlinear pseudo-first-order kinetic 
equation can be expressed as follows:
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where qt, (mg/g) is the adsorbed amount of pollutant per unit mass of adsorbent at any instant of time “t” and at equilibrium 
respectively,  (min–1) is the rate constant of the pseudo-first-order kinetic model. Pseudo-second order model can be 
expressed by the following equation:
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where is k2 the pseudo-second-order rate constant (g/mg min). Nonlinear curve fitting of both models was performed 
using Origin Lab (V.9.1.0) software. Parametric values of kinetic models were obtained by nonlinear curve fitting and are 
summarized in Table 1. It can be noticed that the  for the pseudo-first and second-order model is 0.94 and 0.97 for CR 
respectively, and its value for RhB is 0.96 and 0.98, respectively. Therefore, it can be concluded that the pseudo-second-
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order model best describes the adsorption dynamics of both dyes onto MWCNTs. This also supports that the adsorption of 
CR and RhB onto MWCNTs is either due to attractive forces exerted by the valence shell electrons or as a result of sharing 
and exchange of electrons between both parties, i.e. adsorbent and adsorbate [28]. Moreover, the equilibrium adsorption 
capacity calculated from pseudo-second-order kinetic model is much closer to the experimental uptake capacity as can be 
seen in Table 1. 
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Figure 1. Adsorbent quantity versus %removal and uptake capacity at standard 
conditions (T = 303 K, pH = 6.5, Co = 100 ppm, t = 100 min).

Figure 2. Adsorption kinetics of Congo red (CR) and Rhodamine B (RhB) on 
MWCNTs (T = 303 K, initial solution pH = 6.5, Co = 100 ppm, t = 100 min)
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3.4. Influence of initial concentration of dyes
The effect of initial CR and RhB concentration in a binary mixture on the uptake capacity of MWCNTs was investigated 
and compared it with adsorption of dyes from single dye solution. The initial concentration of one dye was varied from 
100 to 400 mg/L by fixing the concentration of other dye at a constant temperature, volume, and pH. The resultant 
uptake capacities are summarized in Table 2. The interactions of multiple pollutants may mutually enhance or inhibit the 

Table 1. Kinetic parameters of CR and RhB dyes adsorption.

Model Parameters Congo Red Rhodamine B

First order model
K1 (L/mg) 1.58 1.57
Qe (mg/g) 83.81 65.44
R2 0.94 0.96

Second order model
K2 (L/mg) 0.034 0.054
Qe (mg/g) 86.71 67.19 
R2 0.97 0.98

Table 2. Comparison of the individual equilibrium adsorption uptake of CR and RhB in single and 
binary dye solutions onto MWCNTs (T = 303 K, pH = 6.5, dosage = 100 mg, t = 100 min).

 (mg/L)  (mg/L)  (mg/g)  (mg/g) Selectivity 
factor, β

0 100 0 76.1    
0 200 0 160.9    
0 300 0 237.8    
0 400 0 270.5    
100 0 85 0    
200 0 176.7 0    
300 0 259 0    
400 0 297.6 0    
100 100 92.3 84.9 1.1 1.1 0.5
100 200 61.1 167.6 0.7 1.0 2.4
100 300 52.6 208.9 0.6 0.9 1.6
100 400 37.6 254 0.4 0.9 1.7
200 100 124.6 76.5 0.7 1.0 1.6
200 200 149.6 141.2 0.9 0.9 0.9
200 300 75.6 210.5 0.4 0.9 2.0
200 400 106.8 222.4 0.6 0.8 1.0
300 100 174.4 74.1 0.7 1.0 1.6
300 200 162 139 0.6 0.9 1.5
300 300 138.1 191.9 0.5 0.8 1.5
300 400 114.6 207.3 0.4 0.8 1.3
400 100 188.4 78 0.6 1.0 2.4
400 200 161 126.1 0.5 0.8 1.6
400 300 161.3 191.7 0.5 0.8 1.7
400 400 176.5 191.7 0.6 0.7 1.1
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adsorption capacity during the treatment of wastewater by adsorption process. It can be noticed from Table 2 that the 
individual uptake as well as the selectivity at equilibrium, is a function of the initial concentration of dye in the polluted 
solution. Adsorption results of CR from a single dye solution shows the increase in uptake capacities from 85 mg/g to 352.7 
mg/g when initial CR concentration varies from 100 to 400 mg/L. However, in the same range of initial concentration, 
the adsorption capacity of RhB (changed from 68.1 mg/g to 316.5 mg/g) is little low than CR. Comparing the adsorption 
of single and binary component solutions, it can be seen that the individual capacities of each dye in a binary component 
system were lower than those in a single component system. For instance, without RhB, the uptake for 300 mg/L of CR 
was found as 259 mg/L. But the inclusion of RhB in the solution having 100, 200, 300, 400 mg/L, decreases the sorption 
capacity of CR 174.4, 162, 138.1, and 114.6 mg/g respectively. The adsorption from binary solution mostly shows the 
antagonistic effect hence lower uptake of the solid adsorbent. However, at lower concentrations in the binary dye system, 
synergistic sorption (qi,mix/qi > 1) can be observed when concentrations of both dyes were fixed at 100 mg/L as shown in 
Table 2. During the adsorption from a binary solution, a competition evolves for adsorption binding sites present on the 
surface and some of the sites are filled by the other competing dye, especially at high concentration. The values of the 
selectivity factor for CR/RhB system tends to decrease with rising corresponding initial concentrations of pollutant dyes. 
The “β” ranges from 1.09 to 0.54. It can be noticed from the table that the difference in consecutive values of β at low 
concentrations of CR is large however it diminishes at the relatively higher initial load of CR dye in the binary system. This 
may be associated to possible π-π stacking of competing dye molecules in addition to interaction with adsorbent surface 
and resultant increase in overall uptake capacity of the adsorbent. 
3.5. Equilibrium isotherm modelling
The adsorption equilibrium isotherm is important to study how the adsorbate is distributed between liquid and solid 
phases and reaches equilibrium. The empirical equation derived from isotherm data is fundamental in describing the 
interactive behaviour of pollutant and adsorbent to optimize the design economics for scale-up of the separation process. 
The parameters like maximum adsorption capacity, nature of adsorption (homogeneous or heterogeneous), and separation 
constant help to determine interaction as well as the mechanism of adsorption process. Various theories and empirical 
models have been reported in this regard such as Langmuir, Freundlich, and Sips.

The Langmuir adsorption isotherm model is valid for the assumption that the surface coverage of solid is homogeneous 
(i.e. adsorbent has a finite capacity for the adsorbate and all binding sites are identical and energetically equivalent). 
Therefore, the Langmuir isotherm model is best to calculate the monolayer capacity of solid surface. The nonlinear form 
of the Langmuir isotherm model can be written as follows;
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where Ce (mg/L) and qe (mg/g) are equilibrium liquid-phase concentration of dye and adsorbed amount respectively, 
qmax is the monolayer capacity, KL (L/mg) the Langmuir constant and is related to apparent energy of adsorption. The 
Freundlich isotherm model is applicable for multilayer adsorption and is derived by assuming a heterogeneous surface 
with nonuniform distribution of surface energy [29]. The formal equation of Freundlich isotherm is given below;
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where KF and nf are isotherm constants indicating the capacity and intensity of the adsorption. The higher value of KF 
indicates a higher affinity of the adsorbent for the adsorption of dye molecules and the factor 1/nf indicates the heterogeneity 
of surface and as the value gets closer to 0 the surface of the adsorbent exhibits more heterogeneous adsorption behavior 
and it also determines the favorability of the adsorption process [30]. Sips isotherm incorporates the features of both 
Langmuir and Freundlich isotherm models [31]. The specific equation is given by

qe= qmaxKsCe
ns/1+KsCe (9)

where KS (L/mg) is the Sips model isotherm constant and ns is heterogeneity constant. 
The agreement among experimental and theoretical data points after isotherm models curve fitting is shown in Figure 

S6. The statistical indices obtained from a nonlinear regression (performed by using Origin Pro version 9.1.0) of each 
isotherm model and their pertinent variables for both CR and RhB dyes adsorption from a single component solution are 
shown in Table 3. As a consequence, it can be predicted that the adsorption of both pollutants is inhomogeneous over the 
adsorbent surface. Based on lowest RSS and R2 values the isotherm equations fitted for CR and RhB can be indicated in the 
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order (Sips’ > Langmuir > Freundlich). Langmuir model constant reflects the affinity for binding of component dye onto 
MWCNTs [32]. The Ka value for CR is greater than that of RhB which implies strong bonding of CR with CNTs surface. The 
value of “n” greater than unity in Freundlich isotherm indicates that the adsorption is favourable and higher magnitude 
of KF exhibits relatively easy uptake of CR as compared to RhB. The correlation coefficients of the Sips isotherm model 
reinstate that the adsorbent surface is a blend of homogenous and inhomogeneous sites with 301.3 mg/g and 300 mg/g 
maximum adsorption capacity of CR and RhB respectively as seen in Table 3. Prediction of binary-component isotherm 
data has always been complex due to its interactive and competitive effects as compared to single component equilibrium 
data. The simultaneous removal of RhB and CR onto MWCNTs from binary pollutant solution was investigated by the 
extended Langmuir isotherm model. This model assumes (i) each adsorption site possesses equal energy of adsorption (ii) 
each site will have a tendency to adsorb one dye at a time and not both dyes at the same time (iii) there exist no interaction 
of any sort between adsorbed molecules of adjacent sites. The generalized form of extended Langmuir equation is as 
follows [33,34]:
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where the qe,i (mg/g) and Ce,i (mg/L) is solid and aqueous phase adsorbate concentration at equilibrium respectively for 
component “i”. The Langmuir model constants are q0,i (mg/g) and Ki (L/g).

The extended Langmuir isotherm parameter and RMSE values for both CR and RhB are summarized in Table 4. The 
extended Langmuir model is adequately fitted to experimental values with the lowest error value 7.54 for CR and 5.031 
for RhB. Inclusion of a second dye in the aqueous solution enhances the competitive and interactive effects existing in 
multicomponent systems and the extended Langmuir model constant gets negative value in the regression results. This is 
probably because of the interaction of dyes among each other which is a deviation from the assumption of the extended 
Langmuir model. Adsorption from a binary component solution may have three types such as synergistic sorption (i.e. 
qi,mix/qi > 1), antagonistic behaviour (i.e. qi,mix/qi < 1), and noninteractive sorption (i.e. qi,mix/qi = 1). Where qi,mix is the 
sorption capacity of the component in the presence of competing dye while the qi is the uptake of dye when it exists alone 
in the solution. In this study, the ratio of qi,mix/qi for RhB is higher than the corresponding CR. The ratio for RhB is closer 
to 1 at lower concentrations of CR however it reduces as the concentration of CR was increased in the binary solution. 
Overall, this ratio is lower in CR than for RhB as shown in Table 4. 

Table 3. Isotherm parameters for mono-component adsorption of CR 
and RhB onto MWCNTs.

Isotherm Parameter
Pollutant dye

CR RhB

Langmuir

qL,max (mg/g) 380 380
KL (L/g) 0.035 0.02
R2 0.925 0.924
RSS* 3379.20 2865.83

Freundlich

KF (L/g) 40.02 21.04
n 2.2 1.85
R2 0.88 0.89
RSS* 5342.41 3911.88

Sips

qS,max(mg/g) 302 300
Ks (L/g) 3.01E-4 2.47E-4
n 2.67 2.3
R2 0.999 0.989
RSS* 0.345 263.84

*RSS= Residual sum of squares.
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3.6. Thermodynamics of single/binary dye adsorption
The adsorption experiments with varying temperature were carried out to reveal the nature of the process of removal of 
CR and RhB dye onto MWCNTs as single and binary dye system. Thermodynamic parameters such as change in enthalpy 
(ΔH°), Gibbs (ΔG°) energy, and entropy (ΔS°) were determined by Vant Hoff ’s equation given below 
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where R is the gas constant (8.314 J/(mol K) ) and T is the temperature (K). Ka is the equilibrium constant obtained by the ratio 
of adsorbed pollutant concentration (Cs) to the equilibrium concentration of dye pollutant in the solution (Ce). The plot of 
Vant Hoff equation based on experimental data is presented in the Figure S7 and the thermodynamic parameters obtained 
from Figure S7 are summarized in Table 5. Negative values of Gibbs (ΔG) energy at all four temperatures shows that the 
adsorption is feasible and spontaneous for both pollutant dyes. As a general rule, ΔG for physisorption lies in the range –20 
kJ/mol to 0 kJ/mol, however value in between –20 kJ/mol to –80 kJ/mol reflects physisorption along with chemisorption 
and values between –80 kJ/mol to –400 kJ/mol) can be viewed as adsorption process that involves chemisorption only 
[35]. In this research, calculated ΔG from experimental data lies in the physisorption range. The absolute values of ΔG are 
relatively higher in the binary system as compared to the single system which may be associated to interaction of counter 
charges on the dye moieties in addition to sorbate-sorbent interaction [36]. Increase in temperature raises the kinetic 
energy of dye and the probability of their collision with the sorbent surface and with their self and as a result pollutant 
removal increases. The negative values of ΔH for single system indicate the exothermic nature of adsorption of both 
dyes. But the process becomes reverse (ΔH is positive) for the binary dye system as can be seen in Table 5. Positive ΔH 
can be attributed to electrostatic interactions between the dyes which may, otherwise, require a higher energy barrier for 
the diffusion into the surface of adsorbent. For the dye ions to transport through the solution and reach active sites, it is 
imperative to strip out of their hydration shell that needs energy input. If interaction force linked to adsorption of dyes do 
not surpass the dehydration energy of dye ions, the overall energy balance will lead to endothermic behavior [37]. ∆S is the 
measure of randomness at the solid-solution interface due to distribution of adsorbate dyes onto adsorbent surface. ∆S is 
higher in case of dye adsorption from binary solution as compared to adsorption of dyes from single dye solution. This is 
probably because of greater randomness on MWCNTs surface due to synergism between counter dye ions. 
3.7. Influence of PH on adsorption
The effect of pH for the competitive adsorption of CR and RhB onto MWCNTs was studied at optimum dosage and 
time and results are presented in Figure 3. The adsorption of both dyes, i.e. CR and RhB can be explained on the basis of 
isoelectric point of the adsorbent. As the surface of MWCNTs tends to possess a positive charge at pH > pHIEP (pH < 6.7). It 

Table 4. Influence of increasing initial concentration of competing dye on the extended Langmuir isotherm constants 
of CR and RhB adsorption from binary dye systems.

Extended Langmuir model parameters Regression parameters

Component Co, RhB
mg/L

q0,CR
mg/g

K1
min–1

K2
min–1 R2 RMSE*

CR

100 184.7 1.559 0.911 0.935 27.10
200 146.0 0.009 –0.017 0.993 8.55
300 204.0 0.001 –0.008 0.991 8.69
400 59.8 0.002 –0.006 0.994 7.54

Component Co, RhB
mg/L

q0,CR
mg/g

K1
min–1

K2
min–1 R2 RMSE*

RhB

100 257.8 0.028 –0.012 0.993 11.855
200 288.6 0.011 –0.005 0.996 8.437
300 151.9 0.005 –0.007 0.998 5.031
400 247.1 0.025 0.001 0.961 22.619

*RMSE = Root mean square error.
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Table 5. Thermodynamic parameters for single and binary dye adsorption (dosage = 100 mg, t = 100 min, pH = 6.5, concentration 
for single dye solution = 100 ppm).

Pollutant system Congo Red (CR) Rhodamine-B (RhB)

Single dFS1ye

T (K)

293 16.71 –6.86

-32.51 -16.36

5.6 –4.18

–36.42 –14.86
303 12.80 –6.42 4.8 –3.94

313 11.31 –6.31 3.4 –3.21

323 8.70 –5.81 3.3 –3.22

Binary (CR:RhB)

60:100

293 5.4 –4.12

166.61 44.81

3.9 –3.30

48.49 10.82
303 8.8 –5.47 4.9 –4.00

313 17.1 –7.38 5.3 –4.36

323 29.1 –9.05 5.9 –4.78

100:60

293 11.4 –5.93

79.98 17.64

3.7 –3.15

87.83 22.51
303 12.5 –6.36 5.1 –4.12

313 17.6 –7.46 7.3 –5.18

323 21.5 –8.24 8.4 –5.71

100:100

293 6.3 –4.48

66.54 15.0

4.4 –3.59

40.89 8.37
303 7.9 –5.21 5.0 –4.03

313 9.3 –5.81 5.6 –4.49

323 11.2 –6.49 6.0 –4.80
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 CR binary dye solution

 RhB single dye solution
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Figure 3. Effect of initial solution pH (dosage = 100 mg; t = 100 min; T = 303 K, single 
dye solution concentration = 100 ppm, binary dye solution concentration = 100 CR:100 
RhB).
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can be noticed that the uptake capacity of CR increases with a decrease in initial solution pH and the maximum is observed 
corresponding to pH 3 in both single and binary dye solution. By lowering the solution pH, the uptake capacity of CR 
decline which is ascribed to the protonation of CR at pH < pKa (3.5 ± 0.5). Higher adsorption of CR can be associated to 
the two anionic functional groups (-SO3Na) in its chemical structure which are possibly attracted by the positively charged 
surface of MWCNTs at pH < 6.7. In comparison to CR, the competing dye (i.e. Rhodamine B) shows the reverse behavior 
as shown in Figure 3. Decrease in adsorption capacity from pH 4 to 2 is probably due to protonation of RhB at pH < 4.3. 
Moreover, being cationic in nature, RhB has low adsorption in acidic solution because of electrostatic repulsion between 
the positively charged surface of MWCNTs and dyes molecules [38,39]. At pH > pHIEP, rise in adsorption capacity of RhB 
is due to electrostatic attraction between the dye ions and the negatively charged adsorbent surface. The uptake capacity of 
different carbon based nanomaterials for the abatement of various dyes are compared with MWCNT’s used in this research 
and data is tabulated as Table 6. It can be concluded from the comparison table that MWCNTs could be practised for the 
treatment of dye laden wastewater.  

4. Conclusion
In this research study, MWCNT showed considerable adsorption of CR and RhB. In single or binary component systems, 
CR adsorption was generally higher than RhB due to its anionic nature. Kinetic studies showed that CR and RhB adsorption 
followed a pseudo-second-order kinetics in single dye solutions. So, the pseudo-second-order model is the rate controlling 
step during the sorption process. On the basis of correlation coefficient R2, Sips model, and extended Langmuir model 
fits best for single and binary system, respectively. In the thermodynamic study, the negative values of  indicated the 
spontaneous nature of adsorption and the positive values of  and  showed the endothermic nature and affinity of MWCNTs 
for CR and RhB, respectively. Effect of parameters including adsorbent dosage, pH, and initial concentration of dye was 
also investigated and results showed that the adsorption of RhB increases with an increase in pH while the CR showed 
an entirely different adsorption trend. Based on the acquired data, the studied adsorbent can be effectively used as an 
adsorbent for industrial wastewater treatment. 
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Table 6. Comparison of uptake capacities of various nanomaterials for removal of pollutants from aqueous phase.

Adsorbent Pollutant Uptake capacity (mg/g) References
CNTs Procion Red MX-5B 29.94 [40]

CNTs C.I. Direct Yellow 86 (DY86)
C.I. Direct Red 224 (DR224)

56.2 (DY86)
61.3 (DR224) [41]

MMWCNT’s
Methylene Blue (MB)
Neutral Red (NR)
Brilliant Cresyl Blue (BCB)

15.74 (MB)
20.33 (NR)
23.55 (BCB)

[42]

Fe3O4@graphene composite (FGC) Methylene Blue (MB)
Congo Red (CR)

45.27 (MB)
33.66 (CR) [43]

MWCNTs Alizarin Red S (ARS)
Morin

161.290 (ARS)
26.247 (Morin) [44]

MWCNTs
Congo Red 302 This study
Rhodamine B 300 This study
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Figure S1. FTIR spectrum of MWCNTs. 

 



 

Figure S2. SEM image of MWCNTs. 

 

 

 

 

Figure S3. EDX spectrum of MWCNTs.  

 

 



  

 

Figure S4. N2 adsorption-desorption curves of MWCNTs. 

 

 

 

 

Figure S5. Zeta potential of MWCNTs. 

 



 

 

Figure S6. Adsorption isotherms for CR and RhB onto MWCNTs in single/binary dye system 
(dosage = 100 mg, time= 100 mint, V= 100 mL, T = 303 K, pH= 6.5). 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure S7. Von’t Hoff plots (dosage = 100 mg, time = 100 min, pH= 6.5) for dye adsorption 
in single and binary dye solution (a) Single dye solution CR=100 ppm, RhB= 100 ppm, (b) 
CR:RhB = 60:100, (c) CR:RhB = 100:60 and (d) CR:RhB = 100:100. 
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